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Abstract. In this article, we introduce the concept of Pythagorean
m-polar fuzzy soft sets (PmFSSs). This set reduces to Pythagorean
fuzzy soft set for m = 1. We define algebraic operations and some
characteristics of PmFSSs. We define some linguistic terms uti-
lizing the notion of product of PmFSSs (⊗) by assigning different
numeric values to the constant k ∈ [0,∞[ and present an illustration
to determine whether the traits of being well-dressed and attractive
personality is possessed by a person or not and up to what ex-
tent. We present an application of PmFSSs in multi-criteria group
decision making (MCGDM) problem of appraisal of employee for
promotion making use of the well-distinguished tool TOPSIS.
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1. Introduction

Logic and set theory are believed to be the foundation stones of modern mathe-
matics. A meticulous exploration of set theory belongs to the brass tacks of mathe-
matical logic. Indeed, these two notions are interrelated for many logical operations
like ∨, ∧, ¬, ⊕, ⊗, → and ↔ etc. decode into set theory and vice versa. On
the same token; relations, functions, paradoxes, numbers, probability theory, al-
gebra and modern measure theory etc. all rely on theory of sets. Logicians have
investigated set theory in excessive details, articulating an assortment of axioms
that affords an all-encompassing and sufficiently strong footing for mathematical
reasoning. The customary system of axiomatic set theory is Zermelo-Fraenkel set
theory, along with the axioms of choice. Each axiom incorporated in this theory
states a property of sets which is far and wide acknowledged around the world by
mathematicians. Beyond its foundational role, modern set theory owns a gigantic
number of full of zip researchers.
At the primary phases of the development of set theory (traditionally accredited as
classical set theory, developed by Cantor and Dedekind), a constituent was under-
stood to be either a member of some given set or not. In other terms, a characteristic
function is associated with each set which assigns a value of 1 to the element if it is
member of the set and 0 otherwise. There was not any other moderate option for
an element regarding belongingness to a set. Zadeh [60], in the second half of 20th

century, made public the perception of a new species of sets famous as fuzzy set by
coupling a membership function with each member of the set whose values range
from 0 to 1. According to Zadeh, an element may belong partially to a set. Besides
exploring different mathematical operations on fuzzy sets Zadeh also introduced the
concept of a linguistic variable and its application to approximate reasoning [61].
The philosophies commenced by Zadeh proved like a revolution in the ecosphere of
dynamic mathematicians.
Subsequent upon the model rendered by Zadeh, mathematicians around the globe
began meditative upon other sort of sets. Atanassov believed that if there exists
a membership function to measure uncertainty against a set, then there must be
a non-membership function associated with each element of that set too. Ensuing
his work, Atanassov presented [15, 16] a fresh category of sets entitled intuitionistic
fuzzy sets (IF-sets) by striking the constraint that the values of membership and its
counterpart non-membership functions not only lie from 0 to 1 but their sum also
must fall in the same interval. At the end of 20th century, Molodstov [34] furnished
a parameterized collection of sets, known as soft sets. Soft sets acquiescently des-
ignate a number of attributes for clarifying and reconnoitering a problem holding
ambiguity and uncertainty. Molodstov also rendered some useful applications from
everyday life. The soft set theory discovers varied range of applications in manage-
ment economics, medical sciences, engineering, and social sciences predominantly
due to its tractability without restraints on imprecise description of the situation.
With the study of innovative set structures, the science of set theory took a fresh
twist. Increasingly hybrid set structures gave the impression on the canvas. Yager
[57]-[59], by modifying the constraint on the parameters, presented the notion of
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Pythagorean fuzzy sets (PF-sets) as an extension of IF-sets. Peng et al. [39]-[43]
studied some results for PF-sets along with their applications. Naz et al. [37] em-
ployed the idea on Pythagorean fuzzy graphs and presented some decision making
applications. Olgun et al. [38] introduced the notion of Pythagorean fuzzy topo-
logical spaces employing the notion of fuzzy topological spaces. Qamar and Hassan
[1] presented an approach toward a Q-neutrosophic soft set and its application in
decision making. Qamar and Hassan [2] also presented Q-neutrosophic soft relation
and its application in decision making.
Akram et al. [3]-[7], by utilizing PF-sets and m-polar fuzzy sets, furnished some
beguiling applications in decision making problems (DMPs). Akram and Adeel
[8] presented m-polar fuzzy labeling graphs with application. Akram and Sarwar
[9] presented novel applications of m-polar fuzzy hypergraphs. Akram et al. [10]
presented notion of m-polar fuzzy lie subalgebras. Later, Akram and Farooq [11]
extended this notion to m-polar fuzzy lie ideals of lie algebras. Farooq et al. [18]
rendered the notion of m-polar fuzzy groups. Masarwah and Ahmad [12]-[14] pre-
sented m-polar fuzzy ideals of BCK/BCI-algebras, m-polar (α, β)-fuzzy ideals of
BCK/BCI-algebras and (complete) normality of m-pF subalgebras in BCK/BCI-
algebras. Garg [22]-[25] presented a new generalized Pythagorean fuzzy information
aggregation (GPFIA) using Einstein operations and applied it to multi-criteria deci-
sion making (MCDM) by introducing various decision-making techniques employing
aggregation operators. In contemporary times, Jana et al. [29]-[31] presented fasci-
nating applications in decision making using different sorts of Dombi’s aggregation
operators. Feng et al. [19]-[21] presented some attention-grabbing results on soft
sets, rough sets, generalized intuitionistic fuzzy soft sets and Lexicographic orders of
intuitionistic fuzzy values and their relationships. Hashmi et al. [26] introduced the
notion of m-polar neutrosophic set and m-polar neutrosophic topology and their
applications to multi-criteria decision-making (MCDM) in medical diagnosis and
clustering analysis. Hashmi and Riaz [27] introduced a novel approach to censuses
process by using Pythagorean m-polar fuzzy Dombi’s aggregation operators. Naeem
et al. [35] introduced Pythagorean fuzzy soft MCGDM methods based on TOPSIS,
VIKOR and aggregation operators. Riaz and Naeem [44] introduced the concept of
measurable Soft Mappings and related results. Riaz et al. [45, 46, 47] introduced N-
soft topology and soft rough topology with its applications to group decision making.
Riaz and Hashmi [48] introduced the concept of cubic m-polar fuzzy set and pre-
sented multi-attribute group decision making (MAGDM) method for agribusiness
in the environment of various cubic m-polar fuzzy averaging aggregation operators.
Riaz and Hashmi [49] introduced the notion of linear Diophantine fuzzy Set (LDFS)
and its Applications towards multi-attribute decision making problems. Linear Dio-
phantine fuzzy Set (LDFS) is superior than IFSs, PFSs and q-ROFSs. Riaz and
Hashmi [50] introduced novel concepts of soft rough Pythagorean m-Polar fuzzy sets
and Pythagorean m-polar fuzzy soft rough sets with application to decision-making.
Riaz and Tehrim [51]-[55] established the idea of bipolar fuzzy soft topology, cubic
bipolar fuzzy set and cubic bipolar fuzzy ordered weighted geometric aggregation
operators, bipolar fuzzy soft mappings, TOPSIS method with bipolar neutrosophic
soft topology, and their applications to aplications to multi-criteria group decision
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making (MCGDM).
Zhang [62] proposed bipolar fuzzy sets as extension of fuzzy sets in 1994. Lee [32],
in 2000, proposed an extension of fuzzy sets titled bipolar-valued fuzzy sets and
presented two kinds of its representation. Chen et al. [17] generalized the notion of
bipolar fuzzy sets to m-polar fuzzy sets and rendered some applications of m-polar
fuzzy sets in real world problems. Smarandache [56] presented the notion of neu-
trosophic sets for coping with problems possessing imprecision, indeterminacy and
inconsistency. Getting inspired by Smarandache, Maji [33] presented neutrosophic
soft set along with peculiar concepts and characteristics. Qamar and Hassan [1]
presented an approach toward a Q-neutrosophic soft set and its application in de-
cision making. Qamar and Hassan [2] also presented Q-neutrosophic soft relation
and its application in decision making.
TOPSIS, initially presented by Hwang and Yoon [28], is a useful model for tackling
DMPs of the real world. This technique assists the decision makers to reach at
some final decision and analyzing the conclusion in a system manner without any
partiality. A number of varied versions of TOPSIS including adjusted TOPSIS, ex-
tended TOPSIS and modified TOPSIS may be found in literature. In recent years,
this technique has been successfully applied in the fields of medical sciences, water
management, business, transportation analysis, quality control, human resources
management, and product design etc. which may be found in literature.
The prime ambition behind this research is to extend the notion of Pythagorean
m-polar fuzzy sets (PmFSs) presented by Naeem et al. [36] to Pythagorean m-polar
fuzzy soft sets (PmFSSs) along with algebraic operations on these sets and explore
some idiosyncratic characteristics of this hybrid structure. PmFSSs have natural
applications in multiple-valued logic, multi-sensor, multi-source and multi-process
information fusion. PmFSSs provide a strong mathematical model to take in hand
MCGDM problems. In order to tackle real world problems where intuitionistic
fuzzy soft sets cannot deal with the situation when sum of membership and non-
membership degrees of the parameter exceeds 1 making MCGDM demarcated and
hence affecting the optimum decision, PmFSSs do not leave us alone and unassisted.
PmFSSs provide a large number of applications to MCGDM problems in artificial
intelligence, image processing, medical diagnosis, forecasting, recruitment problems
and many other real life problems.
The article is prescribed as follows: In Section 1, account of different sorts of sets
along with decision making technique of TOPSIS is presented with brevity. Section
2 is devoted to cover concise but comprehensive definitions of different sorts of sets
that would be assisting in remnant part of the paper. The next segment i.e. Section
3 of this article serves as the main organ of this paper. In this section, we present
the notion of PmFSSs along with associated mathematical operations and related
results on these sets. In the very next segment of this article i.e. in Section 4,
we exhibited how PmFSSs may be utilized in handling everyday problems using
TOPSIS method. We ended with a concrete conclusion and some future directions
in Section 5.
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2. Preliminaries

