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Abstract. We consider an iterative scheme to approximate common fixed
points of a pair of single and multi-valued mappings satisfying the so-
called condition (Cα) in Banach spaces. We also compare its rate of con-
vergence with some existing iterative schemes. We show that our iterative
scheme converges faster than these schemes. It has been confirmed numer-
ically and depicted graphically. We prove the convergence results for our
proposed scheme. We also provide an application of our iterative scheme
to solve the Split Common Fixed Point (SCFP) Problem.
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1. INTRODUCTION

Fixed point theory has emerged as one of the leading fields o f mathematics with ap-
plications in diverse fieds. I terative s chemes a re k ey t o a pproximating ( common) fixed 
points. This field has attracted many mathematicians around the globe. In this paper, we
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consider an iterative scheme to approximate common fixed points of a pair of single and
multi-valued mappings satisfying the so-called condition (Cα) in Banach spaces. We also
compare its rate of convergence with some existing iterative schemes. We show that our
iterative scheme converges faster than these schemes. It has been confirmed numerically
and depicted graphically. We prove the convergence results for our proposed scheme. We
also provide an application of our iterative scheme to solve the Split Common Fixed Point
(SCFP) Problem.

2. NOTATIONS AND PRELIMINARIES

Let Ω be a normed space, Bs a nonempty subset Ω. A single-valued mapping R : Bs →
Bs is said to be

• contraction if

∥Ra−Rb∥ ≤ ℘∥a− b∥, ℘ ∈ (0, 1),

• nonexpansive if

∥Ra−Rb∥ ≤ ∥a− b∥, ∀ a, b ∈ Bs.

If ν∗ = Rν∗ then ν∗ is a fixed point of R and the set of fixed point is denoted as Fp(R) =
{ν∗ ∈ Bs : ν

∗ = Rν∗}. Several authors, including [2, 10, 26], have investigated the fixed
points existence and approximation for nonexpansive mappings. Because of its applications
in a variety of practical problems, numerous writers have recently generalized the concept
of nonexpansive mappings [29].
Recently, Pant et al.[18] proposed more generalized form of nonexpansive mappings. A
mapping R : Bs → Bs is called generalized α-nonexpansive mapping if

∥Ra−Rb∥ ≤ α∥b−Ra∥+ α∥a−Rb∥+ (1− 2α)∥a− b∥, ∀a, b ∈ Bs,

holds for α ∈ [0, 1). Fixed point existence and approximation of such mappings were
obtained in different spaces (See [10] and therein).
We can represent the family of nonempty bounded closed subsets of Ω as Fcb(Bs), and
the family of nonempty compact convex subsets of Ω as Kc(Bs). Note that the Hausdroff
distance on Fcb(Bs) is given by

H(F,G) = max{sup
a∈F

d(a,G) , sup
b∈G

d(b,F)}

where d(a,G) = inf{∥a− b∥ : b ∈ G}.
If S : Bs → Fcb(Bs) is a multivalued mapping and ν∗ ∈ Sν∗ then ν∗ is said to be

the fixed point of multivalued mapping S and its fixed point set is represented by Fp(S). It
is also known that if Bs is a nonempty bounded closed and convex subset of a uniformly
convex Banach space (UCBS) Ω, then S has a fixed point [15].
A multivalued mapping S : Bs → Fcb(Bs) is

• contraction if

H(Sa,Sb) ≤ ℘∥a− b∥, ∀ a, b ∈ Bs, ℘ ∈ (0, 1),

• nonexpansive if

H(Sa,Sb) ≤ ∥a− b∥, ∀ a, b ∈ Bs.
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In the recent years, fixed point theory for multivalued mappings has attracted the attention
of several researchers. Many single-valued mappings have been generalized and extended
to multivalued mapping [14, 30]. Recently, Iqbal et al. [10] introduced the generalized mul-
tivalued α-nonexpansive mappings on Banach spaces as follows. A multivalued mapping
S : Bs → Fcb(Bs) is said to be generalized α-nonexpansive mapping if

H(Sa,Sb) ≤ α d(b,Sa) + αd(a,Sb) + (1− 2α)∥a− b∥

holds for all a, b ∈ Bs.
S satisfies the condition (Cα) if

1

2
d(a,Sa) ≤∥a− b∥ implies

H(Sa,Sb) ≤ α d(b,Sa) + αd(a,Sb) + (1− 2α)∥a− b∥ (2. 1)

for all a, b ∈ Bs.
Many iterative schemes have been developed for both single and multi-valued mappings

to approximate fixed points. A few of them are given by Mann [16], Ishikawa [11], S-
iteration [1], Thakur et al. [25].

Recently, Akkasriworn and Sokhuma [3] considered a pair of single and multi-valued
nonexpansive mappings and using a modified S-iterative scheme proved that the sequence
thus obtained converges to a common fixed point (CFP) of both mappings. Dhompongsa et
al. [8] established a CFP theorem for a pair of nonexpansive commuting mappings. Later,
in 2010, Sokhuma et al. [12] applied the Ishikawa iterative scheme to a pair of both single
and multi-valued nonexpansive mappings in Banach spaces. They utilized this modified
Ishikawa iterative scheme as a method for approximating the CFP of the mappings.

a1 ∈ Bs

bℓ = (1− υℓ)aℓ + υℓuℓ, ℓ ∈ Z+

aℓ+1 = (1− ϑℓ)aℓ + ϑℓRbℓ,
(2. 2)

where uℓ ∈ Saℓ and 0 < r ≤ ϑℓ, υℓ ≤ w < 1.
In 2016, Akkasriworn and Sokhuma [3] introduced the modified S-iterative scheme,

which operates on a single and multi-valued nonexpansive mappings in Banach spaces
called it the modified S-iterative scheme:

p1 ∈ Bs

qℓ = (1− υℓ)pℓ + υℓzℓ, ℓ ∈ Z+

pℓ+1 = (1− ϑℓ)zℓ + ϑℓRqℓ,
(2. 3)

where zℓ ∈ Spℓ and 0 < r ≤ ϑℓ, υℓ < w ≤ 1.
Let Bs be a nonempty close convex subset of a UCBS Ω and R : Bs → Bs a nonex-

pansive mapping. Thakur et al. [25] introduced the following three step iterative scheme
starting from a1 ∈ Bs : 

a1 ∈ Bs

cℓ = (1− ωℓ)aℓ + ωℓRaℓ,
bℓ = (1− υℓ)cℓ + υℓRcℓ, ℓ ∈ Z+

aℓ+1 = (1− ϑℓ)Rcℓ + ϑℓRbℓ,

(2. 4)
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where {ϑℓ}, {υℓ} and {ωℓ} are real sequences in (0, 1).
Motivated by the works of [3] and [12], In this study, we present a modified version

of the iterative scheme ( 2. 4 ) tailored for a pair of mappings, one single-valued and the
other multivalued, both satisfying the condition (Cα). We consider a Banach space Ω that
possesses uniform convexity and let Bs represent a nonempty closed and convex subset of
Ω. The mappings R : Bs → Bs and S : Bs → Fcb(Bs) correspond to the single and
multi-valued mappings, respectively. It is worth noting that both mappings adhere to the
condition (Cα). Our modified iterative scheme with initial value a1 is then defined by

a1 ∈ Bs

cℓ = (1− ωℓ)aℓ + ωℓuℓ,

bℓ = (1− υℓ)cℓ + υℓRcℓ, ℓ ∈ Z+

aℓ+1 = (1− ϑℓ)Rcℓ + ϑℓRbℓ,

(2. 5)

where uℓ ∈ Saℓ and {ϑℓ}, {υℓ}, {ωℓ} are sequences satisfying 0 < ϑℓ, υℓ, ωℓ < 1.
We establish some convergence results in a nonempty convex subset of a UCBS. We

compare the iterative scheme with some existing iterative schemes. We show that this iter-
ative scheme converges faster than Mann, Iskikawa and S-iterative scheme which has been
confirmed numerically and graphically. As an application, we approximate the solution of
SCFP problem with the help of our iterative scheme.

