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Abstract.: Partial differential equations (PDEs) describe simulation of physical phenomena
occurring in different fields of science and engineering. The analysis of solutions of non-
linear wave equations have been gaining a lot of popularity in the last two decades. Such
wave equations have many applications in applied mathematics and theoretical physics. The
importance of PDEs that explain nonlinear waves defined by Sine-Gordon (SG) equation
are crucial. The SG equation is a particular instance of the Klein-Gordon (KG) equation,
which is crucial in a number of scientific fields, such as solid state physics, nonlinear optics,
and quantum field theory. This equation is also a description of a soliton wave that exists in
many physical situations. Different analytical as well as numerical techniques were used to
develop the exact and approximate solution of SG equation. In this article, we explore the
numerical solution of the one-dimensional nonlinear SG problem using RBF-FD approach.
The scheme is a combination of radial basis functions (RBFs) with finite differences (FD)
for constructing local spatial approximations to SG equation. For execution of time variable
in the given model equation, Runge-Kutta (RK) time steeping approach is utilized. To verify
the validity of our method, solutions to some test problems are examined. Accuracy of the
proposed scheme is verified through L∞, L2, ”RMS” and ”MAE” error norms. The solu-
tions acquired by suggested RBF-FD approach are also compared to earlier work and the
obtained results are batter and in good agreement with the exact solution.
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Key Words: Partial Differential Equations (PDEs), Sine-Gordon (SG) Equation, Meshfree Approache, RBFs
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1. INTRODUCTION

Indeed, Nonlinear partial differential equations (NPDEs) are a significant tool for the analysis of non-
linear physical processes and natural phenomena such as in ocean engineering, physics, fluid mechanics,
geochemistry, plasma physics, optical fibers, geophysics, and many other scientific areas [39, 69, 44]. Non-
linear processes are a field of interest to researchers in modern times. They have focused on finding the
analytical or exact solutions to problems due to their contribution to the analysis of the actual system char-
acteristics. Many disciplines of applied mathematics and physics produce these (NPDEs) wave equations as
one-dimensional classical field theories. Solutions that behave in a particle-like manner are especially signifi-
cant, both practically and theoretically. A pulse solution with velocity and position that is not zero is referred
to as a particle-like solution. Surprisingly, the extraordinary particle-like stability of these pulse solutions are
also visible. When two or more pulses collide, a composite pulse is created. This composite pulse immedi-
ately disintegrates into its component pulses, each of which regains its original shape and velocity. This type
of particle-like solution is referred to as a ”soliton”. Helal [37] carried out a comprehensive overview of soli-
ton solutions for some common PDEs and introduced various analytical and numerical treatment techniques.
According to [37], solitons represent a special type of nonlinear localized wave. In fact, a ”soliton” describes
any solution of a nonlinear equation or system that: (i) represents a permanent wave; (ii) is localized, de-
caying or becoming constant at infinity, and (iii) may interact strongly with other solitons such that after
the interaction it retains its form, almost obeying the principle of superposition [37]. The theory of solitons
and nonlinear evolution equations (NLEEs) has made a lot of progress in the last couple of decades and we
encourage readers who are interested to read excellent overall summary of the subject [57, 22, 73, 1, 43, 42].
The nonlinear SG equation appears in a wide range of applications, including fluxion propagation in Joseph-
son junctions [41], nonlinear physics, fluid motion stability, dislocations in crystals, differential geometry, a
stiff pendulum swinging back and forth on a stretched wire, nonlinear optics, solid state physics and applied
sciences [2, 37, 21]. The SG equation is a particular instance of KG equation, which is crucial in many
scientific applications, such as solid state physics, quantum field theory, and nonlinear optics [5, 23, 12, 20].
This equation is also a description of a soliton wave. Numerous efforts have been made to develop numerical
methods that are effective for wave simulation performance, and this has led to a continuing desire to increase
the accuracy of these equations as well as the analytical studies. Additionally, the finite-difference (FDM),
finite-element (FEM), pseudo-spectral (PS), and Adomian decomposition methods (ADM) were used to nu-
merically solve the SG equation [18, 20, 66, 2, 6].
Several mesh-based approaches (such as FDM in 1950s [70, 45], FEM in 1960s [65, 71], and Spectral in
1970s [9, 10]) and meshfree approaches (similar to Radial Basis Functions (RBFs) in 1980s [35, 36]) have
been developed for approximation of ODEs and PDEs. Meshfree (RBFs) approaches have a high conver-
gence rate, stable, accurate, and infinitely smooth in complex geometry. The method most frequently used
in the field of theory of multivariate approximations is the RBFs meshfree approach. A more generalized
version of MQ approach is RBF method. Rolland L. Hardy created the MQ RBF, which has received sub-
stantial theoretical investigation and application [35, 36]. Following Hardy’s discovery, researchers in a range
of domains began utilizing the MQ technique. The MQ technique is extremely beneficial in domains of geo-
physics, geodesy, and other sciences [36]. RBFs are also used in numerical techniques to precisely solve
multidimensional PDEs in a variety of applied science areas, as an example see [7, 8, 24, 26, 27, 68]. RBFs
are frequently classified into three types: (i) RBFs with global support and infinite smoothness (GSIS) with
a free parameter ζ that has spectral convergence rates, (ii) RBFs with global support and finite smoothness
(GSFS) and (iii) RBFs with compact support and finite smoothness (CSFS), algebraic convergence rates exist
for both of later. The following table provide a few of the well-known radial basis functions oftenly used in
literature.