In this section, we call to mind some fundamentals of different kinds of sets with
brevity that would be ready to lend a hand in the remnant part of this article.

Definition 2.1. [60] Presume that X is a non-void set of objects. A fuzzy set A in
X comprises ordered doublets in which abscissa is member of X and the ordinate
is a mapping (termed as membership function of fuzzy set A) that drags elements
of X to the unit closed interval [0, 1].

Definition 2.2. [16] An intuitionistic fuzzy set (IF-set in brief) over the underlying
set X is defined as

A = {< ζ, µA(ζ), νA(ζ) >: ζ ∈ X}
The mappings µA and νA in order are acknowledged as the degrees of membership
and non-membership of the element ζ ∈ X to the set A and send elements of X to
unit closed interval along with the constraint that their sum must not exceed unity.

Definition 2.3. [57] A Pythagorean fuzzy set, abbreviated as PF-set, over X is a
family of the form

P =
{

< ζ, µP(ζ), νP(ζ) >: ζ ∈ X
}

where µP and νP are mappings from some crisp set X to the unit closed interval
with the restriction that sum of their squared values should not exceed unity i.e.
0 ≤ µ2

P(ζ) + ν2
P(ζ) ≤ 1, called correspondingly the grade of association and non-

association of ζ ∈ X to the set P. The pair (µP, νP) is called Pythagorean fuzzy
number (PFN). The number γP(ζ) =

√
1− µ2

P(ζ)− ν2
P(ζ) is called the hesitation

margin.

Definition 2.4. [17] An m-polar fuzzy set on the reference set X is characterized
by a mapping A : X 7→ [0, 1]m, where m is any arbitrary natural number.

Definition 2.5. [34] Let X be a reference set and E a non-void collection of at-
tributes with A v E. A soft set is a parameterized collection designated as (ψ,A)
where ψ is a map that drives elements of A to the power set 2X of X.

Definition 2.6. [36] Assume that m is a natural number. A Pythagorean m-
polar fuzzy set (a PmFS for short) P over an underlying set X is characterized
by two mappings µ

(i)
P : X 7→ [0, 1] (traditionally acknowledged membership func-

tions) and ν
(i)
P : X 7→ [0, 1] (conventionally called non-membership functions)

with the constraint that sum of their squared values should not exceed unity i.e.

0 ≤
(
µ

(i)
P (ζ)

)2

+
(
ν

(i)
P (ζ)

)2

≤ 1, for i = 1, 2, · · · ,m.
A PmFS may be expressed in set-builder notation as

P =
{〈

ζ,
(
µ

(i)
P (ζ), ν(i)

P (ζ)
)
i

〉
: ζ ∈ X; i = 1, 2, · · · ,m

}

where
(
µ

(i)
P (ζ), ν(i)

P (ζ)
)
i
=

((
µ

(1)
P (ζ), ν(2)

P (ζ)
)
,
(
µ

(2)
P (ζ), ν(2)

P (ζ)
)
, · · · ,

(
µ

(m)
P (ζ), ν(m)

P (ζ)
))
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3. Pythagorean m-polar Fuzzy Soft Sets

We devote this section to introduce novel concepts of a new hybrid structure
Pythagorean m-polar fuzzy soft sets.

Definition 3.1. Assume that m is a natural number. For some non-void collection
of attributes E, let A = {e1, e2, · · · , en} be a subset of E i.e A v E. A Pythagorean
m-polar fuzzy soft set (a PmFSS for short) ψA over an underlying set X is charac-
terized by the mapping ψ : A 7→ PmFS(X), where PmFS(X) denotes the collection
of all Pythagorean m-polar fuzzy sets over X.
A PmFSS may be expressed in set-builder notation as

ψA =
{(

e,
〈
ζ,

(
µ

(i)
P (e)(ζ), ν(i)

P (e)(ζ)
)
i

〉)
: e ∈ A, ζ ∈ X; i = 1, 2, · · · ,m

}

or more conveniently as

ψA =

( 
e,

(
ζ��

µ
(1)
P (e)(ζ), ν

(1)
P (e)(ζ)

�
,
�
µ

(2)
P (e)(ζ), ν

(2)
P (e)(ζ)

�
, · · · ,

�
µ

(m)
P (e)(ζ), ν

(m)
P (e)(ζ)

��
)!

: e ∈ A, ζ ∈ X

)

=

( 
e,

(
ζ�

µ
(i)
P (e)(ζ), ν

(i)
P (e)(ζ)

�
i

)!
: e ∈ A, ζ ∈ X; i = 1, 2, · · · , m

)

If cardinality of X is k, then tabular formation of ψA is

ψA e1 e2 · · · en

ζ1
��

µ
(i)
P (e1)(ζ1), ν

(i)
P (e1)(ζ1)

�
i

	 ��
µ
(i)
P (e2)(ζ1), ν

(i)
P (e2)(ζ1)

�
i

	 · · · ��
µ
(i)
P (en)(ζ1), ν

(i)
P (en)(ζ1)

�
i

	

ζ2
��

µ
(i)
P (e1)(ζ2), ν

(i)
P (e1)(ζ2)

�
i

	 ��
µ
(i)
P (e2)(ζ2), ν

(i)
P (e2)(ζ2)

�
i

	 · · · ��
µ
(i)
P (en)(ζ2), ν

(i)
P (en)(ζ2)

�
i

	

.

