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Abstract.: In this research, we have settled some coupled fixed point re-
sults with rational contraction in partially ordered b-metric spaces (PObMS).
The findings introduced here are generalizations and extensions of some
of the established results in the literature. The applications of our result
have been discussed in the final section of the paper.
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1. INTRODUCTION AND PRELIMINARIES

The study of fixed point is a well-established theory in mathematics which is applied to
solve a wide area of problems. Contraction mappings play a key role for resolving existing
problems in a myriad of mathematical disciplines. Wolk [20] and Monjardet [14] investi-
gated the extension of the Banach contraction principle to partially ordered sets (poset) in
order to obtain fixed points under certain conditions. In 2004, Ran and Reurings [16] es-
tablished fixed points in partially ordered metric spaces (POMS) with some applications to
matrix equations. Later on, many researchers [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 18, 19]
settled fixed point and coupled fixed point results in POMS.

Definition 1.1. [7] Suppose(V,≤) is a poset. A mappingS : V → V is called strictly
increasing ifS(p) < S(ı), for all p, ı ∈ V with p < ı, and ifS(p) > S(ı), for all p, ı ∈ V
with p < ı, is called strictly decreasing .
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Definition 1.2. [7] Suppose(V,≤) is a poset. ThenS : V × V → V has the strict mixed
monotone property ifS(p, ı) is strictly increasing in p, and also strictly decreasing inı. i.e.

p1 < p2 ⇒ S(p1, ı) < S(p2, ı) for any p1, p2 ∈ V

also, ı1 < ı2 ⇒ S(p, ı1) > S(p, ı2) for any ı1, ı2 ∈ V.

Definition 1.3. [7] Suppose(V,≤) is a poset andS : V × V → V be a mapping. A point
(p, ı) ∈ V × V is known as coupled fixed point of S ifS(p, ı) = p andS(ı, p) = ı.

Definition 1.4. [17] A POMS(V, ℘,≤) is called ordered complete if for every convergent
sequences{pn}+∞0 ,{ın}+∞0 ⊂ V , the consequent conditions hold:

• If sequence{pn} is nondecreasing in V such thatpn → p implies that
pn ≤ p, for all n ∈ N that isp = sup{pn}.

• if sequence{ın} is nonincreasing in V such thatın → ı implies that
ın ≥ ı, for all n ∈ N that isı = inf{ın}.

Definition 1.5. [3] LetV 6= φ is a set ands ≥ 1 any real number. A mapping℘ : V ×V →
R+, is called b - metric onV if and only if it fulfill the following conditions

(i): ℘(µ, ν) = 0 ⇔ µ = ν;
(ii): ℘(µ, ν) = ℘(ν, µ);
(iii): ℘(µ, ν) ≤ s[℘(µ,w) + ℘(w, ν)] for all µ, ν, w ∈ V.

Then(V, ℘) is called b - metric space. A b - metric space(V, ℘) is complete if every Cauchy
sequence in V converges in V.

In this article, coupled fixed points results have been settled with the monotone property
of several contractions. The final section is fully devoted to the applications of the results.
The result given here is an extension of results in Arab and Zare [3] in the direction of
coupled fixed point.

2. MAIN RESULTS

In this part, coupled fixed point results in PObMS have been incepted

Theorem 2.1. Assume(V, ℘,≤) is a complete PObMS andS : V ×V → V is a continuous
mapping satisfying the strictly monotone property onV, with the condition

℘(S(p, ı), S(µ, v)) ≤ c1℘(p, µ) + c2[℘(µ, S(µ, v)) + ℘(p, S(p, ı))]

+ c3
℘(µ, S(p, ı) + ℘(p, S(µ, v)

s
+ c4[℘(µ, S(µ, v))ϕ(℘(p, µ), ℘(p, S(p, ı)))]

+ c5[℘(µ, S(p, ı))ϕ(℘(p, µ), ℘(p, S(µ, v)))]

+ c6℘(p, µ)ϕ(℘(p, µ), ℘(p, S(p, ı)) + ℘(µ, S(p, ı))) + c7℘(µ, S(p, ı)),
(2. 1)

whereci (i = 1, 2, . . . , 7) are non negative constants such that

7∑

i=1

ci <
1

s + 1
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andϕ : R+ ×R+ → R+ is a function such that

ϕ(t, t) = 1, for all t ∈ R+.

If there exists two pointsp0, ı0 ∈ V with p0 < S(p0, ı0) and ı0 > S(ı0, p0), thenS
possesses a coupled fixed point(p, ı) ∈ V × V .

