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Abstract.: In this research, we have settled some coupled fixed point re-
sults with rational contraction in partially ordered b-metric spaces (PObMS).
The findings introduced here are generalizations and extensions of some
of the established results in the literature. The applications of our result
have been discussed in the final section of the paper.
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1. INTRODUCTION AND PRELIMINARIES

The study of fixed point is a well-established theory in mathematics which is applied to
solve a wide area of problems. Contraction mappings play a key role for resolving existing
problems in a myriad of mathematical disciplines. Wolk [20] and Monjardet [14] investi-
gated the extension of the Banach contraction principle to partially ordered sets (poset) in
order to obtain fixed points under certain conditions. In 2004, Ran and Reurings [16] es-
tablished fixed points in partially ordered metric spaces (POMS) with some applications to
matrix equations. Later on, many researchers [1, 2, 4,5, 6, 8, 9, 10, 11, 12, 13, 15, 18, 19]
settled fixed point and coupled fixed point results in POMS.

Definition 1.1. [7] Suppos€V, <) is a poset. A mapping : V — V is called strictly

increasing ifS(p) < S(2), for all p,» € V withp <1, and if S(p) > S(2),forall p,s € V
with p < 4, is called strictly decreasing .
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Definition 1.2. [7] Suppos€V, <) is a poset. Thew : V x V — V has the strict mixed
monotone property if (p, ¢) is strictly increasing in p, and also strictly decreasingin.e.

p1 <p2 = S(p1,2) < S(p2,2) forany pi,p2 eV
also, 11 <12 = S(p,11) > S(p,12) forany 11,12 € V.

Definition 1.3. [7] SupposéV, <) isaposetands : V x V — V be a mapping. A point
(p,2) € V x V is known as coupled fixed point of Sifp,2) = p and.S(z,p) = «.

Definition 1.4. [17] A POMS(V, 0, <) is called ordered complete if for every convergent
sequence$p,, } {1} C V, the consequent conditions hold:
o If sequencgp, } is nondecreasing in V such that — p implies that
pn < p, forall n e N thatisp = sup{p,}.
o if sequencg, } is nonincreasing in V such that — @ implies that
1, > 1, forall n € N thatis: = inf{2,}.

Definition 1.5. [3] LetV # ¢ is asetands > 1 any real number. Amapping: V xV —
R* | is called b - metric orV/ if and only if it fulfill the following conditions

0): p(p,v) =0 ©p=uv,

(i): p(p,v) = p(v, p);

(ii)): p(u,v) < slp(p, w) + p(w,v)] forall y,v,w e V.
Then(V, p) is called b - metric space. A b - metric spadé p) is complete if every Cauchy
sequence in V converges in V.

In this article, coupled fixed points results have been settled with the monotone property
of several contractions. The final section is fully devoted to the applications of the results.
The result given here is an extension of results in Arab and Zare [3] in the direction of
coupled fixed point.

2. MAIN RESULTS
In this part, coupled fixed point results in PObMS have been incepted

Theorem 2.1. AssuméV, p, <) is a complete PObMS arfsl: V xV — V is a continuous
mapping satisfying the strictly monotone propertylgmwith the condition
p(s(pv Z)v S(/”'a U)) < Clp(p7 /”') + C2[@(:u7 S(,LL, U)) + @(pv S(pa Z))]

o(p, S(p,2) + p(p, S(p,v)

+c3
+ calp(p 75(/%11)) (p(p, 1), p(p, S(p,2)))]
+ eslp(p, S(p,1)) )]

De(p(p, 1), o(p, S(p; v)
( S(p

P, 1), 0(p, S(p,2)) + (1, S(p,2))) + crp(p, S(p,2)),
2. 1)

+ cop(p, w)p(p

wherec; (i = 1,2,...,7) are non negative constants such that

ch<7
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andy : RT x RT™ — R™T is a function such that
o(t,t) =1, forall tc R".