.

.

.

.

.

.

.

.
. . .

.

.

.

ζk
��

µ
(i)
P (e1)(ζk), ν

(i)
P (e1)(ζk)

�
i

	 ��
µ
(i)
P (e2)(ζk), ν

(i)
P (e2)(ζk)

�
i

	 · · · ��
µ
(i)
P (en)(ζk), ν

(i)
P (en)(ζk)

�
i

	

and in matrix format as

ψA =

2
6666664

��
µ
(i)
P (e1)(ζ1), ν

(i)
P (e1)(ζ1)

�
i

	 ��
µ
(i)
P (e2)(ζ1), ν

(i)
P (e2)(ζ1)

�
i

	 · · · ��
µ
(i)
P (en)(ζ1), ν

(i)
P (en)(ζ1)

�
i

	
��

µ
(i)
P (e1)(ζ2), ν

(i)
P (e1)(ζ2)

�
i

	 ��
µ
(i)
P (e2)(ζ2), ν

(i)
P (e2)(ζ2)

�
i

	 · · · ��
µ
(i)
P (en)(ζ2), ν

(i)
P (en)(ζ2)

�
i

	

.

.

.

.

.

.
. . .

.

.

.��
µ
(i)
P (e1)(ζk), ν

(i)
P (e1)(ζk)

�
i

	 ��
µ
(i)
P (e2)(ζk), ν

(i)
P (e2)(ζk)

�
i

	 · · · ��
µ
(i)
P (en)(ζk), ν

(i)
P (en)(ζk)

�
i

	

3
7777775

This k × n matrix is reckoned as PmFS-matrix. The collection of all PmFSSs
defined over X will be designated by PmFSS(X).

Example 3.2. Let X = {b, s, c, z} be a crisp set and A = {e1, e2} v E, then

ψA =

{(
e1,

{
b

(0.19,0.74),(0.28,0.79),(0.04,0.97) ,
s

(0.38,0.62),(0.74,0.36),(0.88,0.31)

})
,

(
e2,

{
b

(0.62,0.28),(0.59,0.47),(0.26,0.11) ,
s

(0.37,0.69),(0.01,0.58),(0.72,0.71)

})}

is a P3FSS. In tabular array, we may represent this set as shown in Table 1:
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ψA e1 e2

b {(0.19, 0.74), (0.28, 0.79), (0.04, 0.97)} {(0.62, 0.28), (0.59, 0.47), (0.26, 0.11)}
s {(0.38, 0.62), (0.74, 0.36), (0.88, 0.31)} {(0.37, 0.69), (0.01, 0.58), (0.72, 0.71)}
c {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
z {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}

Table 1. Tabular representation of ψA

In more brief form, Table 3.2 may be re-expressed as in Table 2:

ψA e1 e2

b {(0.19, 0.74), (0.28, 0.79), (0.04, 0.97)} {(0.62, 0.28), (0.59, 0.47), (0.26, 0.11)}
s {(0.38, 0.62), (0.74, 0.36), (0.88, 0.31)} {(0.37, 0.69), (0.01, 0.58), (0.72, 0.71)}

Table 2. Brief tabular representation of ψA

The matrix form of ψA is

ψA =




{(0.19, 0.74), (0.28, 0.79), (0.04, 0.97)} {(0.62, 0.28), (0.59, 0.47), (0.26, 0.11)}
{(0.38, 0.62), (0.74, 0.36), (0.88, 0.31)} {(0.37, 0.69), (0.01, 0.58), (0.72, 0.71)}

{(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
{(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}




Definition 3.3. Let ψA be a PmFSS over X with e ∈ A v E. The aggregate
of those points ζ of X for which µ

(i)
P (e)(ζ) 6= 0 or ν

(i)
P (e)(ζ) 6= 1, for at least one

i = 1, 2, · · · ,m, is called support of ψA i.e.

supp(ψA) = {ζ ∈ X : µ
(i)
P (e)(ζ) 6= 0 or ν

(i)
P (e)(ζ) 6= 1 for at least one i = 1, 2, · · · ,m}

Example 3.4. For the PmFSS represented in Table 3, defined over X = {t, b, j, k},
supp(ψA) = {t, b, k}.

ψA e1 e2

t {(0.32, 0.00), (0.49, 0.26), (0.37, 0.15)} {(0.54, 0.13), (0.26, 0.18), (0.39, 0.51)}
b {(0.33, 0.71), (1.00, 0.00), (0.27, 0.79)} {(0.36, 0.28), (0.41, 0.52), (0.33, 0.78)}
j {(0.00, 1.00), (0.00, 1.00), (0.00, 1.00)} {(0.00, 1.00), (0.00, 1.00), (0.00, 1.00)}
k {(0.83, 0.24), (0.71, 0.16), (0.45, 0.12)} {(0.21, 0.43), (0.36, 0.18), (0.91, 0.23)}

Table 3. PmFSS ψA

Definition 3.5. Let ψA be a PmFSS over X with e ∈ A v E. The aggregate of
those points ζ of X for which µ

(i)
P (e)(ζ) = 1 (and obviously ν

(i)
P (e)(ζ) = 0), for at

least one i = 1, 2, · · · ,m, is called core of ψA i.e.

core(ψA) = {ζ ∈ X : µ
(i)
P (e)(ζ) = 1 for at least one i = 1, 2, · · · ,m}.
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Example 3.6. For the PmFS ψA given in Example 3.4, core(ψA) = {b}.
Definition 3.7. Let ψA be a PmFSS over X with e ∈ A v E. The maximum
value attained by the membership function µ

(i)
P (e)(ζ), for any ζ ∈ X and any

i ∈ {1, 2, · · · , m}, is termed as height of ψA and is designated as ht(ψA). A PmFSS
ψA is said to be normal if ht(ψA) = 1 and is reckoned as subnormal otherwise.

Example 3.8. For the PmFSS ψA given in Example 3.2, ht(ψA) = 0.88 and for
the PmFSS ψA given in Example 3.4, ht(ψA) = 1. Hence, the PmFSS ψA given in
Example 3.4 is normal whereas the PmFSS ψA given in Example 3.2 is subnormal.

Definition 3.9. Let (ψ1, A1) and (ψ2, A2) be PmFSSs over X with A1, A2 v E.
We say that (ψ1, A1) is a subset of (ψ2, A2), written (ψ1, A1)ṽ(ψ2, A2) if

i. A1 v A2

ii. µ
(i)
P1

(e)(ζ) ≤ µ
(i)
P2

(e)(ζ), and

iii. ν
(i)
P1

(e)(ζ) ≥ ν
(i)
P2

(e)(ζ)
for all e ∈ A1, ζ ∈ X and all admissible values of i.
(ψ1, A1) and (ψ2, A2) are said to be equal if and only if one of them is sandwiched
between the other i.e. (ψ1, A1)ṽ(ψ2, A2)ṽ(ψ1, A1).

Example 3.10. Let A1 = {e1}, A2 = {e1, e2} v E and (ψ1, A1), (ψ2, A2) be
PmFSSs, given in Tables 4 and 5 respectively, over some set X = {g, r, p}, then
(ψ1, A1)ṽ(ψ2, A2).

