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beginquoteAbstract. this paper devoted to study the existence of a unique solution of
the fractional Hammerstein integro-differential equations in the Banach space via the fixed
point theorems. The main purpose is based on transforming the fractional equations into
the integral equations of the Volterra type by using the differential transformation method
and the corresponding fractional calculus characteristics. Also, we obtain theε-modified
operational matrix for the fractional integral and use the properties of modified block pulse
functions to get approximate solutions. In the our presented method, the fractional Ham-
merstein equations are transformed into a system of algebraic equations, where the volume
of computations are reduced by using the special nodes. Finally, we give some examples
to demonstrate the obtained results.
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1. INTRODUCTION

Fractional calculus is studied based on the generalization of integral and differential
equations to any real or even complex order. It is an extension of classical calculus and
therefore preserves many of basic properties. There are many usages for fractional cal-
culus such as control theory, dynamics, viscoelasticity and electromagnetic theory (see
[3, 5, 8] ). The behavior of the solution of fractional integral and differential equations has
been extensively studied by many authors. By utilizing the theory of fixed point and the
iterative method, Zhang et al. [17] investigated several existence and uniqueness results
for a new type of nonlocal multipoint boundary value problem of the Caputo fractional
integro-differential equations requiring Riemann-Liouville integral boundary conditions.
Also, several results on the existence of solutions have been investigated in the numerous
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research papers for different kinds of integral and differential equations of fractional orders
(see [1, 2, 16] and the references therein). Moreover, several numerical methods have been
presented to approximate solutions of fractional equations (see [7, 9, 10, 15] and the refer-
ences therein).
We study the analytical and numerical solutions of the following equations of the Hammer-
stein type

(
CDβυ

)
(τ) = g(τ) +

∫ τ

0

k(τ, η) E (υ(η)) dη, τ ∈ [0, a], m− 1 < β ≤ m, (1. 1)

with the initial condition

υ(j)(0) = υj , j = 0, 1, ..., m− 1, (1. 2)

whereCDβ denotes the Caputo fractional derivative andE is an increasing linear transfor-
mation on the Banach spaceχ.
In [7], Li and Sun, study the fractional differential equations using the generalized block
pulse operational matrix. The modification of block pulse functions applied to numerically
solve of the first kind Volterra integral equation in [9]. Motivated by the mentioned manu-
scripts, in this paper we established the fractional integral operational matrix based on the
ε-modified block pulse functions, afterward we used the idea of converting the fractional
integro-differential equations to the fractional integral equations to analyze of the problem.
Also, by using the modified block pulse functions and the obtained operational matrix, nu-
merical solutions of the equations are studied.
The structure of this paper is as follows: In Section 2, we introduce preliminaries which
are used throughout the paper. In Section 3, we investigate the existence and uniqueness
of solution, by converting the fractional equations to the integral equations of the Volterra
type and applying the fixed point theorems. In Section 4, we first derive the operational
matrix of the modified block pulse functions for the fractional integral, then we convert the
fractional integro-differential equations into fractional integral equations. Furthermore, by
using theε-modified block pulse functions and the fractional integration operational ma-
trix, we obtain an approximate solution with high accuracy. Section 5 discusses the error
analysis of the our presented method. In Section 6, some numerical results are provided to
clarify the method. The conclusion is given in Section 7.

2. PRELIMINARIES

We give some basic concepts which are used further in this paper (for more details see
[3] and [12]).
Throughout this paper, we consider the complete metric space(χ, d) which

d(h, g) = sup
τ∈[0,a]

|h(τ)− g(τ)|

for all h, g ∈ χ.
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Definition 2.1. The Riemann-Liouville fractional integral of orderβ > 0 of a function
υ(τ), is defined as

(Iβυ)(τ) =
1

Γ(β)

∫ τ

0

(τ − µ)β−1
υ(µ) dµ, τ > 0, (2. 3)

whereΓ is the Gamma function.

We consider the definition of the Caputo derivative which is more useful in real-life
usages since it can be better able to model phenomena and be consistent with the initial
conditions of the problems.