If there exists two pointgg,:y € V with pg < S(po,20) andy > S(20,p0), thenS
possesses a coupled fixed pdint:) € V x V.

Proof. Letpg,2o € V such thatpg < S(po,20) andzy > S(20,p0). NoOw, construct
sequencép, } and{z,} in V by

Pnt1 = S(Pn,n) and 1,1 = S(tn, pn)- 2.2
Now, we have to show that, < p,11, 1 > tnt1.
Assumen = 0. Sincepy, < S(po,20) andwy > S(z9,po) by equation (2. 2) we get
po < p1 andeyy > 11 SO, the inequality holds fat = 0. By the property ofS, we get
Pn+1 = S(pn; zn) < S(pn+17 Zn)

< S(pn+1a ZnJrl) = Pn+2,

Pn+1 < Pn+2, (2- 3)
and

In+1 = S<Znapn) > S(anrlapn)
> S(tnt1,Pnt1) = 2

Int1 > nt2, (2 4)

and the above inequalities (2. 3) and ( 2. 4) imply

Po<p1 <p2<..<pPp<pPnt1<..

20 >0 >12 > . >y >l > ..

From hypotheses, we haye < p,t1,t, > 1,41, and from (2. 2)

PPnt1,0n) = 9(SPn,tn), S(Pr—1,1n-1))
= 9(S(Pn-1,tm-1),S(Pn, 1))
< ap(Pn—1,Pn) + c2(9(Pn, S(Pns1n)) + 9(Pr-1, S(Pn—1,2-1)))
+ @(pm S(Pn—1,tn-1) + 9(Prn—1,S(Pn,n)
S
+  calp(pn, S(Pns 1)) o(9(Pn—1,Pn): 9(Pr—1, S (Pr—1,1n-1)))
+ cslp(Pn, S(Pn—1,tn-1))0(0(Pn—1,Pn), P(Pn-1,5(Pn,n)))
+ Cﬁp(pn—l7pn)99(p(pn—17pn)7@(pn—hs(pn—lapn—l))
+  9Pn, S(Pr-1,10-1))) + c70(Pn, S(Pr—1,tn-1))
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c19(Pn—1,Pn) + c2(9(Pn, Pnt1) + 9(Pn-1,Pn))

c3[@(Pny Pn) + ©(Pn—1,Pns1)]

cal@(Prs Prs1))2(©(Pr—1,Pn)s 9(Pr—1,Pn))

cs[@(Pns Pr)e(©(Pr—1,Pn); ©(Pn—1,Pnr1))]
c69(Pn—1,Pn)0(©Pn—1,Pn); 9(Pn—1,Pn)) + c70(Pn, Pn)
c19Pn—1,Pn) + c20(Pn—1,Pn) + C20(Dn, Prt1) + c30(Pn—1,Pn)
30(Pn, Prt1) + ca[p(Pn, Prs1)) + ¢5(0) + c60(pn—1,pPn) + c7.(0)
(c1+ca+c3+ c6)o(Pn—1,Pn) + (c2 + c3 + ca)p(Pns Prt1)

@(pn+17pn)

IN+ IN+ + + + A

p(p » 1)< c1+ca+c3+cg
ny Un+

n—1iyrnj- 25
_1—(62—&—03—1—04)@(]) 1p) ( )

Likewise, we get

p(z ) )<61+CQ+63+66
o intl) = 1—(62+03+C4)
By relations (2. 5) and ( 2. 6 ) we get

c1+co+c3+cs
<
9P Pra) 9 1) € TR RS

©(tn—1,n)- (2. 6)

(@(pn—hpn) + p(ln_l, Zn))

Let’s establish a sequence

{STL} = p(pn+lvpn) + p(zn—&-la Zn)'
By induction we get
0< Sp <KSpo1 < K*Sp_a < ... <K™Sp,

__ c1+cotcestces
wherex = T letreatey < 1, and so

lim S, = lLm [p(pn,Pn-1) + ©(tn,m-1)] = 0.