(ψ1, A1) e1

g {(0.29, 0.16), (0.43, 0.51), (0.33, 0.16)}
r {(0.29, 0.42), (0.04, 0.86), (0.32, 0.24)}
p {(0.26, 0.07), (0.21, 0.19), (0.00, 1.00)}

Table 4. PmFSS (ψ1, A1)

(ψ2, A2) e1 e2

g {(0.34, 0.11), (0.78, 0.37), (0.33, 0.10)} {(0.36, 0.58), (0.30, 0.63), (0.52, 0.44)}
r {(0.47, 0.30), (0.19, 0.52), (0.49, 0.24)} {(0.11, 0.19), (0.28, 0.74), (0.49, 0.50)}
p {(0.50, 0.02), (0.36, 0.13), (0.82, 0.26)} {(0.83, 0.21), (0.44, 0.79), (0.69, 0.29)}

Table 5. PmFSS (ψ2, A2)

Remark. If (ψ1, A1) and (ψ2, A2) are PmFSSs over X, then (ψ1, A1)ṽ(ψ2, A2)
implies ht(ψ1, A1) ≤ ht(ψ2, A2). The converse, however, may not hold.

Definition 3.11. A PmFSS (ψ, E) over X is said to be a null PmFSS if µ
(i)
ψ (e)(ζ) =

0 and ν
(i)
ψ (e)(ζ) = 1, for all e ∈ E, ζ ∈ X and all admissible values of i. It is denoted

by (Φ, E) or ΦE . The tabular representation of ΦE is as given in Table 6.



Pythagorean m-polar Fuzzy Soft Sets with TOPSIS Method for MCGDM 29

ΦE e1 e2 · · · en

ζ1 {(0, 1), (0, 1), · · · , (0, 1)} {(0, 1), (0, 1), · · · , (0, 1)} · · · {(0, 1), (0, 1), · · · , (0, 1)}
ζ2 {(0, 1), (0, 1), · · · , (0, 1)} {(0, 1), (0, 1), · · · , (0, 1)} · · · {(0, 1), (0, 1), · · · , (0, 1)}
...

...
...

. . .
...

ζm {(0, 1), (0, 1), · · · , (0, 1)} {(0, 1), (0, 1), · · · , (0, 1)} · · · {(0, 1), (0, 1), · · · , (0, 1)}
Table 6. Null PmFSS ΦE

Notice that both support and core of ΦE are empty set. Further, height of ΦE is 0
and hence ΦE is a subnormal PmFSS.

Definition 3.12. A PmFSS (ψ, E) over X is said to be an absolute PmFSS if
µ

(i)
ψ (e)(ζ) = 1 and ν

(i)
ψ (e)(ζ) = 0, for all e ∈ E, ζ ∈ X and all admissible values of

i. It is denoted by (X̆, E) or X̆E . The tabular representation of X̆E is as given in
Table 7.

X̆E e1 e2 · · · en

ζ1 {(1, 0), (1, 0), · · · , (1, 0)} {(1, 0), (1, 0), · · · , (1, 0)} · · · {(1, 0), (1, 0), · · · , (1, 0)}
ζ2 {(1, 0), (1, 0), · · · , (1, 0)} {(1, 0), (1, 0), · · · , (1, 0)} · · · {(1, 0), (1, 0), · · · , (1, 0)}
...

...
...

. . .
...

ζm {(1, 0), (1, 0), · · · , (1, 0)} {(1, 0), (1, 0), · · · , (1, 0)} · · · {(1, 0), (1, 0), · · · , (1, 0)}
Table 7. Absolute PmFSS X̆E

Notice that both support and core of X̆E are X. Further, height of X̆E is 1 and
hence X̆E is a normal PmFSS.

Proposition 3.13. If (ψ, E) is any PmFSS over X, then (Φ, E)ṽ(ψ,E)ṽ(X̆, E).

Proof. Straight forward. ¤

Remark. It follows from Proposition 3.13 that (Φ, E) is the smallest and (X̆, E)
is the largest PmFSS over X.

Definition 3.14. The complement of a PmFSS

ψE =

{(
e,

{
ζ(

µ
(i)
ψ (e)(ζ), ν(i)

ψ (e)(ζ)
)
i

})
: e ∈ E, ζ ∈ X; i = 1, 2, · · · ,m

}

over X is defined as

ψc
E =

{(
e,

{
ζ(

ν
(i)
ψ (e)(ζ), µ(i)

ψ (e)(ζ)
)
i

})
: e ∈ E, ζ ∈ X; i = 1, 2, · · · ,m

}

Notice that Φc
E = X̆E and X̆c

E = ΦE . Moreover,
(
ψc

E

)c = ψE .
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Example 3.15. For the PmFSS given in Example 3.2, the complement of ψA is as
given in Table 8:

ψc
A e1 e2

b {(0.74, 0.19), (0.79, 0.28), (0.97, 0.04)} {(0.28, 0.62), (0.47, 0.59), (0.11, 0.26)}
s {(0.62, 0.38), (0.36, 0.74), (0.31, 0.88)} {(0.69, 0.37), (0.58, 0.01), (0.71, 0.72)}
c {(1, 0), (1, 0), (1, 0)} {(1, 0), (1, 0), (1, 0)}
z {(1, 0), (1, 0), (1, 0)} {(1, 0), (1, 0), (1, 0)}

Table 8. PmFSS ψc
A

Definition 3.16. The union of two PmFSSs (ψ1, A1) and (ψ2, A2) defined over the
same universe X is defined as
(ψ1, A1)et(ψ2, A2) =( 

e,

(
ζ�

max
�
µ
(i)
ψ1

(e)(ζ),µ
(i)
ψ2

(e)(ζ)
�
,min

�
ν
(i)
ψ1

(e)(ζ),ν
(i)
ψ2

(e)(ζ)
��

i

)!
: e ∈ A1tA2, ζ ∈ X; i = 1, 2, · · · , m

)

Definition 3.17. The intersection of two PmFSSs (ψ1, A1) and (ψ2, A2) defined
over the same universe X is defined as
(ψ1, A1)eu(ψ2, A2) =( 

e,

(
ζ�

min
�
µ
(i)
ψ1

(e)(ζ),µ
(i)
ψ2

(e)(ζ)
�
,max

�
ν
(i)
ψ1

(e)(ζ),ν
(i)
ψ2

(e)(ζ)
��

i

)!
: e ∈ A1uA2, ζ ∈ X; i = 1, 2, · · · , m

)

Example 3.18. Let X = {y, d, g} be a crisp set and A1 = {e1, e2}, A2 = {e2, e3} v
E. Let (ψ1, A1) and (ψ2, A2) be as given in Tables 9 and 10, respectively.

(ψ1, A1) e1 e2

y {(0.62, 0.17), (0.31, 0.82), (0.12, 0.06)} {(0.10, 0.53), (0.84, 0.36), (0.13, 0.14)}
d {(0.02, 0.28), (0.16, 0.39), (0.30, 0.80)} {(0.29, 0.54), (0.36, 0.11), (0.03, 0.99)}
g {(0.51, 0.52), (0.39, 0.42), (0.52, 0.53)} {(0.00, 1.00), (0.38, 0.62), (0.81, 0.26)}

Table 9. PmFSS (ψ1, A1)

(ψ2, A2) e2 e3

y {(0.54, 0.11), (0.14, 0.15), (0.81, 0.17)} {(0.44, 0.24), (0.43, 0.36), (0.11, 0.31)}
d {(0.29, 0.56), (0.18, 0.05), (0.26, 0.67)} {(0.24, 0.22), (0.38, 0.35), (0.40, 0.63)}
g {(0.29, 0.46), (0.37, 0.37), (0.51, 0.02)} {(0.25, 0.83), (0.52, 0.58), (1.00, 0.00)}

Table 10. PmFSS (ψ2, A2)