Where ζ, an open parameter that has a real value greater than zero. Yet a detailed investigation of the
choice of best value for this parameter is currently ongoing. For researchers, it continues to be a challenge
(view the citations [35, 32, 29, 49, 63, 25, 56, 67]). The shape parameter is numerically determined in order to
regulate function shape, solution correctness, and conditioning of system matrix. Several scholars have inves-
tigated the shape parameter (for instance see [61, 16, 11, 47]). The shape parameter is situation-dependent,
according to [11], that is the behaviour of the approximate function is an important factor to take into account
when choosing the appropriate value for the shape parameter. Madych [47] has shown that the accuracy of
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Name and Type RBFs Φ(r)
GMQ (1 + ζ2r2)λ, λ > 0, λ ̸∈ N

GSIS GA e−ζ2r2

GIMQ (1 + ζ2r2)−λ, λ > 0, λ ̸∈ N
C4

1 (1− ζr)5+(1 + 5ζr + 8ζ2r2)
CSFS C4

3 (1− ζr)6+(35ζ
2r2 + 18ζr + 3)

C4
5 (1− ζr)7+(16ζ

2r2 + 7ζr + 1)
TPS r2log(r)

GSFS MN r2λ−1, λ ∈ N
PH r2λlog(r), λ ∈ N

the RBF interpolant can be greatly increased by increasing the value of ζ. The authors [38, 33, 34] employed
the cross validation method to establish the ideal value for the shape parameter. A Contour-Pad approach
and RBF-QR algorithm were developed by [31] to overcome the ill-conditioned state of the sphere’s surface
caused by the RBFs interpolation. we employed the following algorithm in our computation, related to the
theory of local RBF-FD interpolation for selecting a suitable shape parameter value.

Algo:
• Kept approximately the condition number in the range 1012 < κ < 1016 for our problem system matrices.
• Decompose the interpolation matrix as [L, S, U ] = SV D(Bi). Here SVD is the singular value decom-
position of the interpolation matrix Bi of order n × n corresponding to each local sub-domain Ωi, and S
is the diagonal matrix having n singular values of Bi, and κ = ∥Bi∥∥Bi∥−1 = max(S)/min(S), denotes
condition number of matrix Bi.
• Search for ζ until κ satisfy the condition 1012 < κ < 1016, using the algorithm below.

Algorithm:
κ = 1,
1012 < κ < 1016,
while κ < κmin and κ > κmax,
L,S,U=SVD(B),
κ = max(B)

min(B) ,
if κ < κmin, ζ = ζ −∆ζ,
if κ > κmax, ζ = ζ +∆ζ,
ζ(optimal)=ζ.
When the above condition is satisfied a good value of ζ is obtained, the inverse is computed using, B−1 =
(LSUT )−1 = US−1L.