Definition 2.2. The Caputo derivative of orderβ ≥ 0 for a functionυ(τ) is defined by

(
CDβυ

)
(τ) =

1
Γ(m− β)

∫ τ

0

(τ − µ)m−β−1
υ(m)(µ) dµ,

wherem = [β] + 1 and[β] denotes integer part of the real numberβ.

If β = m ∈ N0 and the derivativeυ(m)(τ) of orderm exists, then(CDmυ)(τ) coin-
cides withυ(m)(τ). Also, this definition implies thatCDβυ(n)(τ) = CDβ+n υ(τ) and
CDβz = 0 (z is a constant).

Proposition 2.3. Letβ > 0 andm = [β] + 1. If υ(τ) ∈ Cm[0, a], then

(i)
(
Iβ CDβυ

)
(τ) = υ(τ)−∑m−1

j=0

υ(j)(0)
j!

τ j ,

(ii)
(
CDβ Iβυ

)
(τ) = υ(τ).

Lemma 2.4. Problem(1. 1 ) - (1. 2 ) is equivalent to the Volterra integral equation

υ(τ) = h(τ) +
∫ τ

0

P (τ, η) E(υ(η)) dη, (2. 4)

where

P (τ, η) =
1

Γ(β)

∫ τ

η

(τ−µ)β−1k(µ, η) dµ, h(τ) =
m−1∑

j=0

υj

j!
τ j+

1
Γ(β)

∫ τ

0

(τ−η)β−1g(η) dη.

(2. 5)

Proof. First, we take the integral of fractional orderβ from both sides of Eq. (1. 1 ), then
by using Proposition 2.3 and with the change of integral order, we get

υ(τ) =
m−1∑

j=0

υj

j!
τ j+

1
Γ(β)

∫ τ

0

(τ−η)β−1g(η) dη+
∫ τ

0

[
1

Γ(β)

∫ τ

η

(τ − µ)β−1k(µ, η) dµ

]
E(υ(η)) dη

= h(τ) +
∫ τ

0

P (τ, η) E(υ(η)) dη,

and we get the result. ¤
Definition 2.5. Let ω denotes the class of those functionsγ : [0,∞) → [0, 1) which
satisfies the following condition

γ (ηn) → 1 implies ηn → 0. (2. 6)
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In the following, we introduce the epsilon modified block pulse functions and some of
their properties [9]. We first have a brief reminder of the block pulse functions [4].

Definition 2.6. A set of block pulse functionsΘ(τ) in the interval[0, R) is given by

Θ(τ) = [θ1(τ) θ2(τ) ... θn(τ)]T ,

where the jth componentθj(τ), (j = 1, 2, ..., n) of the BPFs vectorΘ(τ) is defined as

θj(τ) =





1, τ ∈ [ (j−1)R
n , jR

n ),

0, o.w.

Definition 2.7. A set ofε-modified block pulse functionsϑj(τ), (j = 0, 1, ..., n) is usually
defined in the interval[0, R) as follows

ϑ0(τ) =

{
1, τ ∈ [0, R

n − ε) = J0,

0, o.w.

ϑn(τ) =

{
1, τ ∈ [R− ε, R) = Jn,

0, o.w.

ϑj(τ) =





1, τ ∈ [ jR
n − ε, (j+1)R

n − ε) = Jj , (0 < j < n),

0, o.w.

Notice that ifε = 0 then the dimension of matrix decreases ton and we only haven
block pulse functions. The advantages ofε-modified block pulse functions can be cited by
easy operation and their satisfactory approximations that these advantages are due to the
distinct properties of the block pulse functions. Without loss of generality and assuming
R = 1, some of their preliminary properties are:

1. disjointness:

ϑj(τ) ϑΥ(τ) =
{

ϑj(τ), j = Υ,
0, j 6= Υ,

2. orthogonality: ∫ 1

0

ϑj(τ) ϑΥ(τ) dτ = ` δjΥ,

3. completeness: ∫ 1

0

f2(τ) dτ =
∞∑

j=0

f2
j ‖ ϑj ‖2,

where

fj =
1

∆(Jj)

∫ 1

0

f(τ) ϑj(τ) dτ =
1

∆(Jj)

∫

Jj

f(τ) dτ, (2. 7)

and∆(Jj) is the length of the intervalJj .
If we put ` = R

n then the operational matrix of theε-modified block pulse functions is
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defined as follows:

P(n+1)×(n+1) =




`−ε
2 `− ε `− ε . . . `− ε `− ε
0 `

2 ` . . . ` `
0 0 `

2 . . . ` `
...