Then union and intersection of (ψ1, A1) and (ψ2, A2) are represented in Tables 11
and 12, respectively.
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Union e1 e2 e3

y {(0.62, 0.17), (0.31, 0.82), (0.12, 0.06)} {(0.54, 0.11), (0.84, 0.15), (0.81, 0.14)} {(0.44, 0.24), (0.43, 0.36), (0.11, 0.31)}
d {(0.02, 0.28), (0.16, 0.39), (0.30, 0.80)} {(0.29, 0.54), (0.36, 0.05), (0.26, 0.67)} {(0.24, 0.22), (0.38, 0.35), (0.40, 0.63)}
g {(0.51, 0.52), (0.39, 0.42), (0.52, 0.53)} {(0.29, 0.46), (0.38, 0.37), (0.81, 0.02)} {(0.25, 0.83), (0.52, 0.58), (1.00, 0.00)}

Table 11. PmFSS (ψ1, A1)t̃(ψ2, A2)

Intersection e2

y {(0.10, 0.53), (0.14, 0.36), (0.13, 0.17)}
d {(0.29, 0.56), (0.18, 0.11), (0.03, 0.99)}
g {(0.00, 1.00), (0.37, 0.62), (0.51, 0.26)}
Table 12. PmFSS (ψ1, A1)ũ(ψ2, A2)

Proposition 3.19. If (ψ,A), (ψ1, A1), (ψ2, A2) and (ψ3, A3) are PmFSSs over X,
then

(i) (Φ, A)t̃(ψ, A) = (ψ,A).
(ii) (Φ, A)ũ(ψ, A) = (Φ, A).
(iii) (X̆, E)t̃(ψ,A) = (X̆, E).
(iv) (X̆, E)ũ(ψ,A) = (ψ, A).
(v) (ψ, A)t̃(ψ, A) = (ψ, A).
(vi) (ψ, A)ũ(ψ, A) = (ψ, A).
(vii) (ψ1, A1)t̃(ψ2, A2) = (ψ2, A2)t̃(ψ1, A1).
(viii) (ψ1, A1)ũ(ψ2, A2) = (ψ2, A2)ũ(ψ1, A1).
(ix) (ψ1, A1)t̃{(ψ2, A2)t̃(ψ3, A3)} = {(ψ1, A1)t̃(ψ2, A2)}t̃(ψ3, A3).
(x) (ψ1, A1)ũ{(ψ2, A2)ũ(ψ3, A3)} = {(ψ1, A1)ũ(ψ2, A2)}ũ(ψ3, A3).
(xi) (ψ1, A1)t̃{(ψ2, A2)ũ(ψ3, A3)} = {(ψ1, A1)t̃(ψ2, A2)}ũ{(ψ1, A1)t̃(ψ3, A3)}.
(xii) (ψ1, A1)ũ{(ψ2, A2)t̃(ψ3, A3)} = {(ψ1, A1)ũ(ψ2, A2)}t̃{(ψ1, A1)ũ(ψ3, A3)}.

Proof. Follows directly from definition. ¤

Corollary 3.20. (i) ΦEt̃X̆E = X̆E.
(ii) ΦEũX̆E = ΦE.

Proposition 3.21. If (ψ1, A1) and (ψ2, A2) are PmFSSs over X, then any one of
them may be sandwiched between (ψ1, A1)ũ(ψ2, A2) and (ψ1, A1)t̃(ψ2, A2) i.e.

(i) (ψ1, A1)ũ(ψ2, A2)ṽ(ψ1, A1)ṽ(ψ1, A1)t̃(ψ2, A2).
(ii) (ψ1, A1)ũ(ψ2, A2)ṽ(ψ2, A2)ṽ(ψ1, A1)t̃(ψ2, A2).

Proof. (i) follows from the fact that min
{
µ

(i)
ψ1

, µ
(i)
ψ2

} ≤ µ
(i)
ψ1
≤ max

{
µ

(i)
ψ1

, µ
(i)
ψ2

}
and

max
{
ν

(i)
ψ1

, ν
(i)
ψ2

} ≥ ν
(i)
ψ1
≥ min

{
ν

(i)
ψ1

, ν
(i)
ψ2

}
. The proof of (ii) is similar. ¤

Proposition 3.22. If (ψ1, A1) and (ψ2, A2) are PmFSSs over X, then contrary to
crisp sets, De Morgan laws do not hold i.e.

(i)
(
(ψ1, A1)t̃(ψ2, A2)

)c 6= (ψ1, A1)cũ(ψ2, A2)c.
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(ii)
(
(ψ1, A1)ũ(ψ2, A2)

)c 6= (ψ1, A1)ct̃(ψ2, A2)c.

Example 3.23. Consider the PmFSSs ψA given in Example 3.2. The tabular
representations of ψAt̃ψc

A and ψAũψc
A are given in Tables 13 and 14, respectively.

ψAt̃ψc
A e1 e2

b {(0.74, 0.19), (0.79, 0.28), (0.97, 0.04)} {(0.62, 0.28), (0.59, 0.47), (0.26, 0.11)}
s {(0.62, 0.38), (0.74, 0.36), (0.88, 0.31)} {(0.69, 0.37), (0.58, 0.01), (0.72, 0.71)}
c {(1, 0), (1, 0), (1, 0)} {(1, 0), (1, 0), (1, 0)}
z {(1, 0), (1, 0), (1, 0)} {(1, 0), (1, 0), (1, 0)}

Table 13. ψAt̃ψc
A

ψAũψc
A e1 e2

b {(0.19, 0.74), (0.28, 0.79), (0.04, 0.97)} {(0.28, 0.62), (0.47, 0.59), (0.11, 0.26)}
s {(0.38, 0.62), (0.36, 0.74), (0.31, 0.88)} {(0.37, 0.69), (0.01, 0.58), (0.71, 0.72)}
c {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
z {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}

Table 14. ψAũψc
A

We observe, keeping in view Tables 13 and 14, that ψAt̃ψc
A 6= X̆A and ψAũψc

A 6=
ΦA. Hence, we have the following proposition.

Proposition 3.24. If ψA is a PmFSS over X, then unlike in crisp sets
(i) ψAt̃ψc

A 6= X̆A.
(ii) ψAũψc

A 6= ΦA.

Definition 3.25. The difference of two PmFSSs (ψ1, A1) and (ψ2, A2) defined over
the same universe X is defined as
(ψ1, A1)e\(ψ2, A2) =( 

e,

(
ζ�

max
�
µ
(i)
ψ1

(e)(ζ),ν
(i)
ψ2

(e)(ζ)
�
,min

�
ν
(i)
ψ1

(e)(ζ),µ
(i)
ψ2

(e)(ζ)
��

i

)!
: e ∈ A1\A2, ζ ∈ X; i = 1, 2, · · · , m

)

Example 3.26. For the PmFSSs ψ1 and ψ2 given in Example 3.18, (ψ1, A1)\̃(ψ2, A2)
is exhibited in Table 15.

(ψ1, A1)\̃(ψ2, A2) e1

y {(0.62, 0.17), (0.31, 0.82), (0.12, 0.06)}
d {(0.02, 0.28), (0.16, 0.39), (0.30, 0.80)}
g {(0.51, 0.52), (0.39, 0.42), (0.52, 0.53)}

Table 15. (ψ1, A1)\̃(ψ2, A2)
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Definition 3.27. If (ψ, A) is a PmFSS extracted from X, then the necessity oper-
ator ¤̃ on (ψ,A) is defined as

¤̃(ψ, A) =

{(
e,

{
ζ(

µ
(i)
ψ (e)(ζ),

√
1− (

µ
(i)
ψ (e)(ζ)

)2
)

i

})
: e ∈ A, ζ ∈ X; i = 1, 2, · · · ,m

}

Definition 3.28. If (ψ, A) is a PmFSS extracted from X, then the possibility
operator ♦̃ on (ψ, A) is defined as

♦̃(ψ, A) =

{(
e,

{
ζ(√

1− (
ν

(i)
ψ (e)(ζ)

)2
, ν

(i)
ψ (e)(ζ)

)
i

})
: e ∈ A, ζ ∈ X; i = 1, 2, · · · ,m

}

Example 3.29. For the PmFS ψ given in Example 3.2, ¤̃ψA and ♦̃ψA are given
in Tables 16 and 17, respectively:

¤̃ψA e1 e2

b {(0.19, 0.98), (0.28, 0.96), (0.04, 0.99)} {(0.62, 0.78), (0.59, 0.81), (0.26, 0.96)}
s {(0.38, 0.92), (0.74, 0.67), (0.88, 0.47)} {(0.37, 0.93), (0.01, 0.99), (0.72, 0.69)}
c {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
z {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}

Table 16. ¤̃ψA

♦̃ψA e1 e2

b {(0.67, 0.74), (0.61, 0.79), (0.24, 0.97)} {(0.96, 0.28), (0.88, 0.47), (0.99, 0.11)}
s {(0.78, 0.62), (0.93, 0.36), (0.95, 0.31)} {(0.72, 0.69), (0.81, 0.58), (0.70, 0.71)}
c {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
z {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}

Table 17. ♦̃ψA

Remark. The necessity and possibility operator defined above in definitions 3.27
and 3.28 transform any PmFSS ψA to m-polar fuzzy soft set.