Next, we have some definitions and results which are useful in proving the main results.

Lemma 2.1. [18] Suppose tha Ω is a Banach space and R a mapping on a subset of Ω.
Suppose that R satisfies condition (Cα). Then ∥a − Rb∥ ≤ ∥a − b∥ + (3+α)

(1−α)∥Ra − a∥
holds for all a, b ∈ Bs.

In 1991, Sahu [21] established an important property of UCBS, which can be stated as
follows.

Lemma 2.2. [21] Assume that Ω is a UCBS and {zℓ} be a sequence in (0, 1) for all ℓ ≥ 1.
If {aℓ} and {bℓ} are in Ω such that lim supℓ→∞ ∥aℓ∥ ≤ m, lim supℓ→∞ ∥bℓ∥ ≤ m and
limℓ→∞ ∥(1− zℓ)aℓ + zℓbℓ∥ = m for some m ≥ 0. Then limℓ→∞ ∥aℓ − bℓ∥ = 0.

The following will be used in comparing the convergence rate of iterative schemes.

Definition 2.3. [4] Let {xℓ} → x and {yℓ} → y be the sequences of real numbers. If
lim
ℓ→∞

|xℓ−x|
|yℓ−y| = 0, then {xℓ} converges faster than {yℓ}.

Definition 2.4. [4] Assume that {vℓ} and {wℓ} are the sequences of fixed point iteration
which converges to the fixed point p, the error estimates

∥vℓ − p∥ ≤ xℓ ∀ ℓ ≥ 1

∥wℓ − p∥ ≤ yℓ ∀ ℓ ≥ 1

are available where the positive sequences {xℓ}, {yℓ} → 0. If {xℓ} converges faster than
{yℓ}, then {vℓ} converges faster than {wℓ} to p.

Lemma 2.5. [3] Suppose that Bs is a nonempty closed convex subset of a Banach space
Ω. Then

d(b,Sb) ≤ ∥b− a∥+ d(a,Sa) + H(Sa, Sb),
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where a, b ∈ Bs and S : Bs → Fcb(Bs).

The demiclosedness principle is a fundamental principle that holds significance in the
study of both asymptotic and ergodic behavior. In the setting of a Banach space Ω and its
subset Bs, R is considered demiclosed if it satisfies the stated property: for any sequence
aℓ in Bs such that an ⇀ a (weak convergence) and R(aℓ) → b, it follows that R(a) = b.
In other words, when a sequence in Bs ⇀ a and the image of corresponding sequence
under R converges to b, the demiclosedness property guarantees that R(a) is equal to b.

Lemma 2.6. [5] Assume a nonempty subset Bs of a UCBS Ω and R : Bs → Bs is nonex-
pansive. If {aℓ}⇀ ν∗ in Bs and {aℓ −Raℓ} → 0 then, ν∗ ∈ Fp(R).

Lemma 2.7. [28] Suppose a sequence {xℓ} ∈ R ∪ {0} such that

xℓ+1 ≤ (1− ℘ℓ)xℓ + yℓ + zℓ

with {℘ℓ} ⊂ (0, 1), {yℓ} and {zℓ} ⊂ R such that

(a)
∞∑
ℓ=1

℘ℓ = ∞.

(b)
∞∑
ℓ=1

|yℓ| <∞ or lim sup
ℓ→∞

yℓ
℘ℓ

≤ 0.

(c)
∞∑
ℓ=1

zℓ <∞.

Then, xℓ → 0.

Lemma 2.8. [28] Consider ι, υ in Ω where Ω is a real Banach space.Then, the following
holds:

• ∥ι+ υ∥2 ≤ ∥ι∥2 + 2
〈
υ, j(ι+ υ)

〉
, for each j(κ+ υ) ∈ J(κ+ υ).

• ∥ι+ υ∥2 ≥ ∥ι∥2 + 2
〈
υ, j(ι)

〉
.

The value of R ∈ Ω∗ at ι ∈ Ω is denoted by
〈
ι,R

〉
, where Ω∗ be a dual space of Ω.

Then the multivalued mapping J : Ω → 2Ω
∗

defined by

J(x) = {R ∈ Ω∗ :
〈
ι,R

〉
= ∥ι∥2 = ∥R∥2}

for all ι ∈ Ω, is called the normalized duality mapping.

Consider a space l∞, which is a Banach space consists of bounded real sequences
equipped with the supremum norm. Within this space, there exists a bounded linear func-
tional ϖ which satisfies the following conditions:

a) For ℓ ∈ N if ζℓ ∈ l∞ and ζℓ ≥ 0, then ϖ({tℓ}) ≥ 0;
b) For ℓ ∈ N if ζℓ = 1, then, ϖ({tℓ}) = 1;
c) ϖ({ζℓ}) = ϖ({ζℓ+1}) for all {ζℓ} ∈ l∞.

The aforementioned functional ϖ is commonly referred to as a Banach limit. When
evaluating ϖ at a sequence ζℓ ∈ l∞, the resulting value is denoted as ϖℓζℓ.

Proposition 2.9. [22] Let x ∈ R and suppose (x1, x2, ......) ∈ l∞ such that ϖn(xn) ≤ x
for ϖ where ϖ is the Banach limit and lim sup

ℓ→∞
(xℓ+1 − xℓ) ≤ 0. Then lim sup

ℓ→∞
xℓ ≤ x.
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Lemma 2.10. [9] Suppose that Ω is a Banach space with uniformly Gâteaux differentiable
norm and Bs a nonempty closed convex subset of Ω. Let {xℓ} be a bounded sequence of Ω
and z ∈ K then

ϖℓ∥xℓ − z∥2 = min
y∈K

ϖℓ∥xℓ − y∥2, ⇔ ϖℓ

〈
x− z, j(xℓ − z)

〉
≤ 0.

Lemma 2.11. [19] Consider Bs ̸= ∅ a closed convex subset of UCBS Ω, and a bounded
sequence {aℓ} ∈ Ω. The set Bs1 given as follows:

Bs1 =
{
φ ∈ Bs : ϖℓ∥aℓ − φ∥2 = min

ψ∈K
ϖℓ∥aℓ − ψ∥2

}
The set under consideration consists of precisely one point.

Lemma 2.12. [27] Suppose Ω is a Banach space that is 2-uniformly smooth, with the best
smoothness constant ζ > 0. The following holds:

∥ι+ υ∥2 ≤ ∥ι∥2 + 2
〈
υ, j(ι)

〉
+ 2∥ζι∥2∀ ι, υ,∈ Ω.

3. MAIN RESULTS

First, we show that the iterative scheme ( 2. 5 ) converges faster than Modified S-iterative
scheme ( 2. 3 ). Due to the faster rate of convergence exhibited by ( 2. 3 ) compared to ex-
isting iterative schemes such as Mann, Ishikawa, and others [3], it follows that our scheme
is correspondingly faster than all of them.

Theorem 3.1. Consider a nonempty closed convex subset Bs within a normed space Ω.
Let R and S be single-valued and multivalued contractions with contraction constant ℘ ∈
(0, 1) having CFP ν∗. Let {aℓ} be defined by the iterative scheme ( 2. 5 ) and {pℓ} by
( 2. 3 ) where {ϑℓ}, {υℓ} and {ωℓ} are in (0, 1) for all ℓ ∈ N. Then {aℓ} converges faster
than {pℓ}.