...
...

.. .
...

...
0 0 0 . . . `

2 `
0 0 0 . . . 0 ε

2




(2. 8)

that the above matrix has the same characteristics and applications of the matrix defined
for the operational matrix of block pulse functions.

Definition 2.8. The expansion of the continuous functionh(τ) is written in terms of the
ε-modified block pulse functions as follows:

h(τ) ≈ ∧
hn+1 =

n∑

j=0

hjϑj(τ) = HT Φ(τ) = ΦT (τ) H, (2. 9)

wherehj is defined in(2. 7 )andH = [h0 h1 ... hn]T .

Proposition 2.9. With definingΦ(τ) = [ϑ0(τ) ϑ1(τ) ... ϑn(τ)]T , we have

i) Φ(τ) ΦT (τ) =




ϑ0(τ) 0
. . .

0 ϑn(τ)




(n+1)×(n+1)

,

ii) ΦT (τ) Φ(τ) = 1,

iii) Φ(τ) ΦT (τ) H = DH Φ(τ),

iv) ΦT (τ) HΦ(τ) = ĤT Φ(τ),

v)
∫ τ

0
Φ(s) ds ≈ P Φ(τ),

whereDH = diag(H), Ĥ is an(n + 1) column vector withdiag(H) elements, andP is
the operational matrix of theε-modified block pulse functions which is defined in(2. 8 ) .
Aaccording to (v), we can write∫ τ

0

h(s) ds ≈
∫ τ

0

HT Φ(s) ds ≈ HT P Φ(τ).

3. EXISTENCE AND UNIQUENESS

In this section, using the iterative method under some suitable conditions, we investigate
the existence and uniqueness theorem of nonlinear equation (1. 1 ), which is equivalent to
the nonlinear Volterra integral equation (2. 4 ). We define

P (V )(τ) =
∫ τ

0

P (τ, η) E(υ(η)) dη, (3. 10)
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from Eqs. (2. 4 ) and (3. 10 ), we have

V = H + P (V ), H ∈ χ. (3. 11)

Now we define the operatorA : χ → χ as follows

AV = P (V ) + H, V, H ∈ χ, (3. 12)

from Eqs. (3. 11 ) and (3. 12 ), we obtain

AV = V.

So, we can rewrite the equation (2. 4 ) as follows

υ(τ) = h(τ) +
∫ τ

0
P (τ, η) E(υ(η)) dη ≡ Aυ(τ),

(3. 13)

which means that every solution of (3. 13 ) is a solution of (1. 1 ) and vice versa.

Theorem 3.1. Consider the nonlinear Volterra integral equation(3. 13 )such that

(i) g : [0, a] → < andk : [0, a]× [0, a] → < are continuous,

(ii) E : χ → χ is an increasing linear transformation andγ(τ) = E(τ)
τ ∈ ω, τ 6= 0,

(iii) supτ∈[0,a]

∫ a

0
P 2(τ, η) dη ≤ 1

a .

Then, the integral equation(3. 13 )has a unique fixed pointυ ∈ χ.

Proof. Consider the iterative scheme

υx+1(τ) = h(τ) +
∫ τ

0

P (τ, η) E(υx(η)) dη ≡ Aυx(τ), x = 0, 1, ..., (3. 14)

whereυ0 ∈ χ is an appropriate initial guess. So,

|Aυx(τ)− Aυx−1(τ)| = |
∫ τ

0

P (τ, η) E(υx(η)) dη −
∫ τ

0

P (τ, η) E(υx−1(η)) dη|

≤
∫ τ

0

|P (τ, η) E(υx(η)− υx−1(η))|dη

≤
(∫ a

0

P 2(τ, η) dη

) 1
2

(∫ a

0

E2|υx(η)− υx−1(η)|dη

) 1
2

.