2. RBF-FD APPROACH

Since RBFs methods possessed considerable attention in scientific community as a truly mesh-free meth-
ods and of their ability to achieve spectral accuracy for the PDEs solutions on irregular domain. Besides
the competitive accuracy and convergence contrast to other state-of-arts methods, they also enjoy large time
step stability [7, 26, 4]. To overcome some of the drawbacks and difficulties (like resulting linear system
ill-conditioning) of RBFs methods, Several authors independently proposed a local version of the method
simultaneously, which remains always an important alternative. The intention of the local method is the
offering of spectral accuracy intrinsic to the global method to get a better-conditioned sparse linear system
having the ability to solve large dimensional PDEs. Further benefit of local version methods is their appro-
priateness for problems having discontinuous boundary conditions. A local version of the method called as
Local Radial Basis Functions Collocation Method (LRBFCM) described by Chen [14]. In this approach, in-
stead of using all the nodes in whole domain, only the local approximation is to be considered for collocation
[46, 52, 13]. Another very promising local approach known as RBF-FD method, which is the combination of
features of RBF with conventional finite differences (FD) to get best out of RBFs (achieving high accuracy)



360 H.Ullah Jan, Tamheeda, I.A.Shah, N.Ullah, A.Ullah

on scattered nodes without requiring a computational mesh. Tolstykh firstly introduced RBF-FD method in
2000 and then Wright [62, 75]. In addition, the convergence analysis of the above mentioned RBF-FD method
has been analytically proved by Bayona, and Moscoso et al., [3]. This method has been applied successfully
to a great variety of problems in the last years, see for example [13, 19, 30, 46, 50, 51, 53, 58, 59, 72, 40, 68].

The following is the order in which the paper is organized. Section 3 provides specifics of the equa-
tions under consideration, and Sections 4 and 5 outline the suggested scheme and its stability. In Section 6,
numerical examples and outcomes are provided. Section 7 includes comments and closing statements.

3. GOVERNING EQUATIONS

The primary equation of the aforementioned phenomena alongwith initial and Dirichlet boundary condi-
tion, stated in the classical order, is as follows: utt(x, t) = uxx(x, t)− sin(u(x, t)), (x, t) ∈ [a, b]× [0, T ],

u(x, 0) = u1(x), ut(x, 0) = u2(x), x ∈ [a, b],
u(a, t) = h1(t), u(b, t) = h2(t), t ∈ (0, T ].

(3. 1)

The transformed form of the above SG equation into coupling equations is given by;
ut(x, t) = v(x, t), vt(x, t) = uxx(x, t)− sin(u(x, t)),

u(x, 0) = f(x), v(x, 0) = g(x), x ∈ [a, b],
u(a, t) = f1(t), u(b, t) = f2(t), t ∈ (0, T ],
v(a, t) = g1(t), v(b, t) = g2(t), t ∈ (0, T ].

(3. 2)

4. DESCRIPTION OF RBF-FINITE DIFFERENCES METHOD

4.1. Classical finite difference method. Let us look at a classical finite difference method for approximating
the derivative of function u(x, y) with respect to x. Let the derivative at any grid point (i, j) of rectangular
grid be written as

∂u

∂x
|(i,j)≈

∑
k∈{i−1,i,i+1}

w(k,j)u(k,j), (4. 3)

where u(k,j) is the function value at the grid point (k, j), the unknown coefficients w(k,j) are computed using
polynomial interpolation or Taylor series, while the set of nodes {(i − 1, j), (i, j), (i + 1, j)} is a stencil
in the finite difference literature. This approach becomes very restricted in high dimensions because it is
possible only for some types of structured nodes. It severely limits the geometric flexibility of the method
[15]. The methodology for computing the coefficients of finite difference formulas for any scattered points
with dimensions of more than one has the problem of well-posedness for polynomial interpolation [76].
Thus, the combination of RBFs and finite difference methodology (RBF-FD) is introduced to overcome the
well-posedness problem. Local RBFs, also known as RBF-FD have produced a lot of interest due to their
interpolation and differentiation matrix structure. The interpolation and differentiation matrices generated by
local RBFs have a controllable degree of sparsity. It has been found in some situations that the local RBF can
match or provide accuracy similar to that of the global RBF method, for smaller grid sizes [17]. It uses only
some nodes surrounding xi, called a stencil, to approximate the derivatives of function u(x) at xi.