Proof. Let p0, ı0 ∈ V such thatp0 < S(p0, ı0) and ı0 > S(ı0, p0). Now, construct
sequence{pn} and{ın} in V by

pn+1 = S(pn, ın) and ın+1 = S(ın, pn). (2. 2)

Now, we have to show thatpn < pn+1, ın > ın+1.
Assumen = 0. Sincep0 < S(p0, ı0) and ı0 > S(ı0, p0) by equation ( 2. 2 ) we get
p0 < p1 andı0 > ı1 so, the inequality holds forn = 0. By the property ofS, we get

pn+1 = S(pn, ın) < S(pn+1, ın)
< S(pn+1, ın+1) = pn+2,

pn+1 < pn+2, (2. 3)

and

ın+1 = S(ın, pn) > S(ın+1, pn)

> S(ın+1, pn+1) = ın+2

ın+1 > ın+2, (2. 4)

and the above inequalities ( 2. 3 ) and ( 2. 4 ) imply

p0 < p1 < p2 < ... < pn < pn+1 < ...

ı0 > ı1 > ı2 > ... > ın > ın+1 > . . . .

From hypotheses, we havepn < pn+1, ın > ın+1, and from ( 2. 2 )

℘(pn+1, pn) = ℘(S(pn, ın), S(pn−1, ın−1))
= ℘(S(pn−1, ın−1), S(pn, ın))
≤ c1℘(pn−1, pn) + c2(℘(pn, S(pn, ın)) + ℘(pn−1, S(pn−1, ın−1)))

+ c3
℘(pn, S(pn−1, ın−1) + ℘(pn−1, S(pn, ın)

s
+ c4[℘(pn, S(pn, ın))ϕ(℘(pn−1, pn), ℘(pn−1, S(pn−1, ın−1)))
+ c5[℘(pn, S(pn−1, ın−1))ϕ(℘(pn−1, pn), ℘(pn−1, S(pn, ın)))
+ c6℘(pn−1, pn)ϕ(℘(pn−1, pn), ℘(pn−1, S(pn−1, pn−1))
+ ℘(pn, S(pn−1, ın−1))) + c7℘(pn, S(pn−1, ın−1))
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℘(pn+1, pn) ≤ c1℘(pn−1, pn) + c2(℘(pn, pn+1) + ℘(pn−1, pn))
+ c3[℘(pn, pn) + ℘(pn−1, pn+1)]
+ c4[℘(pn, pn+1))ϕ(℘(pn−1, pn), ℘(pn−1, pn))
+ c5[℘(pn, pn)ϕ(℘(pn−1, pn), ℘(pn−1, pn+1))]
+ c6℘(pn−1, pn)ϕ(℘(pn−1, pn), ℘(pn−1, pn)) + c7℘(pn, pn)
≤ c1℘(pn−1, pn) + c2℘(pn−1, pn) + c2℘(pn, pn+1) + c3℘(pn−1, pn)
+ c3℘(pn, pn+1) + c4[℘(pn, pn+1)) + c5(0) + c6℘(pn−1, pn) + c7.(0)
≤ (c1 + c2 + c3 + c6)℘(pn−1, pn) + (c2 + c3 + c4)℘(pn, pn+1)

℘(pn, pn+1) ≤ c1 + c2 + c3 + c6

1− (c2 + c3 + c4)
℘(pn−1, pn). (2. 5)

Likewise, we get

℘(ın, ın+1) ≤ c1 + c2 + c3 + c6

1− (c2 + c3 + c4)
℘(ın−1, ın). (2. 6)

By relations ( 2. 5 ) and ( 2. 6 ) we get

℘(pn, pn+1) + ℘(ın, ın+1) ≤ c1 + c2 + c3 + c6

1− (c2 + c3 + c4)
(℘(pn−1, pn) + ℘(ın−1, ın)).

Let’s establish a sequence

{Sn} = ℘(pn+1, pn) + ℘(ın+1, ın).

By induction we get

0 ≤ Sn ≤ κSn−1 ≤ κ2Sn−2 ≤ ... ≤ κnS0,

whereκ = c1+c2+c3+c6
1−(c2+c3+c4)

< 1, and so

lim
n→+∞

Sn = lim
n→+∞

[℘(pn, pn−1) + ℘(ın, ın−1)] = 0.

From this we get,
lim

n→+∞
℘(pn, pn−1) = 0,

lim
n→+∞

℘(ın, ın−1) = 0.

