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Abstract.: In this paper, we prove an important property of metric space
which is the existence and uniqueness of completion. Firstly we gave
completion of a complex-valued dislocated metric space and then prove
its uniqueness.
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1. INTRODUCTION AND MATHEMATICAL PRELIMINARIES

A well-known property of metric spaces is the existence and uniqueness of a metric
space’s completion. In recent years, researchers have looked into the completion of other
types of metric spaces. Ge and Lin [19] investigated the presence of partial metric space
completion, and Dung [10] responded to Ge and Lin’s denseness property question with an
example of partial metric space completion. Any strong b-metric space has a completion,
according to An et al. [2]. Andrikopoulos [3] looked into the completion of quasi pseudo
metric spaces.

Dahliatul and Supeno [20] investigated and proved the existence and uniqueness of a
complex-valued metric space. Kumari et al. [22] suggested a procedure for completing a
dislocated metric space. Beg et al. [8] explored the completion of complex-valued strong
b-metric space in their recent paper. Some recent work about fixed point is disscussed in
[41,[6], [13], [14], [15], [16] and [9]. A new extension of the double controlled metric-type
spaces, called double controlled metric-like spaces is discussed in[25], by considering that
the self-distance may not be zero. On the other hand, if the value of the metric is zero,
then it has to be a self-distance. A fixed point theorem in complete metric-like spaces for
a Lipschitz map with bound is provided in [21]. This paper aims to show that complex-
valued dislocated metric space is complete. The definition of complex-valued dislocated
metric space was introduced by Ege et al. [18].
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Definition 1.1. [5](Dislocated metric space.j\ dislocated metric space is a pdif, ¥),
whereS is a set and? is a dislocated metric o8, that is, a function defined ofi x .S such
that for all g7< o € S we have:

M1: ¥(o,) >

M2: ( )—0=>Q—<

M3: 9(e,¢) = (s, 0)

M4: ¥(p,s) < 19(9, o)+ ¥(o,¢) forall p,¢,0 € S

Definition 1.2. z; 3 2 if and only if Re(21) < Re(z2) andIm(z1) < Im(z2)

Definition 1.3. [18](Complex valuedi-metric space.)et .S be a nonempty set. Suppose
that for all o, 5,0 € S, the mapping : X x X — C satisfies:

() 0 T 9(e,5) andd(o,c) =0 = o =x<.

(ii) ¥(o, <) = V(s 0)

(iii) I(o,<) T V(0,0) +(0,9)

Thend is called a complex valuedtmetric onS, and(.S, ) is called a complex valued
metric space.

Example 1.4.[18] Let? : S x S — C be defined by

¥(0,¢) = max{p,<},
whereS = C. Itis clear thaty is a complex valued dislocated metric.

Example 1.5. Letd : S x S — C be defined by
1, =g
9o.<) = { ¢

max{o,c}, 0#¢S
whereS = C.

2. MAIN RESULTS

In this section, we give the completion theorem for existence and uniqueness of complex
valued dislocated type metric spaces.

Theorem 2.1. (Completion.)Let (.S, ¢) be a complex valued dislocated metric space. Then
there exists a complete complex valued dislocated metric g@écé*) and an isodistance
f S — §* such thatf(S) is dense inS*.

Proof. Let A be the collection of points o whose self distance is non zero andet=
S — A. Let A be the collection of sequencesS$rwhich are ultimately a constant complex
element lying indA and B denote the class of Cauchy sequenceB.itWe define relations
~ z and~ g, respectively, oM and B as follows.

If (0,)(s,) are sequences id then (g,) ~4 (s,) iff the ultimately constant value
of (0,) coincides with that ofs,,). If (0,,) (.) are sequences B8 then(p,,) ~5 (s,)
iff lim,, o |9(0n,sn)] = 0. Clearly~ j is an equivalence relation. We verify thats
is an equivalence relation. Suppossg,) € B. Since(o,) is a Cauchy sequence i,
lim,, o |#(0n, 0n)] = 0 and hencevj is reflexive. Supposéo,) ~5 (s») for (on),
(sn) € B. Thenlim,, .o [9(0n,5n)| = lim, o |[9(sn, 0 )| = 0. Hence~ 5 is symmetric.
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If (0n).(n),(0n) € B,(gn) ~p (sn) @and(s,) ~g (on)-
Hon, 0n) 23 on,sn) + Hsn, on)- (2. 1)
Taking limit on both sides

lim |9 (on, 0n)| < nlingo [9(0n, sn)| + im |9 (s, 04|

= lim |[9(on,sn)| =0. (2.2)

This proves that- 5 is transitive and hence an equivalence relation.