As the functionE is increasing then

E (|υx(τ)− υx−1(τ)|) ≤ E (d(υx, υx−1)) ,

so according to (iii), we obtain

d2(υx+1, υx) ≤
(

sup
τ∈[0,a]

∫ a

0

P 2(τ, η)dη

)
E2 (d(υx, υx−1)) a ≤ E2 (d(υx, υx−1)) .

Therefore

d(υx+1, υx) ≤ E (d(υx, υx−1)) =
E (d(υx, υx−1))

d(υx, υx−1)
. d(υx, υx−1)

= γ (d(υx, υx−1)) . d(υx, υx−1), (3. 15)
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and so the sequence{d(υx+1, υx)} is descending and bounded. Therefore there exists
ζ ≥ 0 such thatlimx→∞ d(υx+1, υx) = ζ. Supposeζ > 0. Then by (3. 15 ), we have

d(υx+1, υx)
d(υx, υx−1)

≤ γ (d(υx, υx−1)) , x = 1, 2, ... .

According to the above inequality, we concludeγ 6∈ ω becauselimx→∞ γ (d(υx, υx−1)) =
1 where limx→∞ (d(υx, υx−1)) = ζ > 0 and this is a contradiction. Soζ = 0 and
thereforelimx→∞ d(υx+1, υx) = 0. Now we show that{υx} is a Cauchy sequence.
Contrariwise, suppose that

lim sup
λ,x→∞

d(υx, υλ) > 0. (3. 16)

By the triangle inequality and Eq. (3. 15 ), we have

d(υx, υλ) ≤ d(υx, υx+1) + d(υx+1, υλ+1) + d(υλ+1, υλ)

≤ d(υx, υx+1) + (γ (d(υx, υλ)) d(υx, υλ)) + d(υλ+1, υλ),

hence

d(υx, υλ) [1− γ (d(υx, υλ))] ≤ d(υx, υx+1) + d(υλ+1, υλ).

Thus, we have

d(υx, υλ) ≤ (1− γ (d(υx, υλ)))−1 [d(υx, υx+1) + d(υλ+1, υλ)] .

Sincelim supλ,x→∞ d(υx, υλ) > 0 andlimx→∞ d(υx+1, υx) = 0, then

lim sup
λ,x→∞

(1− γ (d(υx, υλ)))−1 = +∞,

from the above equation, we concludelim supλ,x→∞ γ (d(υx, υλ)) = 1 and sinceγ ∈ ω,
we obtain

lim sup
λ,x→∞

d(υx, υλ) = 0.

This contradicts with (3. 16 ), shows{υx} is a Cauchy sequence inχ, and{υx} is a con-
vergent sequence inχ, that is

∃υ ∈ χ, lim
x→∞

υx = υ.

Now by taking the limit of both sides of (3. 14 ), we have

υ(τ) = lim
x→∞

υx+1(τ) = lim
x→∞

(
h(τ) +

∫ τ

0

P (τ, η) E(υx(η)) dη

)

= h(τ) +
∫ τ

0

P (τ, η) E( lim
x→∞

υx(η)) dη

= h(τ) +
∫ τ

0

P (τ, η) E(υ(η)) dη ≡ Aυ(τ).

Thus, there exists a solutionυ ∈ χ such thatAυ = υ. It is clear that the fixed point ofA is
unique. ¤
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4. IMPLEMENTATION OF THE FRACTIONAL HAMMERSTEIN EQUATIONS

In this section, we first describe how to obtain the operational matrix of modified block
pulse functions for the fractional integral, and then explain how to implement the method
for the numerical approximation of the solution of the fractional integro- differential equa-
tions.
Forϑj(τ), applying definitions of the Riemann-Liouville fractional integral of orderβ > 0
and convolution product, we have

Iβϑj(τ) =
1

Γ(β)

∫ τ

0

(τ − µ)β−1ϑj(µ) dµ =
1

Γ(β)
[τβ−1 ∗ ϑj(τ)],

due to the definition of theε-modified block pulse functions, we have

Iβϑ0(τ) =





τβ

Γ(β+1) ; τ ∈ [0, `− ε),

τβ−(τ−`+ε)β

Γ(β+1) ; τ ∈ [`− ε, R),
(4. 17)