Proof. As from the iterative scheme ( 2. 3 ),

∥qℓ − ν∗∥ =∥(1− υℓ)pℓ + υℓzℓ − ν∗∥
≤(1− υℓ)∥pℓ − ν∗∥+ υℓ∥zℓ − ν∗∥
≤(1− υℓ)∥pℓ − ν∗∥+ υℓH(Spℓ,Sν

∗)

≤(1− υℓ)∥pℓ − ν∗∥+ υℓ℘∥pℓ − ν∗∥
=(1− (1− ℘)υℓ)∥pℓ − ν∗∥,

and

∥pℓ+1 − ν∗∥ =∥(1− ϑℓ)zℓ + ϑℓRqℓ − ν∗∥
≤(1− ϑℓ)∥zℓ − ν∗∥+ ϑℓ∥Rqℓ − ν∗∥
≤(1− ϑℓ)℘∥pℓ − ν∗∥+ ϑℓ℘∥qℓ − ν∗∥
≤℘(1− ϑℓ)∥pℓ − ν∗∥+ ℘ϑℓ(1− (1− ℘)υℓ)∥pℓ − ν∗∥
=℘[1− (1− ℘)ϑℓυℓ]∥pℓ − ν∗∥.
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As, ϑℓ and υℓ are sequences in (0, 1), we can find a constant ϑ, υ ∈ R such that ϑℓ < ϑ < 1
and υℓ < υ < 1 for all ℓ ∈ N. So,

∥pℓ+1 − ν∗∥ ≤℘[1− (1− ℘)ϑυ]∥pℓ − ν∗∥
.

.

.

≤℘ℓ[1− (1− ℘)ϑυ]ℓ∥p1 − ν∗∥.

which implies

∥pℓ+1 − ν∗∥ ≤ ℘ℓ[1− (1− ℘)ϑυ]ℓ∥p1 − ν∗∥ for all ℓ ∈ N.

Let
yℓ = ℘ℓ[1− (1− ℘)ϑυ]ℓ∥p0 − ν∗∥.

Now, from iterative scheme ( 2. 5 ), we have

∥cℓ − ν∗∥ =∥(1− ωℓ)aℓ + ωℓuℓ − ν∗∥
≤(1− ωℓ)∥aℓ − ν∗∥+ ωℓ∥uℓ − ν∗∥
≤(1− ωℓ)∥aℓ − ν∗∥+ ωℓH(Saℓ,Sν

∗)

≤(1− ωℓ)∥aℓ − ν∗∥+ ωℓ℘∥aℓ − ν∗∥
=(1− (1− ℘)ωℓ)∥aℓ − ν∗∥,

so that

∥bℓ − ν∗∥ =∥(1− υℓ)cℓ + υℓRcℓ − ν∗∥
≤(1− υℓ)∥cℓ − ν∗∥+ υℓ∥Rcℓ − ν∗∥
≤(1− υℓ)∥cℓ − ν∗∥+ υℓ℘∥cℓ − ν∗∥
=(1− (1− ℘)υℓ)∥cℓ − ν∗∥
≤(1− (1− ℘)υℓ)(1− (1− ℘)ωℓ)∥aℓ − ν∗∥.

Thus,

∥aℓ+1 − ν∗∥ =∥(1− ϑℓ)Rcℓ + ϑℓRbℓ − ν∗∥
≤(1− ϑℓ)∥Rcℓ − ν∗∥+ ϑℓ∥Rbℓ − ν∗∥
≤(1− ϑℓ)℘∥cℓ − ν∗∥+ ϑℓ℘∥bℓ − ν∗∥
≤℘(1− ϑℓ)(1− (1− ℘)ωℓ)∥aℓ − ν∗∥+
℘ϑℓ(1− υℓ(1− ℘)(1− (1− ℘)ωℓ)∥aℓ − ν∗∥

=℘(1− (1− ℘)ωℓ)[1− ϑℓ + ϑℓ(1− (1− ℘)υℓ)]∥aℓ − ν∗∥
=℘(1− (1− ℘)ωℓ)[1− (1− ℘)ϑℓυℓ)]∥aℓ − ν∗∥
=℘[1− (1− ℘)ωℓ − (1− ℘)ϑℓυℓ + (1− ℘)2ϑℓυℓωℓ]∥aℓ − ν∗∥
<℘[1− (1− ℘)ωℓ − (1− ℘)ϑℓυℓωℓ + (1− ℘)ϑℓυℓωℓ]∥aℓ − ν∗∥
≤℘(1− (1− ℘)ωℓ)∥aℓ − ν∗∥
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As, ωℓ is a sequences in (0, 1), we can find a constant ω ∈ R such that ωℓ < ω < 1 and for
all ℓ ∈ N. So,

∥aℓ+1 − ν∗∥ ≤℘(1− (1− ℘)ω)∥aℓ − ν∗∥
.

.

.

≤℘ℓ[1− (1− ℘)ω]ℓ∥a1 − ν∗∥.

which implies

∥aℓ+1∥ ≤ ℘ℓ[1− (1− ℘)ω]ℓ∥a1 − ν∗∥ for all ℓ ∈ N.

Let

xℓ = ℘ℓ[1− (1− ℘)ω]ℓ∥a1 − ν∗∥.

Then

xℓ
yℓ

=
℘ℓ[1− (1− ℘)ω]ℓ∥a1 − ν∗∥
℘ℓ[1− (1− ℘)ϑυ]ℓ∥p1 − ν∗∥

=
[1− (1− ℘)ω]ℓ∥a1 − ν∗∥
[1− (1− ℘)ϑυ]ℓ∥p1 − ν∗∥
→ 0 as ℓ→ ∞.

Consequently, by definition (2.3) and (2.4), {aℓ} converges faster than {pℓ}. □

Lemma 3.2. Suppose a UCBS Ω, and Bs is a nonempty compact convex subset of Ω.
Consider a single-valued mappings R : Bs → Bs and a multivalued mapping S : Bs →
Fcb(Bs). These mappings satisfy the condition (Cα). Let ν∗ ∈ Fp(R) ∩ Fp(S), and let
{aℓ} be the sequence defined by equation ( 2. 5 ). Then, lim

ℓ→∞
∥aℓ − ν∗∥ exists, where

ν∗ ∈ Fp(R) ∩ Fp(S).

Proof. Let a1 ∈ Bs and ν∗ ∈ Fp(R) ∩ Fp(S). Consider

∥aℓ+1 − ν∗∥ =∥(1− ϑℓ)Rcℓ + αℓRbℓ − ν∗∥
≤(1− ϑℓ)∥Rcℓ − ν∗∥+ ϑℓ∥Rbℓ − ν∗∥. (3. 6)

Now 1
2∥ν

∗ −Rν∗∥ = 0 ≤ ∥aℓ − ν∗∥, therefore

∥Rcℓ −Rν∗∥ ≤α∥ν∗ −Rcℓ∥+ α∥cℓ −Rν∗∥+ (1− 2α)∥cℓ − ν∗∥
≤α(∥ν∗ −Rν∗∥+ ∥Rcℓ −Rν∗∥) + α(∥cℓ − ν∗∥+ ∥ν∗ −Rν∗∥)
+ (1− 2α)∥cℓ − ν∗∥

≤α∥Rcℓ −Rν∗∥+ α∥cℓ − ν∗∥+ (1− 2α)∥cℓ − ν∗∥

implies

∥Rcℓ − ν∗∥ ≤ ∥cℓ − ν∗∥. (3. 7)
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Next,

∥cℓ − ν∗∥ =∥(1− ωℓ)aℓ + γℓuℓ − ν∗∥
≤(1− ωℓ)∥aℓ − ν∗∥+ ωℓ∥uℓ − ν∗∥
≤(1− ωℓ)∥aℓ − ν∗∥+ γℓH(Saℓ,Sν

∗). (3. 8)