Proposition 3.30. For any PmFSS ψA defined over X, ¤̃ψAṽ♦̃ψA.

Proof. Since For each ζ ∈ X, e ∈ A and all admissible values of i, we have
(
µ

(i)
ψ (e)(ζ)

)2

+
(
ν

(i)
ψ (e)(ζ)

)2

≤ 1

∴ µ
(i)
ψ (e)(ζ) ≤

√
1−

(
ν

(i)
ψ (e)(ζ)

)2

& ν
(i)
ψ (e)(ζ) ≤

√
1−

(
µ

(i)
ψ (e)(ζ)

)2
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so the result follows. ¤

Corollary 3.31. For any PmFSS ψA, we have

(i) ¤̃ψAt̃♦̃ψA = ♦̃ψA

(ii) ¤̃ψAũ♦̃ψA = ¤̃ψA

Definition 3.32. The sum of two PmFSSs (ψ1, A1) and (ψ2, A2) extracted from
the same universe X is defined as
(ψ1, A1)⊕̃(ψ2, A2) ={(

e,

{
ζ(r(

µ
(i)
ψ1

(e)(ζ)
)2

+
(
µ

(i)
ψ2

(e)(ζ)
)2
−
(
µ

(i)
ψ1

(e)(ζ)µ
(i)
ψ2

(e)(ζ)
)2

,ν
(i)
ψ1

(e)(ζ)ν
(i)
ψ2

(e)(ζ)

)
i

})
:

e ∈ A1 tA2, ζ ∈ X; i = 1, 2, · · · ,m

}

Example 3.33. For the PmFSSs (ψ1, A1) and (ψ2, A2) given in Example 3.18,
(ψ1, A1)⊕̃(ψ2, A2) is given in Table 18.

(ψ1, A1)⊕̃(ψ2, A2) e1 e2

y {(0.75, 0.02), (0.34, 0.12), (0.81, 0.01)} {(0.45, 0.13), (0.87, 0.13), (0.17, 0.04)}
d {(0.29, 0.16), (0.24, 0.02), (0.39, 0.54)} {(0.37, 0.12), (0.51, 0.04), (0.40, 0.62)}
g {(0.57, 0.24), (0.52, 0.16), (0.68, 0.01)} {(0.25, 0.83), (0.61, 0.36), (1.00, 0.00)}

Table 18. (ψ1, A1)⊕̃(ψ2, A2)

Definition 3.34. The product of two PmFSSs (ψ1, A1) and (ψ2, A2) extracted from
the same universe X is defined as

(ψ1, A1)⊗̃(ψ2, A2) =

{(
e,

{
ζ(

µ
(i)
ψ1

(e)(ζ)µ
(i)
ψ2

(e)(ζ),

r(
ν
(i)
ψ1

(e)(ζ)
)2

+
(
ν
(i)
ψ2

(e)(ζ)
)2
−
(
ν
(i)
ψ1

(e)(ζ)ν
(i)
ψ2

(e)(ζ)
)2

)
i

})
:

e ∈ A1 tA2, ζ ∈ X; i = 1, 2, · · · ,m

}

Example 3.35. For the PmFSSs (ψ1, A1) and (ψ2, A2) given in Example 3.18,
(ψ1, A1)⊗̃(ψ2, A2) is given in Table 19.

(ψ1, A1)⊗̃(ψ2, A2) e1 e2

y {(0.33, 0.20), (0.04, 0.82), (0.10, 0.18)} {(0.04, 0.57), (0.36, 0.49), (0.01, 0.34)}
d {(0.00, 0.61), (0.03, 0.39), (0.08, 0.90)} {(0.07, 0.57), (0.14, 0.36), (0.01, 0.99)}
g {(0.15, 0.65), (0.14, 0.54), (0.26, 0.53)} {(0.00, 1.00), (0.20, 0.77), (0.81, 0.26)}

Table 19. (ψ1, A1)⊗̃(ψ2, A2)
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Definition 3.36. If (ψ1, A1) = (ψ2, A2) in Definition 3.34, then we express (ψ1, A1)e⊗(ψ2, A2)
by (ψ1, A1)

2. Thus,

(ψ, A)2 =

( 
e,

(
ζ

��
µ

(i)
ψ (e)(ζ)

�2

,

r
2
�
ν

(i)
ψ (e)(ζ)

�2

−
�
ν

(i)
ψ (e)(ζ)

�4�
i

)!
: e ∈ A, ζ ∈ X; i = 1, · · · , m

)

=

( 
e,

(
ζ

��
µ

(i)
ψ (e)(ζ)

�2

,

r
1−

�
1−

�
ν

(i)
ψ (e)(ζ)

�2�2�
i

)!
: e ∈ A, ζ ∈ X; i = 1, · · · , m

)

The set (ψ, A)2 is termed as concentration of (ψ, A), designated as con(ψ, A). In general,
if k ∈ [0,∞), then

(ψ, A)k =

( 
e,

(
ζ

��
µ

(i)
ψ (e)(ζ)

�k

,

r
1−

�
1−

�
ν

(i)
ψ (e)(ζ)

�2�k�
i

)!
: e ∈ A, ζ ∈ X; i = 1, · · · , m

)

The set

(ψ, A)
1
2 =

( 
e,

(
ζ

�q
µ

(i)
ψ (e)(ζ),

s
1−

r
1−

�
ν

(i)
ψ (e)(ζ)

�2�

)

i

!
: e ∈ A, ζ ∈ X; i = 1, · · · , m

)

is called dilation of (ψ, A), designated as dil(ψ, A).