Iβϑj(τ) =





0 ; τ ∈ [0, j`− ε),

(τ−j`+ε)β

Γ(β+1) ; τ ∈ [j`− ε, (j + 1)`− ε),

(τ−j`+ε)β−(τ−(j+1)`+ε)β

Γ(β+1) ; τ ∈ [ (j + 1)`− ε, R),

(4. 18)

wherej = 1, ..., n− 1, and

Iβϑn(τ) =





0 ; τ ∈ [0, R− ε),

(τ−R+ε)β

Γ(β+1) ; τ ∈ [R− ε, R).
(4. 19)

Set(IβΦ)(τ) ' Q Φ(τ). So, we have

(Iβϑ0)(τ) ' q00ϑ0(τ) +
n−1∑

j=1

q0jϑj(τ) + q0nϑn(τ),

so ∫ R

0

Iβϑ0(τ) dτ ' (`− ε)q00 + `

n−1∑

j=1

q0j + εq0n,

according to (4. 17 ) can be written

q00 =
(`− ε)β

Γ(β + 2)
,

q0j = ((j+1)`−ε)β+1−(j`)β+1−(j`−ε)β+1+((j−1)`)β+1

`. Γ(β+2) , j = 1, ..., n− 1,

q0n = Rβ+1−(R−`+ε)β+1−(R−ε)β+1+(R−`)β+1

ε. Γ(β+2) ,

now forϑi(τ), (i = 1, ..., n− 1), according to (4. 18 ) can be written
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qij = `β

Γ(β+2) [(j − i + 1)β+1− 2(j − i)β+1 + (j − i− 1)β+1], j = i + 1, ..., n− 1,

qin = 1
ε. Γ(β+2) [(R−i`+ε)β+1−(R−(i+1)`+ε)β+1−(R−i`)β+1+(R−(i+1)`)β+1],

eventually forϑn(τ), according to (4. 19 ), we have

qn0 = 0,

qnj = 0, j = 1, ..., n− 1,

qnn = εβ

Γ(β+2) .

Finally, we obtain

Q(n+1)×(n+1) =
1

Γ(β + 2)




(`− ε)β ξ1 ξ2 ξ3 · · · ξn−1 ξn

0 `β `βη1 `βη2 · · · `βηn−2 ζ1

0 0 `β `βη1 · · · `βηn−3 ζ2

0 0 0 `β · · · `βηn−4 ζ3

...
...

...
...

. . .
...

...

0 0 0 0 · · · `β ζn−1

0 0 0 0 · · · 0 εβ




(4. 20)
where

ξk = 1
` [((k+1)`−ε)β+1−(k`)β+1−(k`−ε)β+1+((k−1)`)β+1], k = 1, ..., n−1,

ξn = 1
ε [Rβ+1 − (R− ` + ε)β+1 − (R− ε)β+1 + (R− `)β+1],

ηk = [(k + 1)β+1 − 2kβ+1 + (k − 1)β+1], k = 1, ..., n− 1− i,

ζk = 1
ε [(R− k` + ε)β+1 − (R− (k + 1)` + ε)β+1 − (R− k`)β+1

+(R− (k+1)`)β+1], k = 1, ..., n−1.

Q is called theε-modified operational matrix for the fractional integral. In (4. 20 ), if
β = 1 then matrixQ is equal to matrixP . Therefore, the matrixQ is a generalization of
theε-modified operational matrix for integrationP .
Note that, ifg(τ) is a continuous function, according to the above description, we can write

(Iβg)(τ) ≈ IβGT Φ(τ) ≈ GT Q Φ(τ). (4. 21)
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Here we solve the fractional Hammerstein integro-differential equations (1. 1 )-(1. 2 ) by
usingεMBPFs. According to Proposition 2.3, problem (1. 1 ) can be rewritten as follows:

υ(τ) = g0(τ) + Iβg(τ) + Iβ

∫ τ

0

k(τ, η) E (υ(η)) dη, (4. 22)

whereg0(τ) =
∑m−1

j=0
υj

j! τ j . We first assumeE(υ(η)) = w(η), then we have

w(τ) = E(g0(τ) + Iβg(τ) + Iβ

∫ τ

0

k(τ, η) w(η)dη), (4. 23)

now from (2. 9 ), we consider the following approximations

w(τ) ≈ WT Φ(τ) = ΦT (τ) W,

g(τ) ≈ GT Φ(τ) = ΦT (τ) G,

k(τ, η) ≈ ΦT (τ)K Φ(η),

(4. 24)

whereW, G andΦ(τ) are(n + 1× 1) column vectors andK is a matrix which is defined
as follows

kij =
1

∆(Ji). ∆(Jj)

∫ 1

0

∫ 1

0

k(τ, η) ϑi(τ) ϑj(η) dτ dη, i, j = 0, ... n.