n—-+00 n—-+o00
From this we get,
lim p(pnvpn—l) = 0)

n—-—+o0o
lim (2, 2,—1) = 0.
n—-+oo

For everym > n, we have

©(Pm>Pn) < ©Om>Pm—-1) + ©(Pm-1,Pm—2) + -~ + (Pn+1,Pn),

and
©(tm, 1) < ©(Umy tm—1) + Pm—1,2m—2) + . + (141, n).
Hence,
©Pm,Pn) + ©(m,10) < Sm+ Smo1 -+ S,
< (KT R™TE 4 L+ RS,
< X

0
1—x
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and takingn — -+oo we get

p<pmvpn) + @(Zmazn) — 0,

which shows that both sequendgs, } and{+,} are Cauchy ifV/. So, there existép, ) €

V' x V such that
Pn — p and 1, — 1.
Again, by the continuity of S, we get
p = ngr-lr-loo anrl

= lim S(pn,tn)

n—-+4oo

= S( hr_{_l Pn; nEr-iI-loo Zn)

n—-—+0oo

= S(p1),

1 = lim o4
n—-+oo

= lim S(Zn ’ pn)

n——+oo

= li li
S Ep gt L o)

= S(1,p).
Since, sequencf,, } is increasing and convergeszcee V, so
p=suppp i.e. pp <P
By the strict monotone property, we have
S(p’rH zn) < S(pﬂ Zn)-
Likewise, sequencé:, } is decreasing i and is converges to€ V. Then
1 =infu, d.e 1, >1 foralln €N,
and, by the strict monotone property,
S(p,m) < S(p,1).
By inequalities (2. 7) and ( 2. 8 ), we get
S(pnyin) < S(p,2).
So

Pn+1 < S(p72)~
Sincep,, < pn+1 < S(p,1), foralln € N andp = sup{p, } then, we have

p < S(p,e).

2. 7)

(2. 8)

Now, letzy = p andz,+1 = S(zn,%,) then{z,} is a non decreasing sequencezgs=

S(z0,10) and converges to z ii. Thenz = sup{z, }.
Since, for everyn € N,

P <p =20 < S(20,00) < zp < 2,
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from inequality ( 2. 1), we have

P(Pnt1:2n41) = ©(S(Pn,n), S(2n, )

c19(Pn, 2n) + c2[p(2n, S(2ns 1) + ©(Pny S (Pns )]

cs ©(2n, S(Pns 1) + 9Py S(2n; 1)

calp(zn, S(zn, 1)) (0(Pns 2n), ©(Pns S (P, 1))

s[9(2ns S(Pns 1)) P(0(Pns 2n), 9(Pns S(2ns 1))

69 (Pns 2n) (9P 2n), (s S(Pny 1n)) + ©(20, S(Pny10)))

79(2n, S(Pns 1))

c19(Pn, 2n) + 2[p(2n: 2nt1) + O(Pns Prt1)]
@@mﬂwﬂ+@@mawﬂ

IN

Q

N+ o+ o+ o+
Q

C4[ (Zvu Zn—o—l)(p( (pn7 Zn)v p(pn»pn—i—l))]
C5[ (vapn—i-l)(p( (pna Zn)v @(pn, Zn—l—l))]
c6(Pn,s Zn)@(@(pm Zn)a @(pmanrl) + @(Zmanrl)) + C7@(Znapn+l)'
Taking limitn — 400, we get
o(p,2) < (c1 +e3+ 5+ 6+ cr)p(p, 2),
which is contradiction. Sgy(p, z) = 0. Hencep = z = sup{p,, }, which implies that
p < S(p,2) <p.

Hence,S(p,:) = p. Also, by the above , we ge&f(+, p) = ¢. So,.S admits a coupled fixed
pointinV x V.
Remark 2.1. The elements p and z of poset are comparahesifz or z < p.