4.2. RBF-FD method for time-dependent PDE. Now we present an outline of RBFs along with finite-
difference (RBF-FD) formulation for time dependent PDEs solution. Consider the following general time
dependent PDE of the frame

ut(x, t) = Lu(x, t), such that x ∈ Ω ⊆ Rd, d ≥ 1, t > 0, (4. 4)

associated with the following initial and boundary conditions

u(x, 0) = u0(x), x ∈ Ω, Bu(x, t) = h(x, t), x ∈ ∂Ω, (4. 5)

where u0 and h are certain provided functions, while the spatial operators L, B representing the differential
operators.



Approximation of Nonlinear Sine-Gordon Equation via RBF-FD Meshless Approach 361

Suppose Ω = {x1, ..., xN} be a partition of the domain and SI = {x(i)
1 , ..., x

(i)
NI

} ⊆ Ω be a stencil corre-
sponding to xi including NI nodes so that xi ∈ SI and NI ≤ N . So, for linear partial differential operator
L we can use the local approximant

Lu(xi) ≃
NI∑
j=1

w
(i)
j u(x

(i)
j ). (4. 6)

The RBF-FD approach overcomes this difficulty for calculating the unknown weights {w(i)
j }NI

j=1 using the
idea of determining these weights by imposing the requirement that the linear combination (4. 6 ) must be
exact for RBFs, {ϕj(x, c)}NI

j=1 , centered at each of the node locations of stencil SI [76], so that

Lϕk(xi, c) =

NI∑
j=1

w
(i)
j ϕj(xk, c), k = 1, ..., NI . (4. 7)

It concludes to the following algebraic linear system

ΦwI = [LΦ]I , (4. 8)

in which Φ is the NI ×NI interpolant matrix with elements

ϕkj = ϕj(xk, c), k, j = 1, ..., NI , (4. 9)

wI is the NI × 1 coefficient vector including the weight coefficients {w(i)
j }NI

j=1, named RBF-FD coefficients,
and [LΦ]I is the NI × 1 right-hand side vector containing the values Lϕk(xi, c) for k = 1, ..., NI . Due to the
non singularity of the interpolant matrix Φ (see [74, 8, 55]), one obtains the weights vector wI

wI = Φ−1[LΦ]I . (4. 10)

In fact, the RBF-FD method completely works like the same FD method except in the way of calculating the
weights {w(i)

j }NI
j=1, hence it can be considered as an enhanced FD method. Similar procedure can be used for

the boundary operator B. Finally, the discretization for problem (4. 4 )-(4. 5 ) can be written as

ú = M(u). (4. 11)

When M is a N ×N dimensional sparse differentiation matrix, every row of the M has entries with N − n
zeros and n non-zero values. The number n represents the number of stencil components. Similarly we can
easily produced discretization of boundary operator B as L. The system of ODEs (4. 11 ) can now be solved
with any ODE solver like ode45, ode113, and ode23 etc from Matlab. Each effective ODE solver will select
a suitable length (step) of time T to fix the stiffness of ODE system (4. 11 ) in time see [64]. In this study we
have used classical fourth order Runge-Kutta (RK-4) method.

5. STABILITY OF THE PROPOSED NUMERICAL SCHEMES

In our proposed numerical scheme which is based on RBF-FD method we have transformed the time-
dependent partial differential equation into an ODEs system in time see equation (4. 11 ). This type of
technique is called the method of lines by which we can solve this system of coupled ODEs using the finite
difference method in time for example RK methods, etc. The method of lines stability may be estimated by
the well known rule of thumb. It is shown in the work of [64], that the method of lines will be stable, when the
eigenvalues of spatial discretization operator, linearized and scaled by step size δt, lie in region of stability of
the corresponding time-discretization operator. The stability region is a part of a multifaceted plane (complex
plane) entailing of those eigenvalues for which the schemes construct a bounded solution. The stability of
equation (4. 11 ) depends on the eigenvalues of the coefficient matrix. Hence, to show the stability of the
numerical solution of (4. 4 )-(4. 5 ), it is satisfactory to display that the real term of every eigenvalue Re(λi)
of the matrix M is non-positive, i.e., Re(λi) ≤ 0 for all i = 1, 2, ...n, for more details, see [60]. Notice that
the traditional RK method of order four stability criteria is (−2.78 < λδt < 0 ∀ λ). For more details on
stability of RBF method for time dependent PDEs readers are refer to see for example [28, 48, 54]. Here in
this study, it is shown that the current RBF-FD (localized) numerical scheme is unconditionally stable for all
values of RBFs shape parameter and small step size δt, when solving the proposed SG model equation. To
examine the stable and unstable eigenvalue spectrum we have calculated the eigenvalues of the matrix M,
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FIGURE 1. Four families of finite difference formulas for ODE have stability regions. The
stability zones for backward differentiation are on the outside of the curves, but in the other
cases, they are on the inside.

scaled by δt, for test problem of SG model equation below. In Figures 1 below stability regions of eigenvalues
for different time integration approaches is displayed.