By putting the above approximations in the Eq. (4. 23 ) and using Proposition 2.9 and Eq.
(4. 21 ), we have

WT Φ(τ) = E(g0(τ) + GT Q Φ(τ) + B̂T Q Φ(τ)),

whereB = KDW P andB̂ is an(n + 1× 1)− matrix which elements are the same to the
diagonal entries of matrix B.
Now, using the following nodes

τr =
tr + tr+1

2
, r = 1, 2, ..., n + 1,

wheret = [0, R
n − ε, 2R

n − ε, ..., R− ε, R], we have

WT Φ(τr) = E(g0(τr) + GT Q Φ(τr) + B̂T Q Φ(τr)), r = 1, 2, ..., n + 1. (4. 25)

Now Eq. (4. 25 ) gives a system of algebraic equations, so we find unknown (n+1)-vector
W. By substitutingE(υ(η)) = w(η), in Eq. (4. 22 ) and applying the relationship (4. 21 )
and Proposition 2.9, we have

υ̂ε(τ) = g0(τ) + GT Q Φ(τ) + B̂T Q Φ(τ).

Therefore, we can obtain the solution of equation (1. 1 ) as follows:

υ(τ) ≈ υ(τ) =
1
k

k−1∑

j=0

υ̂εj (τ),

whereεj = j`
k , j = 0, 1, . . ., k−1 andυ̂εj (τ) are the approximate solutions ofυ(τ) which

are respectively expanded in terms ofεjMBPFs. To calculate the error bound ofεMBPFs
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according to Theorem 2 in [9] can be written

‖υ(τ)− υ(τ)‖∞ ≤ 1
k

max
j

‖υ(τ)− υ̂εj
(τ)‖∞, j = 0, 1, ..., k − 1.

5. ERRORANALYSIS

In this section, the error analysis of approximate solution by theεMBPFs is studied. In

the following theorems, for simplicity, we assumeR = 1 andl =
1
n

.

Theorem 5.1. If υ̂(τ) =
∑n

j=0 υjϑj(τ) andυj =
1

∆(Jj)
∫ 1

0
υ(τ)ϑj(τ)dτ , j = 0, 1, ..., n

then:
(i) δ =

∫ 1

0
(υ(τ)−∑n

j=0 υjϑj(τ))2dτ , achieves its minimum value.
(ii) {υ̂(τ)} approachesυ(τ) point wise.
(iii)

∫ 1

0
υ2(τ)dτ =

∑∞
j=0 υ2

j ‖ϑj‖2.

Proof. The proof is like similar theorem which was proved by Jiang and Schaufelberger
(1992) but intervals of integrations have to redefine asJj , j = 0, 1, ..., n. ¤

Theorem 5.2. Supposeυ(τ) is continuous inJ , differentiable in(0, 1), and there is a
numberM such that|υ′(τ)| 6 M for everyτ ∈ J . Then

|υ(b)− υ(a)| 6 M |b− a|,
for all a, b ∈ J .

Proof. See [13]. ¤

Theorem 5.3. Assume that,

(i) υ(τ) is continuous and differentiable in[
−1
n

, 1 +
1
n

], with bounded derivative; that is,

|υ′(τ)| 6 M,

(ii) υ̂εi(τ) whereεi =
il

k
, i = 0, 1, ..., k − 1 are correspondingly MBPFs(ε0) =BPFs,

MBPFs(ε1), ..., MBPFs(εk−1), expansions ofυ(τ) base onn + 1 εMBPFs over interval
[0, 1),

(iii) υ(τ) =
1
k

∑k−1
i=0 υ̂εi(τ).