+ o+ 4+ o+

Theorem 2.2. Along the assumptions stated in Theorem 2.1, consider that for(eagh(z, t) €
V' xV,there exist$y, v) € VxV such thalS(u, v), S(v, 1)) is comparable tdS(p, ), S(z,p))
and (S(z,t),S(t,z)). Then,S possesses a unique coupled fixed point, i.e., there exists
(p,2) € V x V such thatp = S(p,2) ands = S(z, p).

Proof. Theorem2.1 shows that the set of coupled fixed pointsSifs non empty. Let
(p,2) and(z,t) be coupled fixed points &, i.e.,p = S(p,2),¢ = S(z,p),z = S(z,t) and
t = S(t,z). We claim thap = z and: = ¢. By the hypotheses there existg, v) € V x V
such thatS(u, v), S(v, 1)) is comparable withiS(p, ¢), S(z, p)) and(S(z, t), S(t, z)). Put
Lo = 1, vg = v and choose;, v € V sothatu; = S (o, v9) andvy = S (vg, o) -

Then with the same path as in Theorem 2.1, we can incept sequéngés{v,} as
tnt1 = S (i, vy) @Ndv,1 = S (vp, un) , for all n. Further, seby = p,10 = 12,20 =
z,tg = t and in the same way define the sequenges;, {+,}, and{z,},{t.}. Then,
as in Theoren®.1, we can verify thatp, — p = S(p,2),2, — © = S(1,p), 2, —
z = S(z,t),t, — t = S(t,z), foraln > 1. Since, (S(p,),S(z,p)) = (p,2) and
(S(po,v0), S(vo, po)) = (p1,v1) are comparable, them > p; and: < v;. Now, we
shall verify that(p,) and (u,,v,) are comparable, i.ep > p, andz < w,, for all
natural numbers.. Consider it holds for some > 0, then by property of5, we have
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P11 = S (n,vn) < S(p,2) = pandv,1 = S (v, pn) > S(2,p) = 2. Hencep > py,
and: < v,, hold for all natural numbers. So, by theorem (2.1), we have
PP, tnt1) = p(S(p,2), S (pn, vn))
< c1(p, n) (P, pin) + c2(py tn) [9(tin, S (fins vn) + 9(p, S(p, )]
o(pin, S(py2) + @(p, S (ns vn)

+ c3(p, pin)
+ ca(p, pn) [9(ttn (umvn))so(p(p fn), 9(p, S(p,2)))]
+ ¢5(p, tn) [9(ttn, S(p,2))p(9(D, in ), (D5 S (tin, vn)))]
+ c6(Ds n) (D5 1n) P (0(D, pin ), (P, S(p,2)) + 9(pn, S(p,2))) + ez (pin, S(p, 7)),

which implies that

o(ps fims1) < €1+ c2+c3+ ¢
PPt T 1—(co+c3+ca)

O (D, fin)-

Likewise, we get
c1+c2+c3+ ¢
4 Unt1) <
p( +1) 1 _ (62 ezt 64)

o(1,vn)

p(l,’Un+1) < k p(l7vn)a

c1+cotceaz+ce i
where k = - ety < 1. Then, from the above relations, we get

o(p, pnt1) + (4, vnt1) < k(p(D; n) + 9(2,00))
< K (p(p, pn-1) + 92, vn-1))
S kn(@(p7 N’O) + @(Z,U())).

Takingn — +oo in above equation, we get

Lm0, 1) + (0 vnr) =0,

therefore
lim ©(p, piny1) =0 and  lim p(2, vpq1) = 0.

n——4oo n——4oo

Likewise, we can prove that

lim p(z, ppe1) =0 and hm p(t,vp+1) = 0.

n—-+o0o n—-+

Finally, we arrive at
p(p,2) < (D, pin) + p(tn, 2) and p(1,1) < p(1,vn) + P(vn, 1).
Takingn — +oc in the above inequalities, we have
p(p,z) =0 and p(z,t) =0,

thatisp = z and @+ = t. S0,S has a unique coupled fixed point.
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Example 2.3.LetV = [0, 1] with the usual relation<, andp(p, ) = |p—z|2 Then, clearly
(V, p) is a complete b-metric space. Hete= 2 also takec; = andS : V2 -V
defined byS(p, 1) = 2 for all p,» € V. Thus, it follows that