6. NUMERICAL RESULTS

In this section, we consider SG equation given in (3. 1 )-(3. 2 ) along with initial and boundary conditions
for some test problems. The accuracy and efficiency of our presented technique are assessed by using L∞,
L2, RMS and MAE error norms as defined below.{

L∞ = ∥uexact − uapprox∥∞ = max|uexact
i − uapprox

i |, (6. 12)
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{
L2 = ∥uexact − uapprox∥2 =

√
∆x

∑N
i=0 |uexact

i − uapprox
i |2, (6. 13)

{
RMS =

√
1
N

∑N
i=1 |uexact − uapprox|2, (6. 14)

and {
MAE = Max|uexact − uapprox|, (6. 15)

where ∆x = |b−a|
N .

Results and findings obtained using the suggested RBF-FD approach are compared to past studies. The
findings produced are better when compared to other approaches in literature and in good agreement with the
exact solution, and hence our approach is very effective and quite efficient measured by accuracy, convergence
rate and computing time (CPU Time/Sec), as shown in the following.

6.1. Test problem 1: Consider the exact solution of SG equation given in equation (3. 1 ) as a system of two
equations given in equation (3. 2 ) as under:

u(x, t) = 4tan−1[exp{γ(x− Ct) + β}],

v(x, t) =
−4γC[exp{γ(x− Ct) + β}]
1 + [exp{γ(x− Ct) + β}2]

.
(6. 16)

Where γ = (1− C2)
−1
2 .

The initial and boundary conditions are extracted from the exact solutions (6. 16 ). The problem is solved
over spatial interval [−2, 58] by the present method using MQ-RBF along with RK-4 time integration scheme,
at times t = 9, 36, 108, when time step size δt = 0.001, number of collocation points N = 121, number of
stencil points Nx = 25 and MQ shape parameter ζ = 2.4, while parameters C = 0.5 and β = 0 are used.
The L∞ and L2, RMSE and MAE error norms at t = 9, 36, 108 and CPU Time/Sec are seen in Tables (1-3),
also the solitary wave profile in comparison with the exact solution is shown in Figure (2), which confirms the
accuracy of RBF-FD meshless method. The results when RBF-FD (MQ) is used, have a good agreement with
the exact solution and is better than earlier work in literature [6, 66]. Also the stable and unstable eigenvalue
spectrum, that we have calculated for the eigenvalues of the matrix M, scaled by δt related to traditional RK
method of order four for this test problem is shown in Figure (3).

TABLE 1. L∞, L2, RMS and MAE error norms of u using MQRBF at time T = 9, 36, 108
obtained for test problem 1.

Time/Errors L∞(u) L2(u) RMS(u) MAE(u) C.Time/Sec
9 3.529×10−3 7.045×10−3 2.916×10−5 3.529×10−3 1.0405
36 8.618×10−3 1.680×10−2 7.122×10−5 8.618×10−3 3.9014
108 2.484×10−2 4.614×10−2 2.053×10−4 2.484×10−2 11.2252

TABLE 2. L∞, L2, RMS and MAE error norms of v using MQRBF at time T = 9, 36, 108
obtained for test problem 1.

Time/Errors L∞(v) L2(v) RMS(v) MAE(v) C.Time/Sec
9 4.714×10−3 1.008×10−2 3.896×10−5 4.714×10−3 0.9918
36 5.111×10−3 1.148×10−2 4.224×10−5 5.111×10−3 3.8858
108 6.786×10−3 2.011×10−2 5.608×10−5 6.786×10−3 11.1354
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TABLE 3. Comparison of L∞, L2, RMS and MAE error norms of solution using MQRBF
at time T = 9, 36, 108 when δt = 0.001, N = 121, Nx = 25, MQζ = 2.4, C = 0.5 and
β = 0 in [−2, 58] for test problem. 1, given in (6. 16 ).