As 1
2d(ν

∗,Sν∗) = 0 ≤ ∥aℓ − ν∗∥, so

H(Saℓ,Sν
∗) ≤αd(ν∗,Saℓ) + αd(aℓ,Sν

∗) + (1− 2α)∥aℓ − ν∗∥
≤α{d(ν∗,Sν∗) + d(Saℓ,Sν

∗)}+ α{d(aℓ, ν∗) + d(ν∗,Sν∗)}
+ (1− 2α)∥aℓ − ν∗∥

≤αd(Saℓ,Sν∗) + αd(aℓ, ν
∗) + (1− 2α)∥aℓ − ν∗∥

≤αH(Saℓ,Sν∗) + α∥aℓ − ν∗∥+ (1− 2α)∥aℓ − ν∗∥

yields
H(Saℓ,Sν

∗) ≤ ∥aℓ − ν∗∥.
Putting it in ( 3. 8 ), we get

∥cℓ − ν∗∥ ≤ ∥aℓ − ν∗∥.
Thus by ( 3. 7 ), we obtain

∥Rcℓ − ν∗∥ ≤ ∥aℓ − ν∗∥. (3. 9)

Also,

∥Rbℓ −Rν∗∥ ≤α∥ν∗ −Rbℓ∥+ α∥bℓ −Rν∗∥+ (1− 2α)∥bℓ − ν∗∥
≤α(∥ν∗ −Rν∗∥+ ∥Rbℓ −Rν∗∥) + α(∥bℓ − ν∗∥+ ∥ν∗ −Rν∗∥)
+ (1− 2α)∥bℓ − ν∗∥

≤α∥Rbℓ −Rν∗∥+ α∥bℓ − ν∗∥+ (1− 2α)∥bℓ − ν∗∥

gives
∥Rbℓ − ν∗∥ ≤ ∥bℓ − ν∗∥.

But

∥Rbℓ − ν∗∥ ≤ ∥bℓ − ν∗∥
=∥(1− υℓ)cℓ + υℓRcℓ − ν∗∥
≤(1− υℓ)∥cℓ − ν∗∥+ υℓ∥Rcℓ − ν∗∥

≤ (1− υℓ)∥aℓ − ν∗∥+ υℓ∥aℓ − ν∗∥

implies
∥Rbℓ − ν∗∥ ≤ ∥aℓ − ν∗∥. (3. 10)

Hence using ( 3. 10 ) and ( 3. 9 ) in ( 3. 6 ), we get

∥aℓ+1 − ν∗∥ ≤ ∥aℓ − ν∗∥

which means that {∥aℓ−ν∗∥} is a nonincreasing sequence of reals and hence limℓ→∞ ∥aℓ−
ν∗∥ exists. □
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Lemma 3.3. Suppose that Bs, Ω, R and S be as in Lemma 3.2. Suppose {cℓ} is defined in
( 2. 5 ). If 0 < r ≤ ϑℓ, υℓ, ωℓ ≤ w < 1 then limℓ→∞ ∥cℓ −Rcℓ∥ = 0.

Proof. Let ν∗ ∈ Fp(R) ∩ Fp(S). From Lemma 3.2, limℓ→∞ ∥aℓ − ν∗∥ exists.
Suppose for some h ≥ 0,

lim
ℓ→∞

∥aℓ − ν∗∥ = h (3. 11)

From the inequalities in the previous lemma, we can have by taking lim sup as ℓ→ ∞ :

lim sup
ℓ→∞

∥bℓ − ν∗∥ ≤ lim sup
ℓ→∞

∥aℓ − ν∗∥ = h (3. 12)

lim sup
ℓ→∞

∥Rcℓ − ν∗∥ ≤ lim sup
ℓ→∞

∥aℓ − ν∗∥ = h (3. 13)

lim sup
ℓ→∞

∥cℓ − ν∗∥ ≤ lim sup
ℓ→∞

∥aℓ − ν∗∥ = h. (3. 14)

lim sup
ℓ→∞

∥uℓ − ν∗∥ ≤ lim sup
ℓ→∞

∥aℓ − ν∗∥ = h. (3. 15)

Further

∥aℓ+1 − ν∗∥ =∥(1− ϑℓ)Rcℓ + ϑℓRbℓ − ν∗∥
≤(1− ϑℓ)∥Rcℓ − ν∗∥+ ϑℓ∥Rbℓ − ν∗∥.

Thus from the inequalities ∥Rcℓ − ν∗∥ ≤ ∥aℓ − ν∗∥ and ∥Rbℓ − ν∗∥ ≤ ∥bℓ − ν∗∥ of the
previous lemma, we can write

∥aℓ+1 − ν∗∥ ≤ (1− ϑℓ)∥aℓ − ν∗∥+ ϑℓ∥bℓ − ν∗∥. (3. 16)

By adding and subtracting ϑℓ∥aℓ+1 − ν∗∥ on right side of ( 3. 16 ) and simplifying, we
obtain

ϑℓ∥aℓ+1 − ν∗∥ ≤(1− ϑℓ)∥aℓ − ν∗∥ − (1− ϑℓ)∥aℓ+1 − ν∗∥+ ϑℓ∥bℓ − ν∗∥

∥aℓ+1 − ν∗∥ ≤ (1− ϑℓ)

ϑℓ
{∥aℓ − ν∗∥ − ∥aℓ+1 − ν∗∥}+ ∥bℓ − ν∗∥

∥aℓ+1 − ν∗∥ ≤ (1− r)

r
{∥aℓ − ν∗∥ − ∥aℓ+1 − ν∗∥}+ ∥bℓ − ν∗∥.

Now taking lim inf as ℓ→ ∞ of both sides, we reach at

lim inf
ℓ→∞

∥aℓ+1 − ν∗∥ ≤ lim inf
ℓ→∞

∥bℓ − ν∗∥.

As limℓ→∞ ∥aℓ+1 − ν∗∥ = h, so

h ≤ lim inf
ℓ→∞

∥bℓ − ν∗∥. (3. 17)

And then ( 3. 17 ) and ( 3. 12 ) give us

h = lim
ℓ→

∥bℓ − ν∗∥

= lim
ℓ→

∥(1− υℓ)cℓ + υℓRcℓ − ν∗∥

= lim
ℓ→

∥(1− υℓ)cℓ + υℓRcℓ − (1− υℓ)ν
∗ − υℓν

∗∥

= lim
ℓ→

∥(1− υℓ)(cℓ − ν∗) + υℓ(Rcℓ − ν∗)∥. (3. 18)
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From ( 3. 18 ), ( 3. 14 ), ( 3. 13 ) and by applying Lemma (2.2), we get

lim
ℓ→∞

∥cℓ −Rcℓ∥ = 0.

□

Lemma 3.4. Suppose that Bs, Ω, R and S be as in Lemma 3.2. Suppose {cℓ} is defined
in ( 2. 5 ). Suppose {aℓ} is a sequence defined in ( 2. 5 ). If 0 < r ≤ ϑℓ, υℓ, ωℓ ≤ w < 1,
then lim

ℓ→∞
∥aℓ − uℓ∥ = 0, where uℓ ∈ Saℓ.

Proof. Let ν∗ ∈ Fp(R) ∩ Fp(S). From ( 3. 11 ), we have limℓ→∞ ∥aℓ − ν∗∥ = h.
Also, from ( 3. 15 ), we have

lim sup
ℓ→∞

∥uℓ − ν∗∥ ≤ lim sup
ℓ→∞

∥aℓ − ν∗∥ = h.

Further,

h = lim
ℓ→∞

∥aℓ+1 − ν∗∥

= lim
ℓ→∞

∥(1− ϑℓ)aℓ + ϑℓuℓ − ν∗∥

= lim
ℓ→∞

∥(1− ϑℓ)aℓ + ϑℓuℓ − (1− ϑℓ)ν
∗ − ϑℓν

∗∥

= lim
ℓ→∞

∥(1− ϑℓ)(aℓ − ν∗) + ϑℓ(uℓ − ν∗)∥.

So by applying Lemma (2.2), we get

lim
ℓ→∞

∥aℓ − uℓ∥ = 0.