For everym ≥ n, we have

℘(pm, pn) ≤ ℘(pm, pm−1) + ℘(pm−1, pm−2) + ... + ℘(pn+1, pn),

and
℘(ım, ın) ≤ ℘(ım, ım−1) + ℘(ım−1, ım−2) + ... + ℘(ın+1, ın).

Hence,

℘(pm, pn) + ℘(ım, ın) ≤ Sm + Sm−1 + · · ·+ Sn

≤ (κm−1 + κm−2 + ... + κn)S0

≤ κn

1− κ
S0,
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and takingn → +∞ we get

℘(pm, pn) + ℘(ım, ın) → 0,

which shows that both sequences{pn} and{ın} are Cauchy inV . So, there exists(p, ı) ∈
V × V such that

pn → p and ın → ı.

Again, by the continuity of S, we get

p = lim
n→+∞

pn+1

= lim
n→+∞

S(pn, ın)

= S( lim
n→+∞

pn, lim
n→+∞

ın)

= S(p, ı),

ı = lim
n→+∞

ın+1

= lim
n→+∞

S(ın, pn)

= S( lim
n→+∞

ın, lim
n→+∞

pn)

= S(ı, p).

Since, sequence{pn} is increasing and converges top ∈ V, so

p = sup pn i.e. pn ≤ p.

By the strict monotone property, we have

S(pn, ın) < S(p, ın). (2. 7)

Likewise, sequence{ın} is decreasing inV and is converges toı ∈ V. Then

ı = inf ın i.e. ın ≥ ı, for all n ∈ N,

and, by the strict monotone property,

S(p, ın) < S(p, ı). (2. 8)

By inequalities ( 2. 7 ) and ( 2. 8 ), we get

S(pn, ın) < S(p, ı).

So
pn+1 < S(p, ı).

Sincepn < pn+1 < S(p, ı), for all n ∈ N andp = sup{pn} then, we have

p ≤ S(p, ı).

Now, let z0 = p andzn+1 = S(zn, ın) then{zn} is a non decreasing sequence asz0 =
S(z0, ı0) and converges to z inV . Thenz = sup{zn}.
Since, for everyn ∈ N ,

pn ≤ p = z0 ≤ S(z0, ı0) ≤ zn ≤ z,
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from inequality ( 2. 1 ), we have

℘(pn+1, zn+1) = ℘(S(pn, ın), S(zn, ın))
≤ c1℘(pn, zn) + c2[℘(zn, S(zn, ın) + ℘(pn, S(pn, ın))]

+ c3
℘(zn, S(pn, ın) + ℘(pn, S(zn, ın)

s
+ c4[℘(zn, S(zn, ın))ϕ(℘(pn, zn), ℘(pn, S(pn, ın)))]
+ c5[℘(zn, S(pn, ın))ϕ(℘(pn, zn), ℘(pn, S(zn, ın)))]
+ c6℘(pn, zn)ϕ(℘(pn, zn), ℘(pn, S(pn, ın)) + ℘(zn, S(pn, ın)))
+ c7℘(zn, S(pn, ın))
≤ c1℘(pn, zn) + c2[℘(zn, zn+1) + ℘(pn, pn+1)]

+ c3
℘(zn, pn+1) + ℘(pn, zn+1)

s
+ c4[℘(zn, zn+1)ϕ(℘(pn, zn), ℘(pn, pn+1))]
+ c5[℘(zn, pn+1)ϕ(℘(pn, zn), ℘(pn, zn+1))]
+ c6℘(pn, zn)ϕ(℘(pn, zn), ℘(pn, pn+1) + ℘(zn, pn+1)) + c7℘(zn, pn+1).

Taking limit n → +∞, we get

℘(p, z) ≤ (c1 + c3 + c5 + c6 + c7)℘(p, z),

which is contradiction. So,℘(p, z) = 0. Hence,p = z = sup{pn}, which implies that

p ≤ S(p, ı) ≤ p.

Hence,S(p, ı) = p. Also, by the above , we getS(ı, p) = ı. So,S admits a coupled fixed
point inV × V.
Remark 2.1. The elements p and z of poset are comparable ifp ≤ z or z ≤ p.

Theorem 2.2.Along the assumptions stated in Theorem 2.1, consider that for each(p, ı), (z, t) ∈
V×V , there exists(µ, v) ∈ V×V such that(S(µ, v), S(v, µ)) is comparable to(S(p, ı), S(ı, p))
and (S(z, t), S(t, z)). Then,S possesses a unique coupled fixed point, i.e., there exists
(p, ı) ∈ V × V such thatp = S(p, ı) andı = S(ı, p).