Let S = AU B.Thenw=~4; U ~5 is an equivalence relation of. Let S* denote
the S/ ~. If (o) € B,[(0.)] denotes the equivalence classSihcontaining the sequence
(on)- If 0 € S let(p) be the constant sequengg,) whereg,, = o, ¥n andg = [(9)] the
equivalence class containirig).

For cauchy sequende,,) and(s,) in B,

nhigo [9(ons sn+m)| =0 and ’I’LILH;O [9(en, Snt+m)| = 0.

Consider
V(0n,5n) < 9(0n, Ontm) + V(0ntmsSntm) + I (Sntm,Sn)
‘ﬂ(Qn;gn) - d(@n—&-ma §n+7n)| < |19(Qn7§m)| + ‘ﬁ((n,Qm)‘-
Taking limit implies that

i [9(0n, 5n) = 0(0nsmsSntm)| =0 (2.3)

proving that¥(o,, s, ) is @ Cauchy sequence of complex numbers. By the completeness of

C this sequence converges.

The definition of~ 3 makes it obvious thdim,, ., |¥(on,s.)| IS independent of the
choice of the representative sequeripgs, (s, ) respectively, from the classé®,,)],[(s»)]-

We can prove similarly i € S and(s,) € B, (0,) € B,lim9(p,s,) or lim9(o, 0,,)
exist or equal. Provideft,,) and(o,,) belong to the same equivalence class.

We definey* : § x S — C as follows.

#*(0%,¢*) = 9*([(on)]; [(sn)]) = D(o,5) if (0n), (sn) € A andp ands respectively the
ultimate constants term @b,,) (s,)

9*(0*,¢*) = 9*([(en)], [(6n)]) = limy— 00 D0, 6n) if (04) € A, (sn) € Bando, = o
eventually.

if (01) € B, (1) € A, then defined* (¢",<*) = 9" ([(2n)], [())=0" ([(T)]. [(S:)]).

If (0) € B, (su) € B then defined* (o, <*) = 9*([(2,)], [(5)]) =lim—oe (00, <n)

Verification thaty* Is a d-Metric on S*. Clearly 9*(¢*,¢*) > 0 andd*(o*,¢*) =
9*(¢*, 0*) for o*,¢* € S*. Suppose)*(g*,¢*) = 0. Let (g,) € o* and(s,) € ¢*. We
first see thatp,,), (s,) either are both iM or are both inB. Suppose, on the contrary,
(on) € Aand(s,) € B. Let g be the ultimately constant value @f,,). Consider

0 390, 0) 2 V(0,5) +9(s,0) = 20(0,5) Vn
= 0=9"(0",¢") = limn—oco|?(0,5n)|- (2. 4)

Henced X ¥(o,s) 3 limy,—oo|¥(0,6n)| = 0, contrary to the fact thad € A. Suppose
0" s* € A, (o) € 0, and(s,) € ¢* with g, the ultimately constant values ¢§,,) and
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(n), respectively. Them™(o*,¢*) = 0 = ¥(0,¢) = 0= 0 =¢ = (0n) ~ (¢n) = 0" =
g™,

Suppose*,s* € B, (0,) € o* and(s,) € ¢*. Consider

19*(6)*7 §*) =0= llmn—»ooﬁ(lgnagn) =0

= (Q'n) ~ (gn)

= 0" =¢".