□

Lemma 3.5. Suppose that Bs, Ω, R and S be as in Lemma 3.2. Suppose {cℓ} is defined
in ( 2. 5 ). Suppose {aℓ} is a sequence defined in ( 2. 5 ). If 0 < r ≤ ϑℓ, υℓ, ωℓ ≤ w < 1,
then lim

ℓ→∞
∥Raℓ − aℓ∥ = 0.

Proof. By Lemma 2.1, we have

∥Raℓ − aℓ∥ ≤∥Raℓ − cℓ∥+ ∥cℓ − aℓ∥

≤ (3 + α)

(1− α)
∥cℓ −Rcℓ∥+ ∥cℓ − aℓ∥+ ∥cℓ − aℓ∥

=
(3 + α)

(1− α)
∥cℓ −Rcℓ∥+ 2∥(1− ωℓ)aℓ + ωℓuℓ − aℓ∥

=
(3 + α)

(1− α)
∥cℓ −Rcℓ∥+ 2∥ωℓaℓ − ωℓuℓ∥

=
(3 + α)

(1− α)
∥cℓ −Rcℓ∥+ 2ωℓ∥aℓ − uℓ∥

Taking limit as ℓ→ ∞ on both sides,

lim
ℓ→∞

∥Raℓ − aℓ∥ ≤ (3 + α)

(1− α)
lim
ℓ→∞

∥cℓ −Rcℓ∥+ 2 lim
ℓ→∞

∥aℓ − uℓ∥.
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Hence Lemma 3.3 and Lemma 3.4 give us

lim
ℓ→∞

∥Raℓ − aℓ∥ = 0.

□

Here, we present a definition which is useful in proving our next result.

Definition 3.6. Let A be a subset of Ω. Then A is said to be asymptotically closed if for
a ∈ Ω and every ϵ > 0,

d(a,A) < ϵ implies a ∈ A.

Remark 3.7. Every closed set is asymptotically closed but converse is not true.

Example 3.8. Let A = [0, 1) ⊂ [0, 1] = Ω. Take a = 0 then d(0, [0, 1)) = 0 < ϵ.
Obviously, 0 ∈ [0, 1). Thus A is not closed but asymptotically closed.

Let A = [0, 1] ∩Q ⊂ R = Ω. Then, it is not closed but asymptotically closed.

In the forthcoming discussion, we provide various sufficient conditions that ensure the
existence of CFP for a pair of mappings, where one mapping is single-valued and the other
is multivalued. These mappings satisfy the Condition (Cα), which allows us to establish
the existence of CFP.

Theorem 3.9. Consider a UCBS Ω, and Bs be a nonempty compact convex subset of Ω.
Suppose we have a pair of mappings: a single-valued mapping R : Bs → Bs and a
multivalued mapping S : Bs → Fcb(Bs), both satisfying the condition (Cα). Suppose
Fp(R) ∩ Fp(S) ̸= ∅. Let {aℓ} be a sequence defined as in ( 2. 5 ), where 0 < r ≤
ϑℓ, υℓ, ωℓ ≤ w < 1. If {aℓi} a subsequence of {aℓ} such that {aℓi} → p, then it follows
that z ∈ Fp(R) ∩ Fp(S).

Proof. From Lemma 3.5, we have

0 = lim
ℓ→∞

∥Raℓi − aℓi∥ = lim
ℓ→∞

∥(I −R)(aℓi)∥.

Since (I−R) is demiclosed at 0,we have (I−R)z = 0 and hence z = Rz i.e., z ∈ Fp(R).
Note that uℓ ∈ Saℓ and aℓ → z as ℓ → ∞, so that by Lemma 3.4, we have d(aℓ, uℓ) →
0 as ℓ→ ∞.
Now, our claim is that uℓ → z as ℓ→ ∞.

d(uℓ, z) ≤ d(uℓ, aℓ) + d(aℓ, z)

as ℓ→ ∞ implies d(uℓ, z) → 0 and we are home.
Next, our claim is that z ∈ Saℓ for sufficiently large ℓ.
For this

d(z,Saℓ) ≤ d(z, uℓ) + d(uℓ, aℓ).

On taking ℓ→ ∞, we have
lim
ℓ→∞

d(z,Saℓ) = 0.

Thus, for every ϵ > 0 there exists ℓ0 such that for all ℓ ≥ ℓ0, we have

d(z,Saℓ) < ϵ.
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This implies that z ∈ Saℓ for sufficiently large ℓ.
Now, 1

2d(aℓ,Saℓ) ≤ ∥aℓ − z∥, for sufficiently large value of ℓ, hence

H(Saℓ,Sz) ≤αd(z,Saℓ) + αd(aℓ,Sz) + (1− 2α)∥aℓ − z∥
≤α{d(z,Sz) + H(Saℓ,Sz)}+ α{∥aℓ − z∥+ d(z,Sz)}

+ (1− 2α)∥aℓ − z∥
≤αH(Saℓ,Sz) + (1− α)∥aℓ − z∥+ 2αd(z,Sz)

(1− α)H(Saℓ,Sz) ≤(1− α)∥aℓ − z∥+ 2αd(z,Sz)

H(Saℓ,Sz) ≤∥aℓ − z∥+
( 2α

1− α

)
d(z,Sz).

By Lemma 2.5, we have

d(z,Sz) ≤∥z− aℓi∥+ d(aℓi ,Saℓi) + H(Saℓi ,Sz)

≤|z− aℓi∥+ ∥aℓi − uℓi∥+ ∥aℓi − z∥+
( 2α

1− α

)
d(z,Sz)

d(z,Sz)−
( 2α

1− α

)
d(z,Sz) ≤|z− aℓi∥+ ∥aℓi − uℓi∥+ ∥aℓi − z∥

(
1− 3α

1− α
)d(z,Sz) ≤|z− aℓi∥+ ∥aℓi − uℓi∥+ ∥aℓi − z∥ → 0 as i → ∞.

It shows that z ∈ Fp(S).
Hence z ∈ Fp(R) ∩ Fp(S). □

We conclude this section by proving a strong convergence theorem using our iterative
scheme ( 2. 5 ) as follows.

Theorem 3.10. Consider the setting described in Theorem 3.9. Suppose {aℓ} is a sequence
as defined in ( 2. 5 ). Assuming that 0 < r ≤ ϑℓ, υℓ, ωℓ ≤ w < 1, it can be concluded that
{aℓ} → z where z is CFP of R & S.

Proof. As {aℓ} is a sequence in the compact set Bs, there exists a subsequence {aℓi} of
{aℓ} that converges strongly to a point z ∈ Bs, i.e.,

lim
i→∞

∥aℓi − z∥ = 0.

By Theorem 3.9, we have z ∈ Fp(R) ∩ Fp(S) and by Lemma 3.2, limℓ→∞ ∥aℓ − z∥
exists. It must be the case that

lim
ℓ→∞

∥aℓ − z∥ = lim
i→∞

∥aℓi − z∥ = 0.

Therefore {aℓ} → z which is a CFP of both R & S. □

4. NUMERICAL ANANLYSIS

Now, we give an example which holds for both single and multi-valued mappings sat-
isfying Condition (Cα) in usual Banach spaces. Let Bs = [0, 4] and R : Bs → Bs,
S : Bs → Fcb(Bs) be the mappings defined as

R(a) =

{
4a+2

5 , if 0 ≤ a ≤ 2

2, if 2 < a ≤ 4
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and

S(a) =

{
[0, 3a+4

5 ], if 0 ≤ a ≤ 2

{2}, if 2 < a ≤ 4.

To show that R is single-valued generalized α-nonexpansive mapping, we consider the
following three cases:
Case:1 Let a ∈ [0, 2], b ∈ (2, 4] and α = 1

3 .