Example 3.37. For PmFSS ψA given in Example 3.2, con(ψA) and dil(ψA) are
given in Tables 20 and 21, respectively.

con(ψA) e1 e2

b {(0.04, 0.89), (0.08, 0.93), (0.00, 0.99)} {(0.38, 0.39), (0.35, 0.63), (0.07, 0.16)}
s {(0.14, 0.79), (0.55, 0.49), (0.77, 0.43)} {(0.14, 0.85), (0.00, 0.75), (0.52, 0.87)}
c {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
z {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}

Table 20. con(ψA)

dil(ψA) e1 e2

b {(0.44, 0.57), (0.53, 0.62), (0.20, 0.87)} {(0.79, 0.20), (0.77, 0.34), (0.51, 0.08)}
s {(0.62, 0.46), (0.86, 0.26), (0.94, 0.22)} {(0.61, 0.52), (0.10, 0.43), (0.85, 0.54)}
c {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
z {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}

Table 21. dil(ψA)

Remark. We may link linguistic terms like ”very”, ”very very”, ”medium”, ”more
or less” and ”high” etc. with the set ψk

A given in Definition 3.36 by assigning



36 Muhammad Riaz, Khalid Naeem and Deeba Afzal

different non-negative real values to k. For example,

k = 2 ⇒ ”very”
k = 2 twice ⇒ ”very very”

k = 0.5 ⇒ ”highly”
k = 0.75 ⇒ ”more or less”

k = 0.75 twice ⇒ ”medium”

Example 3.38. For the PmFSS ψA given in Example 3.2, very(ψA), very very(ψA),
highly(ψA), more or less(ψA) and medium(ψA) are demonstrated in Tables 22, 23,
24, 25 and 26, respectively.

very(ψA) e1 e2

b {(0.04, 0.89), (0.08, 0.93), (0.00, 0.99)} {(0.38, 0.39), (0.35, 0.63), (0.07, 0.16)}
s {(0.14, 0.79), (0.55, 0.49), (0.77, 0.43)} {(0.14, 0.85), (0.00, 0.75), (0.52, 0.87)}
c {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
z {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}

Table 22. very(ψA)

very very(ψA) e1 e2

b {(0.00, 0.98), (0.01, 0.99), (0.00, 1.00)} {(0.14, 0.53), (0.12, 0.80), (0.00, 0.22)}
s {(0.02, 0.93), (0.30, 0.65), (0.59, 0.58)} {(0.02, 0.96), (0.00, 0.90), (0.27, 0.97)}
c {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
z {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}

Table 23. very very(ψA)

highly(ψA) e1 e2

b {(0.44, 0.57), (0.53, 0.62), (0.20, 0.87)} {(0.79, 0.20), (0.77, 0.34), (0.51, 0.08)}
s {(0.62, 0.46), (0.86, 0.26), (0.94, 0.22)} {(0.61, 0.52), (0.10, 0.43), (0.85, 0.54)}
c {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
z {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}

Table 24. highly(ψA)
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more or less(ψA) e1 e2

b {(0.29, 0.67), (0.38, 0.72), (0.09, 0.94)} {(0.70, 0.24), (0.67, 0.41), (0.36, 0.10)}
s {(0.48, 0.55), (0.80, 0.31), (0.91, 0.27)} {(0.47, 0.62), (0.03, 0.51), (0.78, 0.64)}
c {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
z {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}

Table 25. more or less(ψA)

medium(ψA) e1 e2

b {(0.40, 0.60), (0.48, 0.65), (0.16, 0.89)} {(0.76, 0.21), (0.74, 0.36), (0.46, 0.09)}
s {(0.58, 0.49), (0.84, 0.27), (0.93, 0.23)} {(0.57, 0.55), (0.07, 0.45), (0.83, 0.57)}
c {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}
z {(0, 1), (0, 1), (0, 1)} {(0, 1), (0, 1), (0, 1)}

Table 26. medium(ψA)

We may interpret these figures as follows: Suppose that b, s, c and z are persons
named Babar, Soneri, Chloe and Zunera respectively. Assume that e1 denotes the
trait ”well-dressed” and e2 stands for ”attractive personality”. Further assume that
ψA is the initial data provided by three judges. Then with respect to the trait e1 i.e.
well-dressed, the rating of first judge changes to the PFN (0.04, 0.89) to Babar in
view of very well-dressed, the rating of second judge becomes (0.08, 0.93) and that
of the third judge becomes (0.00, 0.09). On the same token, with respect to the trait
e2 i.e. attractive personality, the rating of first judge becomes PFN (0.38, 0.39) to
Babar in view of very attractive personality, the rating of second judge changes to
(0.35, 0.63) and that of the third judge becomes (0.07, 0.16). The other figures may
be interpreted on the parallel track.

4. Selection of employee for promotion using PmFS TOPSIS

TOPSIS is employed to decide the superlative alternative from the notions of com-
promise solution. The solution which is closest to the ideal solution and farthest
from negative ideal solution is acknowledged as compromise solution. In this sec-
tion, we study how PmFSSs may be utilized in multiple criteria group decision
making (MCGDM) using TOPSIS. First of all we shall extend TOPSIS to PmFSSs
and then shall consider a problem.
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Linguistic Terms Fuzzy Weights
Not necessary (NN) [0, 0.20]
Necessary (N) (0.20, 0.40]
More or less necessary (MN) (0.40, 0.60]
Very necessary (VN) (0.60, 0.80]
Extremely necessary (EN) (0.80, 1]

Table 27. Linguistic terms for judging alternatives

We make an inception by explaining the technique step by step as follows:

Decision Making Method

Input:
Step 1: Recognize the problem as what we have and what we have to do: Assume

that V = {ζi : i = 1, 2, · · · , n} is the finite aggregate of alternatives under
consideration, D = {di : i = 1, 2, · · · ,m} is the group of decision makers
(DMs) and E = {ei : i = 1, 2, · · · , k} is a finite family of attributes. Thus
the (i, j)th entry of the PmFS matrix represents a set of m PFNs assigned
to ith alternative with respect to jth attribute. Further, rth PFN in the
set at (i, j)th position yields the value of membership and non-membership
functions, respectively, given by the rth DM to ith alternative with respect
to jth attribute.

Step 2: Construct weighted parameter matrix A as

A = [wij ]m×k =




w11 w12 · · · w1k

w21 w22 · · · w2k

...
...

. . .
...

wi1 wi2 · · · wik

...
...

. . .
...

wm1 wm2 · · · wmk




where wij is the fuzzy weight assigned by the DM di to the attribute ej by
considering linguistic terms as given (for example) in Table 27.

Step 3: Construct normalized weighted matrix

Â = [ŵij ]m×k =




ŵ11 ŵ12 · · · ŵ1k

ŵ21 ŵ22 · · · ŵ2k

...
...

. . .
...

ŵi1 ŵi2 · · · ŵik

...
...

. . .
...

ŵm1 ŵm2 · · · ŵmk




where ŵij = wij√
Σm

i=1w2
ij

and obtaining the weighted vectorW = (w1,w2, · · · , wk),

where wi = wi

Σwi
and wj = Σm

i=1ŵij

m .



Pythagorean m-polar Fuzzy Soft Sets with TOPSIS Method for MCGDM 39

Step 4: Construct PmFS decision matrix

B = [ζjk]n×k =




ζ11 ζ12 · · · ζ1k

ζ21 ζ22 · · · ζ2k

...
...

. . .
...

ζj1 ζj2 · · · ζjk

...
...

. . .
...

ζn1 ζn2 · · · ζnk




where (i, j)th entry of the PmFS matrix i.e. ζij represents a set of m
PFNs assigned to ith alternative with respect to jth attribute. Further, rth

PFN in the set at (i, j)th position yields the value of membership and non-
membership functions, respectively, given by the rth DM to ith alternative
with respect to jth attribute.
Computations:

Step 5: Construct weighted PmFS decision matrix C by multiplying each element in
the jth column by jth weight from weight vector obtained at Step 3 above,
for each value of j varying from 1 to k.