Proof. Theorem2.1 shows that the set of coupled fixed points ofS is non empty. Let
(p, ı) and(z, t) be coupled fixed points ofS, i.e.,p = S(p, ı), ı = S(ı, p), z = S(z, t) and
t = S(t, z). We claim thatp = z andı = t. By the hypotheses there exists(µ, v) ∈ V ×V
such that(S(µ, v), S(v, µ)) is comparable with(S(p, ı), S(ı, p)) and(S(z, t), S(t, z)). Put
µ0 = µ, v0 = v and chooseµ1, v1 ∈ V so thatµ1 = S (µ0, v0) andv1 = S (v0, µ0) .
Then with the same path as in Theorem 2.1, we can incept sequences{µn} , {vn} as
µn+1 = S (µn, vn) andvn+1 = S (vn, µn) , for all n. Further, setp0 = p, ı0 = ı, z0 =
z, t0 = t and in the same way define the sequences{pn} , {ın}, and{zn} , {tn} . Then,
as in Theorem2.1, we can verify thatpn → p = S(p, ı), ın → ı = S(ı, p), zn →
z = S(z, t), tn → t = S(t, z), for all n ≥ 1. Since, (S(p, ı), S(ı, p)) = (p, ı) and
(S(µ0, v0), S(v0, µ0)) = (µ1, v1) are comparable, thenp ≥ µ1 and ı ≤ v1. Now, we
shall verify that(p, ı) and (µn, vn) are comparable, i.e.,p ≥ µn and ı ≤ vn, for all
natural numbersn. Consider it holds for somen ≥ 0, then by property ofS, we have
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µn+1 = S (µn, vn) ≤ S(p, ı) = p andvn+1 = S (vn, µn) ≥ S(ı, p) = ı. Hencep ≥ µn

andı ≤ vn hold for all natural numbersn. So, by theorem (2.1), we have

℘(p, µn+1) = ℘(S(p, ı), S(µn, vn))

≤ c1(p, µn)℘(p, µn) + c2(p, µn)[℘(µn, S(µn, vn) + ℘(p, S(p, ı)]

+ c3(p, µn)
℘(µn, S(p, ı) + ℘(p, S(µn, vn)

s
+ c4(p, µn)[℘(µn, S(µn, vn))ϕ(℘(p, µn), ℘(p, S(p, ı)))]

+ c5(p, µn)[℘(µn, S(p, ı))ϕ(℘(p, µn), ℘(p, S(µn, vn)))]

+ c6(p, µn)℘(p, µn)ϕ(℘(p, µn), ℘(p, S(p, ı)) + ℘(µn, S(p, ı))) + c7℘(µn, S(p, ı)),

which implies that

℘(p, µn+1) ≤ c1 + c2 + c3 + c6

1− (c2 + c3 + c4)
℘(p, µn).

Likewise, we get

℘(ı, vn+1) ≤ c1 + c2 + c3 + c6

1− (c2 + c3 + c4)
℘(ı, vn)

℘(ı, vn+1) ≤ k ℘(ı, vn),

where k = c1+c2+c3+c6
1−(c2+c3+c4)

< 1. Then, from the above relations, we get

℘(p, µn+1) + ℘(ı, vn+1) ≤ k(℘(p, µn) + ℘(ı, vn))
≤ k2(℘(p, µn−1) + ℘(ı, vn−1))
... ...

≤ kn(℘(p, µ0) + ℘(ı, v0)).

Takingn → +∞ in above equation, we get

lim
n→+∞

℘(p, µn+1) + ℘(ı, vn+1) = 0,

therefore

lim
n→+∞

℘(p, µn+1) = 0 and lim
n→+∞

℘(ı, vn+1) = 0.

Likewise, we can prove that

lim
n→+∞

℘(z, µn+1) = 0 and lim
n→+∞

℘(t, vn+1) = 0.

Finally, we arrive at

℘(p, z) ≤ ℘(p, µn) + ℘(µn, z) and ℘(ı, t) ≤ ℘(ı, vn) + ℘(vn, t).

Takingn → +∞ in the above inequalities, we have

℘(p, z) = 0 and ℘(ı, t) = 0,

that isp = z and ı = t. So,S has a unique coupled fixed point.
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Example 2.3.LetV = [0, 1] with the usual relation≤, and℘(p, ı) = |p−ı|2. Then, clearly
(V, ℘) is a complete b-metric space. Heres = 2 also takec1 = 1

10000 andS : V 2 → V

defined byS(p, ı) = p+ı
10000 , for all p, ı ∈ V. Thus, it follows that

℘(S(p, ı), S(µ, v)) = ℘(
p + ı

10000
,
µ + v

10000
)

= | p + ı

10000
− µ + v

10000
|2

=
1

10000
| (p− µ) + (ı− v)

100
|2

≤ 1
10000

|p− µ|2

≤ c1 ℘(p, µ),

for all p, ı, µ, v ∈ V . Thus, by Theorem 2.1, the coupled fixed point ofS is (0, 0), which is
unique .