α|b−R(a)|+ α|a−R(b)|+ (1− 2α)|a− b| =1

3
|b− (

4a+ 2

5
)|+ 1

3
|a− 2|+ 1

3
|a− b|

≥1

3
|(b− (

4a+ 2

5
))− (a− 2)|+ 1

3
|a− b|

≥1

3
|9a
5

− b+
8

5
|+ 1

3
|a− b|

≥1

3
|9a
5

− a− b+ b+
8

5
|

≥1

3
|9a− 5a

5
+

8

5
|

≥1

3
|4a+ 8

5
|

=
4

15
|a+ 2|

≥4

5
|a− 2| = |Ra−Rb|

Case:2 Let a, b ∈ [0, 2], and α = 1
3 .

α|b−R(a)|+ α|a−R(b)|+ (1− 2α)|a− b| =1

3
|b− (

4a+ 2

5
)|+ 1

3
|a− (

4b+ 2

5
)|+ 1

3
|a− b|

≥1

3
|(b− (

4a+ 2

5
))− ((a− (

4b+ 2

5
)))|+ 1

3
|a− b|

≥1

3
|4a
5

− a− 4b

5
− b|+ 1

3
|a− b|

≥1

3
|9a
5

− 9b

5
|+ 1

3
|a− b|

≥3

5
|a− b|+ 1

3
|a− b|

=
14

15
|a− b|

≥4

5
|a− b| = |Ra−Rb|

Case:3 The case a, b ∈ (2, 4] is trivial.
Hence R is generalized 1

3 -nonexpansive mapping.
Next, we have to show that S is multivalued generalized α-nonexpansive mapping. Here

also we have considered the following cases:
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Case:1 Let a ∈ [0, 2], b ∈ (2, 4] and α = 1
3 .

αd(b,S(a)) + αd(a,S(b)) + (1− 2α)d(a, b) =
1

3
|b− (

3a+ 4

5
)|+ 1

3
|a− 2|+ 1

3
|a− b|

≥1

3
|(b− (

3a+ 4

5
))− (a− 2)− (a− b)|

≥1

3
|(b− 3a

5
− 4

5
− a+ 2− a+ b|

=
1

3
|−3a

5
− 2a+ 2b− 4

5
+ 2|

≥1

3
|13a
5

− 2b− 6

5
|

≥3

5
|a− 2| = H(Sa,Sb)

Case:2 Let a, b ∈ [0, 2] and α = 1
3 .

αd(b,S(a)) + αd(a,S(b)) + (1− 2α)d(a, b) =
1

3
|b− (

3a+ 4

5
)|+ 1

3
|a− (

3b+ 4

5
)|+ 1

3
|a− b|

≥1

3
| − 3a

5
− 2a+

3b

5
+ 2b|

≥13

15
|a− b|

≥3

5
|a− b| = H(Sa,S(b))

Case:3 The case a, b ∈ (2, 4] is trivial.
Thus S is multivalued 1

3 -nonexpansive mapping.
It is clear that ν∗ = 2 is a CFP of R and S. Suppose {aℓ} is a sequence as defined in

( 2. 5 ).We not only prove that {aℓ} converges strongly to the CFP ν∗ = 2 of R and S but
also faster than Mann, Ishikawa and S-iterative schemes.

Now, we perform the experiments to determine and compare the convergence behaviour
of the iterative scheme ( 2. 5 ) with others. In the Table (1), we test the convergence analysis

of different iterative schemes with control sequences ϑℓ =
√

ℓ
3ℓ+3 , υℓ =

√
ℓ+2
ℓ2+5 , ωℓ =√

ℓ+1
ℓ+5 with initial guess a1 = 3. Figure (1) shows graphical convergence of the iterative

schemes. We see that our fixed point iterative scheme ( 2. 5 ) converges to the fixed point
ν∗ = 2 faster than Mann, Ishikawa and S-iterative schemes.

5. APPLICATIONS TO SPLIT COMMON FIXED POINT PROBLEM

In their notable work published in 1994 [6], Censor and Elfving introduced the concept
of the split feasibility problem (SPF). This problem can be formulated in the following
manner:

Consider P and Q which is nonempty closed convex subset of two finite-dimensional
Hilbert spaces H1 and H2, respectively. Additionally, suppose that Υ : H1 → H2 is a
bounded linear operator. The aims of SPF to find an element

ν∗ ∈ P such that Υ(ν∗) ∈ Q. (5. 19)
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Steps our process S-Iteration Ishikawa Mann
a1 3.000000 3.000000 3.000000 3.000000
a2 2.506392 2.650545 2.830353 2.779807
a3 2.256433 2.423209 2.689485 2.608099
a4 2.129856 2.275317 2.572516 2.474200
a5 2.065758 2.179106 2.475390 2.369784
... ....... ....... ....... .......
... ....... ....... ....... .......
... ....... ....... ....... .......
a10 2.002190 2.020869 2.187656 2.106631
... ....... ....... ....... .......
... ....... ....... ....... .......
... ....... ....... ....... .......
a15 2.000073 2.002432 2.074076 2.030748
... ....... ....... ....... .......
... ....... ....... ....... .......
... ....... ....... ....... .......
a21 2.000001 2.000184 2.024280 2.006914
a22 2.000000 2.000120 2.020161 2.005392

TABLE 1. Convergence behavior of Iterative Schemes

The solution set of ( 5. 19 ) is as

Ω = ν∗ ∈ P : Υ(ν∗) ∈ Q = P ∩Υ−1(Q). (5. 20)

The split feasibility problem (SPF) has found numerous applications and has been ex-
tended from finite to infinite-dimensional Hilbert spaces (cf. [13] and references therein).
Censor & Segal [7] introduced the concept of the split common fixed point problem (SCFP)
as a generalization of the SPF and the convex feasibility problem (CFP). They presented
different schemes to solve the SCFP problem. Zhao and He [31] developed the viscosity
approximation algorithms tailored for the SCFP, focusing on quasi-nonexpansive mappings
R with the property that I−R is demiclosed at 0. Moudafi [17] presented a modified algo-
rithm and provided an alternative, simpler proof for the results obtained by Zhao. Schöpfer
et al. [20], Takahashi & Yao [23] and Tang et al. [24] solve SPF via different algorithms in
the setting of Banach spaces.

Suppose that Ω1, Ω2 be the real Banach space and Υ : Ω1 → Ω2, be a bounded linear
operator along with its adjoint Υ∗ : Ω2 → Ω1. Additionally, we have a multivalued
mapping S : Ω1 → Fcb(Ω1) satisfying condition ( 2. 1 ), and a single-valued mapping
R : Ω2 → Ω2 satisfying the (Cα) condition.

We will address the SCFP and present a iterative scheme to solve it. The SCFP can be
formulated as follows:

Find ν∗ ∈ Fp(S) such that Υ(ν∗) ∈ Fp(R). (5. 21)
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FIGURE 1. Convergence behaviour of our iteration scheme with S,
Ishikawa and Mann Iterative schemes

Throughout the rest of the paper, we will denote the set of solutions of the SCFP ( 5. 21 )
as Γ, which can be defined as follows:

Γ = {a ∈ Fp(S) : Υ(a) ∈ Fp(R)} = Fp(S) ∩Υ−1(Fp(R)).

Theorem 5.1. Consider the previously defined Ω1, Ω2, Υ, Υ∗, S, and R. Let ρ̆ is a
contraction on Ω1. For any a0 ∈ Ω1, the sequence {aℓ} is defined as:

dℓ = aℓ + σℓΥ
∗(R− I)Υ(aℓ)

cℓ = (1− ωℓ)dℓ + ωℓuℓ

bℓ = (1− υℓ)cℓ + υℓρ̆cℓ

aℓ+1 = (1− ϑℓ)ρ̆cℓ + ϑℓρ̆bℓ,

(5. 22)

for all ℓ ∈ N, where ϑℓ, υℓ, ωℓ ⊂ (0, 1) & σℓ > 0 satisfying the assumptions given below:

A1. ϑℓ → 0 as ℓ→ ∞,

A2.
∞∑
ℓ=0

ϑℓ = ∞,
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A3. either
∞∑
ℓ=0

|ϑℓ+1 − ϑℓ| <∞ or lim
ℓ→∞

ϑℓ+1

ϑℓ
= 1;

A4. σℓ ∈
(
0, 1−2ζ2

∥Υ∥2

)
such that

∞∑
ℓ=0

σℓ <∞.