Since

V9 (0",<™) = im [ (0n, sn)|
Consider
V(s ) 2 9(0n, 0n) + (00, 5n)

Taking limit implies that

i [9(0n, 6n)] 2 im [9(en, )| + Tim |9 (on, )]

= 0"(0",¢") 27 (0",0") + 97 (07, 7). (2.9)

So(S*,9*) is a complex valued dislocated metric. Embedding @ S*. Definef : S —
Sk by f(o) = o. Itis clear thatf is an isodistance.We now verify théto) is dense in5*.
Let[(on)] € S*

Case (i)(0,) € A. In this case leb be the ultimately constant value @f,,). Then by
the definition off, 9 = [(¢)] € f(z). Theng = [(¢,)]. Thus[(e.] € f(e) in this case.

Case (i) ((0n) € B such thatlim, .o |9(0n, 0n+m)| = 0. Then sincep € B
W(e,0) =0

*([(0)], @) = lim [0(en, 0)| = 0. (2.6)

Hencef(S) is dense in5*.(5*,9*) is Complete. leb,, € z* such that

19*(@n+m7 Q*) = ﬁ(@n«kma Qn) = hmn%oo 19*(@n+ma Qn) = 0
Let o} be cauchy sequence.i.e

lim [0%(0},, 05y 4m)| =0
n—oo

|19*(Q:L7 Q*)| = |19*(Q:1a Qn+m)| + |79*(Qn+ma Q*)|
Taking limit implies that

= lim [9%(¢y,0")| =0 2.7)
This implies thaf o) converges t@* proving that(S*, ¥*) is complete. O

Definition 2.2. Let (S,9) and (S1,%9;) be complex valued metric space$S;, ;) is
said to be a completion dfSy, ¢,) if (i) (S1,%:) is complete; (ii) there is an isodistance
f:(S,9) — (S1,91) such thatf (o) is dense inS; .

Theorem 2.3. The completiolSy, ;1) of a complex valued-metric spacégsS, ¥) is unique
with respect to isometry under denseness.
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Proof. Considerf; : (S,9) — (S1,91), fa : (S,9) — (S2,92), andf : (S1,91) —
(S2,92)

Definition of f. If o € S; andp is a point ofS; such that)(g, o) # 0, thenf; (o) is a
point of S whose self distance is non-zero; henfs¢f; * (o) is a point ofS, whose self
distance is also non-zero.

Definef(o) = f2(f](0)). If 0 € Sy is a point whose self distance is zero then, there exists
a sequencéz,,) in S such thay{ fz,, } converges t@ in (S1,91).

Sincef; is an isodistance anflf, z,, } is convergent and hence a Cauchy sequence, it fol-
lows that{z,} is a Cauchy sequence f Sincef is an isodistance anft,, } is a Cauchy
sequence, it follows thdtf2z, } is a Cauchy sequence (82, J2). Since(Ss, J2) is com-
plete, there exists € S, such thalim |¥2(f22,, 2)| = 0. Clearly thisz is independent of
the choice of the sequenge, } in S.

Define f(o) = z. Clearly f f1 = f» and bijection.

fis anIsodistance. If, < € S, f(fi(0)) = f2(0) andf(fi(s)) = fa(<).

S00s(f(f1(0)), £(f1(0))) = D2((f2(0)), fo()) = Va(0,<) = D1((f1(2)), f1(c))-

If o,¢ € S1 — S andp = lim f10,, s = lim fi5, whereg,,,s,, € S, then

Ya2(fo, f6) = V2(lim fapn,lim fas,) (2.8)
= limJ2(f20n, f26n) (2.9)
= lim¥Y(on,sn) (2. 10)
= Ui(lim fy0,,lim fi5,) (2. 11)
= 91(0,9) (2. 12)

The arguments for the cases where S; — Sands € Sorp € Sandg € S; — S
are similar. Hencef is an isodistance. Interchanging the placesSofand S; , we get
in a similar way an isodistancg : So — S; such thatyfs = f; . Sincegf, = f; and
[fi= f2,we havefgfs = ffiandgffi =gfo = f1

Sincef(p) is dense inS; and f2(0) € Se, we getfg = identity onS; andg f is identity
on S, . Henceg and f are bijections. O

3. DIsScussION

We used the classical technique of equivalence classes of Cauchy sequences to prove
the completion of complex-valued dislocated metric spaces in this paper. We provide the
uniqueness of completion of dislocated type metric space. It is still a question that a dislo-
cated b-metric space has a completion?
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