Step 6: Obtain PFS-valued positive ideal solution (PFSV-PIS) and PFS-valued neg-
ative ideal solution (PFSV-NIS), employing in order

PFSV-PIS = {η+
1 , η+

2 , · · · , η+
n }

=
{
(∨j µjk,∧j νjk) : j = 1, 2, · · · , n

}

and

PFSV-NIS = {η−1 , η−2 , · · · , η−n }
=

{
(∧j µjk,∨j νjk) : j = 1, 2, · · · , n

}

where ∨ stands for PFS union and ∧ represents PFS intersection.
Step 7: Compute PFS-Euclidean distances of each alternative from PFSV-PIS and

PFSV-NIS, respectively, utilizing

d+
j =

√
Σn

k=1

{(
µjk − ∨j µjk

)2 +
(
νjk − ∧j νjk

)2
}

and

d−j =
√

Σn
k=1

{(
µjk − ∧j µjk

)2 +
(
νjk − ∨j νjk

)2
}

for each j = 1, 2, · · · , n.
Step 8: Determine the closeness coefficient of each alternative with ideal solution

utilizing

C∗(ζj) =
d−j

d+
j + d−j

∈ [0, 1]

Output:

Step 9: In order to obtain the preference order of the alternatives, rank the alter-
natives in descending (or ascending) order.
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The flowchart of the decision making method appears below in Figure 1 below:

Figure 1. Flow chart representation of decision making method

We apply the proposed decision making method by using presumptive data in the
forthcoming example as follows:

Example 4.1. Assume that a firm wants to promote one of its employees to higher
position. To cope with the competitive environment prevailing, the firm wishes to
choose the best of the best from the options available. The chief executive of the
firm constitutes a panel of three decision makers (DMs) and gives them the task
to select the best suitable employee for promotion. After a long discussion, the
panel decides to consider five employees and focus on three traits to be required in
selected person.
Step 1: Identifying the problem: Assume that V = {ζi : i = 1, 2, · · · , 5} is the family

of employees under consideration for promotion, E = {ei : i = 1, 2, 3} is the
set of traits, and D = {di : i = 1, 2, 3} is the group of DMs, where

e1 = Communication skills,
e2 = Hard working, and
e3 = Well aware of emerging technologies

Step 2: The weighted parameter matrix is

A = [wij ]3×3

=




V N EN NN
N EN EN

EN V N MN




=




0.70 0.90 0.10
0.30 0.85 0.90
0.90 0.70 0.50



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where wij is the weight assigned by the DM di to the trait ej by considering
linguistic terms as given (for example) in Table 27.

Step 3: The normalized weighted matrix is

Â = [ŵij ]3×3

=




0.59 0.63 0.10
0.25 0.60 0.87
0.76 0.49 0.48




and hence the weighted vector is W = (0.34, 0.36, 0.30).
Step 4: Assume that the four DMs provide the following PmFSS matrix in which

the (i, j)th element represents m-polar PFN {(µ, ν)m}, where alternatives
are represented row-wise and traits are represented column-wise.

B =

2
6664

{(0.27, 0.81), (0.47, 0.51), (0.54, 0.26)} {(0.53, 0.42), (0.81, 0.28), (0.62, 0.39)} {(0.11, 0.52), (0.61, 0.37), (0.50, 0.64)}
{(0.59, 0.32), (0.93, 0.24), (0.49, 0.37)} {(0.48, 0.21), (0.58, 0.32), (0.27, 0.31)} {(0.82, 0.37), (0.61, 0.26), (0.29, 0.10)}
{(0.77, 0.26), (0.48, 0.32), (0.35, 0.21)} {(0.52, 0.43), (0.61, 0.51), (0.37, 0.49)} {(0.50, 0.51), (0.58, 0.40), (0.36, 0.11)}
{(0.49, 0.26), (0.88, 0.27), (0.36, 0.33)} {(0.85, 0.23), (0.52, 0.04), (0.31, 0.56)} {(0.79, 0.13), (0.91, 0.23), (0.63, 0.67)}
{(0.38, 0.32), (0.59, 0.52), (0.45, 0.47)} {(0.69, 0.44), (0.57, 0.11), (0.68, 0.26)} {(0.62, 0.56), (0.33, 0.37), (0.82, 0.41)}

3
7775

Step 5: The weighted PmFS decision matrix is

C =

2
6664

{(0.09, 0.28), (0.16, 0.17), (0.18, 0.09)} {(0.19, 0.15), (0.29, 0.10), (0.22, 0.14)} {(0.03, 0.16), (0.18, 0.11), (0.15, 0.19)}
{(0.20, 0.11), (0.32, 0.08), (0.17, 0.12)} {(0.17, 0.08), (0.21, 0.12), (0.10, 0.11)} {(0.25, 0.11), (0.18, 0.08), (0.09, 0.03)}
{(0.26, 0.09), (0.16, 0.11), (0.12, 0.07)} {(0.19, 0.15), (0.22, 0.18), (0.13, 0.18)} {(0.15, 0.15), (0.17, 0.12), (0.11, 0.03)}
{(0.17, 0.09), (0.30, 0.09), (0.12, 0.11)} {(0.31, 0.08), (0.19, 0.01), (0.11, 0.20)} {(0.24, 0.04), (0.27, 0.07), (0.19, 0.20)}
{(0.13, 0.11), (0.20, 0.18), (0.15, 0.16)} {(0.25, 0.16), (0.20, 0.04), (0.24, 0.09)} {(0.19, 0.17), (0.10, 0.11), (0.25, 0.12)}

3
7775

Step 6: The PFS-valued positive ideal solution (PFSV-PIS) and PFS-valued nega-
tive ideal solution (PFSV-NIS), in order, are

PFSV-PIS = {η+
1 , η+

2 , · · · , η+
5 }

=
�
(0.29, 0.09), (0.32, 0.03), (0.26, 0.03), (0.31, 0.01), (0.25, 0.04)

	

and
PFSV-NIS = {η−1 , η−2 , · · · , η−5 }

=
�
(0.03, 0.28), (0.09, 0.12), (0.11, 0.18), (0.11, 0.20), (0.10, 0.18)

	

Step 7, 8: The PFS-Euclidean distances of each alternative from PFSV-PIS and PFSV-
NIS along with closeness coefficients are given in Table 28 below:

Alternative (ζi) d+
i d−i C∗i

ζ1 0.4972 0.6146 0.5528
ζ2 0.4901 0.3731 0.4322
ζ3 0.4350 0.3197 0.4236
ζ4 0.4853 0.5103 0.5126
ζ5 0.3736 0.3716 0.4986

Table 28. Distance measures & closeness coefficient of each alternative

Step 9: The preference order of the alternatives, therefore, is

ζ1 Â ζ4 Â ζ5 Â ζ2 Â ζ3

This ranking is depicted with the help of 3D bar chart in Figure 2:
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Figure 2. 3D bar chart of ranking of alternatives

In view of above TOPSIS ranking, we may infer that the employee ζ1 is most
meritorious for promotion on higher post.

5. Conclusion

We delivered an innovative crossbreed structure titled Pythagorean m-polar fuzzy
soft sets in conjunction with some basic algebraic operations and features. We dig
out crisp sets like support, core and height from PmFSS. A plenty of illustrations
are also contained within to comprehend the notions effectively. We proposed a
TOPSIS method for solving multiple criteria group decision making (MCGDM)
problems accompanied by flowchart of the said decision making method. We em-
ployed the proposed algorithm to decide most appropriate person for the appraisal
to higher position under Pythagorean m-polar fuzzy soft environment.
Since every intuitionistic fuzzy soft set is also a Pythagorean fuzzy soft set, so
by familiarizing PmFSS, we have also wordlessly introduced intuitionistic m-polar
fuzzy soft sets (ImFSSs). Theoretically, the ideas presented in this article may
be extended to develop algebraic structures like Pythagorean m-polar fuzzy soft
groups, Pythagorean m-polar fuzzy soft rings, Pythagorean m-polar fuzzy soft
ideals, Pythagorean m-polar fuzzy soft algebras, Pythagorean m-polar fuzzy soft
topology and undoubtedly Pythagorean m-polar fuzzy soft graphs too. Above and
beyond the theoretical side, the ideas presented have charge to be extended in han-
dling day to day problems from the real world including business, life sciences, social
sciences, economics, pattern recognition, human resource management, robotics and
many other areas. We trust that this article will serve as a foundation pit for the
researchers working in this field.
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