10000
o ptroptv
©(S(p,2), S(p,v)) = 9(10000,10000)
|2

p+r  ptw
1|@—uw+u—wP

10000

10000 10000

10000 100
< o up
= 00007 " H

< e p(p, ),

for all p,+, u,v € V. Thus, by Theorem 2.1, the coupled fixed poirfi &f (0, 0), which is
unique .

3. APPLICATIONS

Here, we apply our result to a mapping with a contraction of integral type.
Let us assume the collection of all functiongefined on[0, +c0) satisfy the following
conditions:
(1) Eachn is Lebesque integrable mapping on every compact subset-eto).
(2) For anye > 0,we havef; (t) > 0.

Theorem 3.1. Let (V, p, <) be a complete PObMS arfl: V x V' — V be continuous
strictly monotone mapping ovi x V, which fulfills the condition

©(S(p,2),S(1,v)) o(pp) [ (1S (1,0) +p(p,S (p,2)]
/ n(t)dt < cl/ n(t)dt + 02/ n(t)dt
0 0 0

. S(P,)+e P, S(k,v))

+ c!/n ’ n(t)dt

(1,8 (11,0)) (0 (p, 1), 0(P, S (p,2)))]

0
+ ey / n(t)dt
/ ©(1,S(py2)) (0 (P,1) 0 (P, S (11,0)))]

n(t)dt

/@(pw)sa(p(pw) 0(p,S(p,2))+ (1,5 (p,2)))

_|_

+ ¢
0

for all p,e, u,v € V withp > pande < v, n(t) fulfills the statements of), +oo) and
¢; (i=1,2,...,7) are non negative constants such that

S L
= s+ 1]
andy : R x RT — R™T is a function such that
o(t,t) =1, forall tc R".

©(1,5(py2))
n(t)dt + c7 / n(t)dt,
0
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If there exists two pointgg, 2o € V with py < S(po,20) andzy > S(i9,po). ThensS
possesses a coupled fixed pdimt:) € V x V.

Likewise, we have the consequent coupled fixed point resultin complete PObMS, by taking
ca = 0,c4 =0, cg = 0in the above theorem.

Theorem 3.2. Let (V, p, <) be a complete PObMS arfl: V' x V' — V be continuous
strictly monotone mapping o x V, which fulfills the condition

©(S(p:2),S(u,v)) ©(p,1)
/ nt)dt < ¢ / n(t)dt
0 0

©,S(p,2)+e(p,S(k,v))

+ 63/ n(t)dt
0
/[p(ms(p-,z))sa(p(p,u),p(p,S(u,v)))]

+ ¢5 n(t)dt

0

©(1,S(py2))
s n(t)dt,
0

forall p,e, p,v € V withp > pand: < v, n(t) fulfills the statements 0, +oo0) and the
non negative constants(i = 1, 3,5, 7) are such that
1
: 5 < —,
c1+c3+c5+cr sl
andy : Rt x RT™ — R™T is a function such that
o(t,t) =1, forall te RT.

If there exists two pointpg, 1 € V with pg < S(po,20) andiy > S(i9,p0). Thens
possesses a coupled fixed pdint:) € V x V.

Theorem 3.3. Let (V, p, <) be a complete PObMS arfl: V' x V' — V be continuous

strictly monotone mapping ovi x V, which fulfills the condition

p(S(p1),S(1,v)) p(p,1)
/ nt)dt < ¢ / n(t)dt
0 Jo

forall p,es,u,v € V withp > pand: < v, n(t) fulfill the statements of, +o0) and
c1 € 10,1), and if there exists two points, 1o € V withpy < S(pg, 20) andzg > S(20, po),
thenS possesses a coupled fixed pdimt:) € V' x V.
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