If the solution set of SCFP Γ in ( 5. 21 ) is nonempty, then the sequence {aℓ} → ν∗ ∈ Γ.

Proof. We will break down the proof into five distinct steps.
Step I. The sequence {aℓ} is bounded.
Indeed, for any ν∗ ∈ Γ, it follows that Υ(ν∗) ∈ Q = Fp(R). Since S satisfies condition

( 2. 1 ) and Fp(S) is closed. Let ν∗ ∈ Fp(S). Using ( 5. 22 ) & Lemma 2.12, we can
deduce the following:

∥dℓ − ν∗∥2 =∥aℓ + σℓΥ
∗(R− I)Υ(aℓ)− ν∗∥2

≤∥σℓΥ∗(R− I)A(aℓ)∥2 + 2
〈
aℓ − ν∗, j(σℓΥ

∗(R− I)A(aℓ)
〉
+

2ζ2∥aℓ − ν∗∥2

≤σ2
ℓ∥Υ∥2∥(R− I)Υ(aℓ)∥2 + 2ζ2∥aℓ − ν∗∥2+

2σℓ
〈
Υaℓ −R(Υ(aℓ)) +R(Υ(aℓ))−R(Υ(ν∗)), j((R− I)A(aℓ)

〉
≤σ2

ℓ∥Υ∥2∥(R− I)Υ(aℓ)∥2 + 2ζ2∥aℓ − ν∗∥2 − 2σℓ∥(R− I)Υ(aℓ)∥2

+ 2σℓ
〈
R(Υ(aℓ))−R(Υ(ν∗)), j((R− I)A(aℓ)

〉
≤σ2

ℓ∥Υ∥2∥(R− I)Υ(aℓ)∥2 + 2ζ2∥aℓ − ν∗∥2 − 2σℓ∥(R− I)Υ(aℓ)∥2

+ σ2
ℓ∥R(Υ(aℓ))−R(Υ(ν∗))∥2

≤σ2
ℓ∥Υ∥2∥(R− I)Υ(aℓ)∥2 + 2ζ2∥aℓ − ν∗∥2 − 2σℓ∥(R− I)Υ(aℓ)∥2

σℓ
(
∥R(Υ(aℓ))−R(Υ(ν∗))∥2 + ∥(R− I)Υ(aℓ)∥2

)
.

Since, by condition (Cα), we have

1

2
∥Υ(ν∗)−R(Υ(ν∗)∥ ≤∥Υ(ν∗)−R(Υ(aℓ)∥ implies

∥R(Υ(aℓ))−R(Υ(ν∗))∥ ≤α∥Υ(aℓ)−R(Υ(ν∗))∥+ α∥Υ(ν∗)−R(Υ(aℓ))∥+
(1− 2α)∥Υ(aℓ)−Υ(ν∗)∥

≤∥Υ(aℓ)−Υ(ν∗)∥.

So,

∥dℓ − ν∗∥2 ≤σ2
ℓ∥Υ∥2∥(R− I)Υ(aℓ)∥2 + 2ζ2∥aℓ − ν∗∥2 − 2σℓ∥(R− I)Υ(aℓ)∥2

σℓ
(
∥Υ(aℓ)−Υ(ν∗)∥2 + ∥(R− I)Υ(aℓ)∥2

)
.

≤
(
2ζ2 + σℓ∥Υ∥2

)
∥aℓ − ν∗∥2 − σℓ

(
1− σℓ∥Υ∥2

)
∥(R− I)Υ(aℓ)∥2

≤∥aℓ − ν∗∥.

As, from Lemma 3.3, we obtain

∥cℓ − ν∗∥ ≤ ∥aℓ − ν∗∥
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∥bℓ − ν∗∥ =∥(1− υℓcℓ + υℓρ̆cℓ − ν∗∥
≤(1− υℓ)∥cℓ − ν∗∥+ υℓ℘∥cℓ − ν∗∥
≤(1− υℓ(1− ℘))∥cℓ − ν∗∥
≤(1− υℓ(1− ℘))∥aℓ − ν∗∥

Now,

∥aℓ+1 − ν∗∥ =∥(1− ϑℓ)ρ̆cℓ + ϑℓρ̆bℓ − ν∗∥
≤(1− ϑℓ)℘∥cℓ − ν∗∥+ ϑℓ℘∥bℓ − ν∗∥
≤(1− ϑℓ)℘∥aℓ − ν∗∥+ ℘ϑℓ(1− υℓ(1− ℘))∥aℓ − ν∗∥
≤℘(1− ϑℓυℓ(1− ℘))∥aℓ − ν∗∥ ≤ ∥aℓ − ν∗∥

Hence, the sequence {aℓ} is bounded. Therefore, {bℓ}, {cℓ}, {dℓ} and {ρ̆(aℓ)} is also
bounded.

Step II. Now, we have to show that

lim
ℓ→∞

∥aℓ+1 − aℓ∥ = 0.

By ( 5. 22 ), we have

∥aℓ+2 − aℓ+1∥ =∥(1− ϑℓ+1)ρ̆cℓ+1 + ϑℓ+1ρ̆bℓ+1 − ((1− ϑℓ)ρ̆cℓ + ϑℓρ̆bℓ)∥
≤(1− ϑℓ+1)∥ρ̆(cℓ+1)− ρ̆(cℓ)∥+ |ϑℓ+1 − ϑℓ|∥ρ̆(bℓ)− ρ̆(cℓ)∥+
ϑℓ+1∥ρ̆(bℓ+1)− ρ̆(bℓ)∥

≤℘(1− ϑℓ+1)∥cℓ+1 − cℓ∥+ ℘|ϑℓ+1 − ϑℓ|∥bℓ − cℓ∥+ ℘ϑℓ+1∥bℓ+1 − bℓ∥.
By using triangular inequality, it is easy to show that

∥cℓ+1 − cℓ∥ ≤ ∥aℓ+1 − aℓ∥+ ∥aℓ − cℓ∥

∥bℓ+1 − bℓ∥ ≤ ∥aℓ+1 − aℓ∥+ ∥aℓ − bℓ∥,
which imply that

∥aℓ+2 − aℓ+1∥ ≤℘(1− α)∥aℓ+1 − aℓ∥+ ℘(1− ϑℓ+1)∥aℓ − bℓ∥+
℘|ϑℓ+1 − ϑℓ|∥bℓ − cℓ∥+ ℘ϑℓ+1∥aℓ+1 − aℓ∥+ ℘ϑℓ+1∥aℓ − bℓ∥

≤℘∥aℓ+1 − aℓ∥+ ℘|ϑℓ+1 − ϑℓ|∥bℓ − cℓ∥+ ℘∥aℓ − bℓ∥.
For appropriate constants C1 and C2, we have

∥aℓ+2 − aℓ+1∥ ≤ ℘∥aℓ+1 − aℓ∥+ ℘|ϑℓ+1 − ϑℓ|C1 + ℘C2

Take xℓ = ∥aℓ+1 − aℓ∥, ℘ℓ = ℘, yℓ = ℘|ϑℓ+1 − ϑℓ|C1, zℓ = ℘C2. From Lemma 2.7, we
have

lim
ℓ→∞

∥aℓ+1 − aℓ∥ = 0.

Step III. Next, we prove that

lim
ℓ→∞

d(aℓ,S(aℓ)) = 0.

As from Lemma 3.4, we have limℓ→∞ ∥aℓ − uℓ∥ = 0. Which implies

lim
ℓ→∞

d(aℓ,S(aℓ)) ≤ lim
ℓ→∞

∥aℓ − uℓ∥ = 0,
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this implies
lim
n→∞

d(aℓ,S(aℓ)) = 0.