Methods RBF-FD [66] [6] RBF-FD [66]
Time/Errors L∞ L∞ L∞ L2 L2

9 3.529×10−3 6.836×10−3 4.518×10−1 7.045×10−3 2.683×10−2

36 8.618×10−3 8.032×10−2 2.293×10+0 1.680×10−2 3.113×10−1

108 2.484×10−2 6.253×10−1 5.120×10+0 4.614×10−2 2.378×10+0
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FIGURE 2. Plot of approximate and exact solution of u (up) and v (down) for parameters
C = 0.5 and β = 0 at time T = 9, 36, 108 with δt = 0.001 and N = 121, Nx = 25 using
MQ RBF ζ = 2.4 in domain [−2, 58] for test problem. 1, given in (6. 16 ).
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related RK-4 formula, they are the outside of the stability zones (−2.78, 0), (right).

6.2. Test problem 2: Now we consider the exact solution of SG equation given in equation (3. 1 ) as a
system of two equations given in equation (3. 2 ) as under:

u(x, t) = 4tan−1[C−1 cos(γ̄Ct) sec(γ̄x)],

v(x, t) =
−4γ̄ cos(γ̄Ct)sech(γ̄x)

1 + [C−1 sin(γ̄Ct)sech(γ̄x)]
.

(6. 17)
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Where γ̄ = (1− C2)
−1
2 .

The initial and boundary conditions are extracted from the exact solutions (6. 17 ). The problem is solved over
spatial interval [−10, 10] by the present method using MQ-RBF along with RK-4 time integration scheme,
at times t = 1, 10, 20, when time step size δt = 0.001, number of collocation points N = 201, number
of stencil points Nx = 25 and MQ shape parameter ζ = 2.4, while parameters C = 0.5 and β = 0 are
used. The L∞ and L2 error norms at t = 1, 10, 30 are seen in Tables (4-6), also the solitary wave profile in
comparison with the exact solution is shown in Figure (4), which confirms the accuracy of RBF-FD meshless
method. The results when RBF-FD (MQ) is used, have a good agreement with the exact solution and is better
than earlier work in literature [6, 66].

TABLE 4. L∞, L2, RMS and MAE error norms of u using MQRBF at time T = 1, 10, 20
obtained for test problem 2.

Time/Errors L∞(u) L2(u) RMS(u) MAE(u) C.Time/Sec
1 1.771×10−3 7.605×10−3 8.808×10−6 1.771×10−3 0.1451
10 1.530×10−3 8.859×10−3 7.611×10−6 1.530×10−3 1.1778
20 9.770×10−2 5.737×10−1 4.861×10−4 9.770×10−2 2.346620

TABLE 5. L∞, L2, RMS and MAE error norms of v using MQRBF at time T = 1, 10, 20
obtained for test problem 2.

Time/Errors L∞(v) L2(v) RMS(v) MAE(v) C.Time/Sec
1 5.587×10−4 3.179×10−3 2.780×10−6 5.587×10−4 0.1462
10 1.060×10−2 7.297×10−2 5.272×10−5 1.060×10−2 1.2329
20 9.724×10−2 4.361×10−1 4.838×10−4 9.724×10−2 2.4891

TABLE 6. Comparison of L∞, L2, RMS and MAE error norms of solution using MQRBF
at time T = 1, 10, 20 when δt = 0.001, N = 201, Nx = 25, MQζ = 2.4, C = 0.5 and
β = 0 in [−10, 10] for test problem. 2, given in (6. 17 ).

Methods RBF-FD [66] [6] RBF-FD [66]
Time/Errors L∞ L∞ L∞ L2 L2

1 1.771×10−3 1.474×10−3 0.988×10−3 7.605×10−3 1.252×10−2

10 1.530×10−3 9.215×10−3 0.162×10−2 8.859×10−2 9.402×10−2

20 9.770×10−2 3.038×10−1 0.103×10−2 5.737×10−1 4.599×10+0

6.3. Test problem 3: Finally consider the exact solution of SG equation given in equation (3. 1 ) as a system
of two equations given in equation (3. 2 ) as under:

u(x, t) = 4tan−1[Csech(γCt) sinh(γx)],

v(x, t) =
−4C2γsech(γCt) tanh(γCt) sinh(γx)

1 + [Csech(γCt) sinh(γx)]2
.