Then

‖υ(τ)− υ̂εi(τ)‖ = O(
1
n

), ‖υ(τ)− υ(τ)‖ = O(
1
nk

).

Proof. We define the error betweenυ(τ) and its BPFs expansion as follows:

e(τ) = |υ(τ)− υ̂(τ)|
whereυ̂(τ) =

∑n−1
j=0 υjϑj(τ). Now, over every subintervalJj , we have

ej(τ) = |υ(τ)− υjϑj(τ)| = |υ(τ)− υj |, τ ∈ Jj = [
j

n
,
j + 1

n
),
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whereυj =
1
l

∫ j+1
n

j
n

υ(τ)dτ . Using the mean value theorem and using Theorem 5.2, we

have:

‖ej‖2 =
∫ j+1

n

j
n

e2
j (τ)dτ =

∫ j+1
n

j
n

|υ(τ)− υj |2dτ =
1
n
|υ(ξ)− υ(η)|2

≤ 1
n

M2|ξ − η|2 ≤ M2

n3
, ξ, η ∈ Jj . (5. 26)

This leads to

‖e(τ)‖2 =
∫ 1

0

e2(τ)dτ =
∫ 1

0




n−1∑

j=0

ej(τ)




2

dτ =
∫ 1

0




n−1∑

j=0

e2
j (τ)


 dτ+2

∑

j≤i

∫ 1

0

ej(τ)ei(τ)dτ.

Since fori 6= j, Ji ∩ Jj = ∅, then

‖e(τ)‖2 =
n−1∑

j=0

(∫ 1

0

e2
j (τ)dτ

)
=

n−1∑

j=0

‖ej‖2. (5. 27)

Substituting (5. 26 ) into (5. 27 ), we have

‖e(τ)‖2 ≤ M2

n2
,

hence,‖e(τ)‖ = O(
1
n

).
Now to prove the next part of the theorem, according to the previous part, the error when
υ(τ) is represented in a series ofεMBPFs is

ej(τ) = υ(τ)− υj , τ ∈ Jj = [
j

n
− ε,

j + 1
n

− ε),

where

υj =
1

∆(Jj)

∫ 1

0

υ(τ)ϑj(τ)dτ =
1

∆(Jj)

∫ j+1
n −ε

j
n−ε

υ(τ)dτ.

Now, using Trapezoidal rule for integral, we have

υj =
1
2

(
υ(

j

n
− ε) + υ(

j + 1
n

− ε)
)

+ E,

whereE is the error of integration. Supposen is so large thatυ′(τ) over intervalJj is
approximately equal to a constant value. we use liney = τ instead ofυ(τ) over interval
Jj , j = 1, ..., n− 1. SoE = 0 and we can write

ej(τ) = |τ − υj | = |τ −
∑k−1

i=0

(
j
n − εi + j+1

n − εi

)

2k
|

= |τ − (
2j + 1

2n
) + (

k − 1
2kn

)| ≤ 1
2kn

,

for J0 we have

e0(τ) = |τ −
∑k−1

i=0

(
1
n − εi

)

2k
| = |τ − 1

2n
+

k − 1
4nk

| ≤ 1
4kn

.
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Similarly, for Jn we haveen(τ) ≤ 1
4kn

. Now, for j = 0, 1, ..., n− 1 we have

‖ej‖2 =
∫

Jj

e2
j (τ)dτ =

∫

Jj

M2

4k2n2
dτ ≤ M2

4k2n3
.

This leads to

‖e(τ)‖2 =
n−1∑

j=0

(∫ 1

0

e2
j (τ)dτ

)
=

n−1∑

j=0

‖ej‖2 = n.
M2

4k2n3
=

M2

4k2n2
.

So, the error estimation forεMBPFs is‖e(τ)‖ = O(
1
kn

), wheren shows the number of

BPFs andk times of modifications. ¤

Lepik in [6] has introduced some methods to estimate the error when the exact solution
is not available.

6. NUMERICAL RESULTS

We consider some examples which are reviewed by the program written in the Matlab.
The numerical results are shown in Tables1 to 3 thatn represents the number of MBPFs
andk indicates the number of modifications.