3. APPLICATIONS

Here, we apply our result to a mapping with a contraction of integral type.
Let us assume the collection of all functionsη defined on[0, +∞) satisfy the following
conditions:

(1) Eachη is Lebesque integrable mapping on every compact subset of[0, +∞).
(2) For anyε > 0,we have

∫ ε

0
η(t) > 0.

Theorem 3.1. Let (V, ℘,≤) be a complete PObMS andS : V × V → V be continuous
strictly monotone mapping onV × V, which fulfills the condition
∫ ℘(S(p,ı),S(µ,v))

0

η(t)dt ≤ c1

∫ ℘(p,µ)

0

η(t)dt + c2

∫ [℘(µ,S(µ,v)+℘(p,S(p,ı)]

0

η(t)dt

+ c3

∫ ℘(µ,S(p,ı))+℘(p,S(µ,v))
s

0

η(t)dt

+ c4

∫ [℘(µ,S(µ,v))ϕ(℘(p,µ),℘(p,S(p,ı)))]

0

η(t)dt

+ c5

∫ [℘(µ,S(p,ı))ϕ(℘(p,µ),℘(p,S(µ,v)))]

0

η(t)dt

+ c6

∫ ℘(p,µ)ϕ(℘(p,µ),℘(p,S(p,ı))+℘(µ,S(p,ı)))

0

η(t)dt + c7

∫ ℘(µ,S(p,ı))

0

η(t)dt,

for all p, ı, µ, v ∈ V with p ≥ µ and ı ≤ v, η(t) fulfills the statements on[0, +∞) and
ci (i = 1, 2, . . . , 7) are non negative constants such that

7∑

i=1

ci <
1

s + 1
,

andϕ : R+ ×R+ → R+ is a function such that

ϕ(t, t) = 1, for all t ∈ R+.
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If there exists two pointsp0, ı0 ∈ V with p0 < S(p0, ı0) and ı0 > S(ı0, p0). ThenS
possesses a coupled fixed point(p, ı) ∈ V × V .

Likewise, we have the consequent coupled fixed point result in complete PObMS, by taking
c2 = 0, c4 = 0, c6 = 0 in the above theorem.

Theorem 3.2. Let (V, ℘,≤) be a complete PObMS andS : V × V → V be continuous
strictly monotone mapping onV × V, which fulfills the condition

∫ ℘(S(p,ı),S(µ,v))

0

η(t)dt ≤ c1

∫ ℘(p,µ)

0

η(t)dt

+ c3

∫ ℘(µ,S(p,ı))+℘(p,S(µ,v))
s

0

η(t)dt

+ c5

∫ [℘(µ,S(p,ı))ϕ(℘(p,µ),℘(p,S(µ,v)))]

0

η(t)dt

+ c7

∫ ℘(µ,S(p,ı))

0

η(t)dt,

for all p, ı, µ, v ∈ V with p ≥ µ andı ≤ v, η(t) fulfills the statements on[0, +∞) and the
non negative constantsci(i = 1, 3, 5, 7) are such that

c1 + c3 + c5 + c7 <
1

s + 1
,

andϕ : R+ ×R+ → R+ is a function such that

ϕ(t, t) = 1, for all t ∈ R+.

If there exists two pointsp0, ı0 ∈ V with p0 < S(p0, ı0) and ı0 > S(ı0, p0). ThenS
possesses a coupled fixed point(p, ı) ∈ V × V .

Theorem 3.3. Let (V, ℘,≤) be a complete PObMS andS : V × V → V be continuous
strictly monotone mapping onV × V, which fulfills the condition

∫ ℘(S(p,ı),S(µ,v))

0

η(t)dt ≤ c1

∫ ℘(p,µ)

0

η(t)dt

for all p, ı, µ, v ∈ V with p ≥ µ and ı ≤ v, η(t) fulfill the statements on[0,+∞) and
c1 ∈ [0, 1), and if there exists two pointsp0, ı0 ∈ V withp0 < S(p0, ı0) andı0 > S(ı0, p0),
thenS possesses a coupled fixed point(p, ı) ∈ V × V .
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