(6. 18)

Where γ = (1− C2)
−1
2 .

The initial and boundary conditions are extracted from the exact solutions (6. 18 ). The problem is solved over
spatial interval [−20, 20] by the present method using MQ-RBF along with RK-4 time integration scheme,
at times T = 2, 10, 20, when time step size δt = 0.001, number of collocation points N = 121, number
of stencil points Nx = 25 and MQ shape parameter ζ = 2.4, while parameters C = 0.5 and β = 0 are
used. The L∞ and L2 error norms at t = 9, 36, 108 are seen in Tables (7-9), also the solitary wave profile in
comparison with the exact solution is shown in Figure (5), which confirms the accuracy of RBF-FD meshless
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FIGURE 4. Plot of approximate and exact solution of u (left) and v (right) for parameters
C = 0.5 and β = 0 at time T = 1, 10, 20 with δt = 0.001 and N = 201, Nx = 25 using
MQ RBF ζ = 2.4 in domain [−10, 10] for test problem 2, given in (6. 17 ).

method. The results when RBF-FD (MQ) is used, have a good agreement with the exact solution and is better
than earlier work in literature [6, 66].

TABLE 7. L∞, L2, RMS and MAE error norms of u using MQRBF at time T = 2, 10, 20
obtained for test problem 3.

Time/Errors L∞(u) L2(u) RMS(u) MAE(u) C.Time/Sec
2 2.879×10−4 1.289×10−3 1.432×10−6 2.879×10−4 0.2836
10 3.547×10−4 1.476×10−3 1.764×10−6 3.547×10−4 1.2985
20 2.437×10−4 9.007×10−4 1.213×10−6 2.437×10−4 2.5265

TABLE 8. L∞, L2, RMS and MAE error norms of v using MQRBF at time T = 2, 10, 20
obtained for test problem 3.

Time/Errors L∞(v) L2(v) RMS(v) MAE(v) C.Time/Sec
2 7.044×10−4 2.444×10−3 3.504×10−6 7.044×10−4 0.2772
10 8.658×10−4 3.425×10−3 4.307×10−6 8.658×10−4 1.2601
20 7.199×10−4 3.669×10−3 3.582×10−6 7.199×10−4 2.4638

TABLE 9. Comparison of L∞, L2, RMS and MAE error norms of solution using MQRBF
at time T = 2, 10, 20 when δt = 0.001, N = 121, Nx = 25, MQζ = 2.4, C = 0.5 and
β = 0 in [−20, 20] for test problem. 3, given in (6. 18 ).

Methods RBF-FD [66] [6] RBF-FD [66]
Time/Errors L∞ L∞ L∞ L2 L2

2 2.879×10−4 1.568×10−3 0.127×10−3 1.289×10−13 3.025×10−11

10 3.547×10−4 3.151×10−3 0.191×10−3 1.476×10−13 3.695×10−12

20 2.437×10−4 1.828×10−2 0.251×10−3 9.007×10−11 1.039×10−9
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FIGURE 5. Plot of approximate and exact solution of u (up) and v (down) for parameters
C = 0.5 and β = 0 at time T = 2, 10, 20 with δt = 0.001 and N = 121, Nx = 25 using
MQ RBF ζ = 2.4 in domain [−20, 20] for test problem. 3, given in (6. 18 ).

7. CONCLUSION

In this paper radial basis functions for solitary wave model equation like Sine-Gordon (SG) model equa-
tion is covered in detail along with some important ideas and definitions. The said model is resolved using
a hybrid numerical technique based on radial basis functions (RBFs) and finite differences (FD) called as
RBF-FD meshless method. Some non-linear testing problems have been handled. For execution of temporal
variable in the given model equation, Runge-Kutta (RK-4) time steeping approach is utilized. We used L∞,
L2, ”RMS” and ”MAE” error norms and graphs to assess the accuracy and precision of our proposed method.
The advantage of the present method over other existing methods is its local and sparse nature of differentia-
tion matrices. Hence, it is less difficult with low processing cost (CPU time/sec) and more straightforward to
treat any higher order nonlinear PDEs. Remarkably, it is clear from our findings that we attain higher accu-
racy using very small values of the shape parameter ξ than the so large values previously applied in literature.
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