Example 6.1. Consider the following equation with the exact solutionυ(τ) = sin τ for
β = 2 andτ ∈ [0, 1]

(Dβυ)(τ) = τ3(−1+esin τ )−sin τ−
∫ τ

0

τ3 cos η eυ(η) dη, 1 < β ≤ 2, υ(0) = 0, υ′(0) = 1.

In Table1 and Table2, we show the approximate solutions forn = 20 and the error bound
for n = 20 andn = 40 . In the following,ρn as the empirical convergence rate symbol, is
calculated by the following formula,

ρn =
log( error∆

error∆/2
)

log(2)
.

Table 1. Approximate solutions of Example 6.1 with MBPFs
τ n = 20 Exact solution

k=1 k=2 k=3
0.2 0.198037 0.198324 0.198415 0.198669
0.4 0.387194 0.388248 0.388590 0.389418
0.6 0.559925 0.562202 0.562947 0.564642
0.8 0.709352 0.713258 0.714544 0.717356
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Table 2. Error bound and convergence rate for Example 6.1
n = 20 n = 40

k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4
0.008004 0.004097 0.002173 0.001217 0.003896 0.001972 0.001017 0.000542

ρn – – – – 1.038727 1.054908 1.095368 1.166964

Example 6.2. Consider
(D

1
2 υ)(τ) = g(τ) +

∫ τ

0
τη υ(η) dη, 0 ≤ τ ≤ 1, υ(0) = 0,

where
g(τ) =

√
π

2 BesselJ [0,
√

τ ]− τ(−2(−6 + τ)
√

τ cos
√

τ + 6(−2 + τ) sin
√

τ),

the exact solution isυ(τ) = sin(
√

τ), whereBesselJ [n, x], obtained the first kind
Bessel function. In Table3, we show the error bound forn = 20 andn = 40.

Table 3. Error bound and convergence rate for Example 6.2
n = 20 n = 40

k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4
0.023972 0.012486 0.007234 0.005261 0.012281 0.006141 0.003455 0.002383

ρn – – – – 0.964922 1.02377 1.06611 1.14256

Example 6.3. Consider the integro-differential equation
(Dβυ)(τ)− ∫ τ

0
eη(υ(η))2dη = 1, 0 ≤ τ < 1, 3 < β ≤ 4,

where
υ(0) = υ′(0) = υ′′(0) = υ′′′(0) = 1.

The exact solution of this example forβ = 4 is υ(τ) = eτ . The numerical results for
β = 3.25 are presented in Table4. This Table shows that the obtained results by the
proposed method are similar to[11, 14].

Table 4. Approximate solutions of Example 6.3 forβ = 3.25 in agreement with [11, 14]
Exact solution n = 40 n = 120

τ for β = 4 k=2 k=6 k=2 k=6 [11] [14]
0.1 1.105171 1.105254 1.105244 1.105241 1.105238 1.106551 1.105258
0.2 1.221403 1.222095 1.222046 1.222039 1.222023 1.223932 1.221892
0.3 1.349859 1.352329 1.352204 1.352191 1.352150 1.353200 1.352313
0.4 1.491825 1.498007 1.497756 1.497735 1.497652 1.495601 1.496762
0.5 1.648721 1.661461 1.661022 1.660989 1.660845 1.652553 1.663409
0.6 1.822119 1.845392 1.844687 1.844638 1.844405 1.825655 1.843799
0.7 2.013753 2.052996 2.051921 2.051849 2.051494 2.016687 2.044381
0.8 2.225541 2.288135 2.286555 2.286453 2.285931 2.227634 2.227591
0.9 2.459603 2.555594 2.553329 2.553184 2.552435 2.460691 2.526496
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7. CONCLUSION

In this article, using the iterative method under some suitable conditions, we studied
the behavior of the solution of fractional equations of the Hammerstein type in the Banach
space. Applying theε-modified functions and the fractional integration operational matrix,
we obtained an approximate solution with high accuracy, whose convergence speed is faster
than the BPF-based method. The results show that with a relatively small value selection of
k, we have obtained the good accuracy for finding the approximate solution of the fractional
integro-differential equations. In future work, we can investigate the stability of the solution
for fractional equations of the Hammerstein type using the techniques of noncompactness
measures in an infinite interval.
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