Step IV. In this step, we demonstrate that for any b∗ ∈ Fp(S), we have the following:

lim sup
ℓ→∞

〈
g(b∗)− b∗, j(aℓ+1 − b∗)

〉
≤ 0.

Given that {aℓ} is a bounded sequence and Ω is reflexive, we can conclude that subse-
quence {aℓj} of {aℓ} that converges to ν∗ ∈ Ω. Suppose that

h(a) = ϖℓ∥aℓ − a∥2 ∀a ∈ Bs.

Then, the function h(a) is continuous and convex on Bs. Define

Bs1 =
{
a ∈ Bs;h(a) = inf

b∗∈K
h(b∗)

}
.

By considering the properties of h(a), we can deduce that Bs1 is a nonempty, bounded,
and closed convex subset of Bs. For every a ∈ Bs1 , the compactness of S(a) guarantees
the existence of un ∈ S(a) such that:

∥aℓ − uℓ∥ = d(aℓ,S(a)) and uℓ → u ∈ S(a).

As, limℓ→∞ d(aℓ,S(aℓ)) = 0, 1
2d(aℓ,S(aℓ)) ≤ ∥aℓ − a∥ for sufficiently large ζ, such that

ℓ ≤ ζ. By ( 2. 1 ), we get H(S(aℓ),S(a)) ≤ ∥aℓ − a∥
Now,

h(u) =ϖℓ∥aℓ − u∥2

≤ϖℓ(∥aℓ − uℓ∥+ ∥uℓ − u∥)2

=ϖℓ

(
d(aℓ,S(a))

)2
≤ϖℓ

(
d(aℓ,S(a)) + H(S(aℓ),S(a))

)2
≤ϖℓ∥aℓ − a∥2 = h(a).

Hence, u ∈ S(a) ∩ Bs1 or S(a) ∩ Bs1 ̸= ∅ for all a ∈ Bs1 . Let ν∗ ∈ Fp(S), then b∗ is
unique element in Bs, such that

∥ν∗ − b∗∥ = d(ν∗,Bs1) = inf
a∈Bs1

∥ν∗ − a∥.

As, S(b∗) ∩ Bs1 ̸= ∅, let u ∈ S(b∗) ∩ Bs1 , implies

∥ν∗ − u∥ = d(S(ν∗), u) ≤ H(S(ν∗),S(b∗)) ≤ ∥ν∗ − b∗∥.

Therefore, b∗ = u ∈ S(b∗). Utilizing the uniqueness of y ∈ Bs1 , along with Lemma 2.10
and the definition of Bs1 , we can conclude that for any v ∈ Bs, we have

ϖℓ

〈
v − b∗, j(aℓ − b∗)

〉
≤ 0.

Particularly,
ϖℓ

〈
g(b∗)− b∗, j(aℓ − b∗)

〉
≤ 0.
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By leveraging the fact that lim
ℓ→∞

∥aℓ+1 − aℓ∥ = 0 and the norm-weak∗ uniform continuity

of the duality mapping j in a Banach space equipped with a uniformly Gâteaux differential
norm, we obtain:

lim
ℓ→∞

(〈
g(b∗)− b∗, j(aℓ+1 − b∗)

〉
−
〈
g(b∗)− b∗, j(aℓ − b∗)

〉)
= 0.

Therefore, the sequence
{〈
g(b∗)− b∗, j(aℓ − b∗)

〉}
satisfies the conditions of Proposition

2.9 so we must have

lim sup
ℓ→∞

〈
g(b∗)− b∗, j(aℓ+1 − b∗)

〉
≤ 0. (5. 23)

Step V.Finally, we need to prove that the sequence aℓ → ν∗ ∈ Fp(S).
Now, ∀ ℓ ∈ N, define a set

λℓ = max
{〈
g(b∗)− b∗, j(aℓ+1 − b∗)

〉
, 0
}
≥ 0.

It is straightforward that lim
ℓ→∞

λℓ = 0. Now, utilizing ( 5. 23 ) & Lemma 2.8, we obtain:

∥aℓ+1 − ν∗∥2 =∥(1− ϑℓ)ρ̆cℓ + ϑℓρ̆bℓ − ν∗∥2

≤(1− ϑℓ)
2∥ρ̆cℓ − ν∗∥2 + 2ϑℓ

〈
ρ̆bℓ − ν∗, j(aℓ+1 − ν∗)

〉
≤(1− ϑℓ)

2℘∥cℓ − ν∗∥2 + 2ϑℓ
〈
ρ̆bℓ − ρ̆(ν∗), j(aℓ+1 − ν∗)

〉
+

2ϑℓ
〈
ρ̆(ν∗)− ν∗, j(aℓ+1 − ν∗)

〉
≤(1− ϑℓ)

2℘∥aℓ − ν∗∥2 + 2ϑℓ℘(∥bℓ − ν∗∥∥aℓ+1 − ν∗∥)+
2ϑℓ

〈
ρ̆(ν∗)− ν∗, j(aℓ+1 − ν∗)

〉
≤(1− ϑℓ)

2℘∥aℓ − ν∗∥2 + ϑℓ℘(∥aℓ − ν∗∥2 + ∥aℓ+1 − ν∗∥2)+
2ϑℓ

〈
ρ̆(ν∗)− ν∗, j(aℓ+1 − ν∗)

〉
≤ (1− ϑℓ)

2 + ℘ϑℓ
1− ℘ϑℓ

∥aℓ − ν∗∥2+

2ϑℓ
1− ℘ϑℓ

〈
ρ̆(ν∗)− ν∗, j(aℓ+1 − ν∗)

〉
≤ (1 + ϑ2ℓ)℘− ℘ϑℓ

1− ℘ϑℓ
∥aℓ − ν∗∥+ 2ϑℓ

1− ℘ϑℓ
λℓ+1.

For some suitable constant M > 0, we have

∥aℓ+1 − ν∗∥2 ≤ ℘∥aℓ − ν∗∥+ ϑℓ
( 2ϑℓ
1− ℘ϑℓ

λℓ+1 + ℘Mϑℓ
)
.

Taking xℓ = ∥aℓ − ν∗∥, ℘ℓ = ℘, and yℓ = ϑℓ
(

2ϑℓ

1−℘ϑℓ
λℓ+1 + ℘Mϑℓ

)
and zℓ = 0,

and

lim sup
ℓ→∞

yℓ
℘ℓ

= lim sup
ℓ→∞

ϑℓ
(

2ϑℓ

1−℘ϑℓ
λℓ+1 + ℘Mϑℓ

)
℘

.
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As by condition A1 that ϑℓ → 0 as ℓ→ ∞, we have

lim sup
ℓ→∞

yℓ
℘ℓ

= lim sup
ℓ→∞

ϑℓ
(

2ϑℓ

1−℘ϑℓ
λℓ+1 + ℘Mϑℓ

)
℘

= 0.

Based on Lemma 2.7, we can conclude that lim
ℓ→∞

∥aℓ − ν∗∥ = 0. Hence, aℓ converges

strongly to ν∗. □

6. CONCLUSION

In our study, we examined the iterative scheme proposed by Thakur et al. for a pair
of mappings, one single-valued and the other multivalued, satisfying the condition (Cα)
in Banach spaces. We conducted a comparative analysis of the convergence rate of this
scheme with those of Ishikawa, Agarwal (S), and Thakur et al.’s iterative schemes. Our
analysis resulted in the establishment of convergence results for our proposed scheme.

To further support our findings, we presented an example illustrating that our scheme
achieves faster convergence compared to the aforementioned iterative schemes. By validat-
ing our results with this example, we highlight the superior performance of our proposed
scheme.

Additionally, we explored the application of our iterative scheme in solving the SCFP
Problem. Through this application, we showcased the practical utility of our scheme in
addressing this specific problem.
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