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Decomposition of complete graphs into paths and cycles of distinct lengths
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Abstract.: Let Py be the path with k£ edges and C} be the cycle with
k edges. For r > 3, we exhibit two decompositions of the complete
graph K, 3 into edge-disjoint paths and cycles: the first is of the form
<P3, P4, 05, CG» ceey Cgrfl, CQT+1, CQT+2, CQT+3> and the second

(Ps, Py, Ps,Cs, ..., Cop—1,Cory1, Copga, Corys).
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1. INTRODUCTION

In this paper, all graphs are assumed to be finite and simple. If H is a subgraph of G,
we denote by G . H the subgraph of G obtained by removing all edges of H. We denote by
K, the complete graph on n vertices, by P, the path with n edges, and by C), the cycle with
n edges. The notation [vg, v1, ..., v;] denotes a path with k edges vov1, v1 V3, ..., Vg—1v) and
(vo, v1, ..., vk—1) denotes a cycle with k edges vovy, v1v2, ..., Ux_1v9. We say that edge-
disjoint subgraphs H1, Ho, ..., H; of a graph G decompose G if their edges partition those
of G and express this by writing (H1, ..., H|G).

In [2], Alspach posed the following problem. Let n be a positive integer and my, ..., m, >
n(n—1)/2 if nisodd
n(in—1)/2—n/2 if niseven.
Then the complete graph K, (when n is odd) or K,, — I (when n is even and [ ia a 1-factor)
can be decomposed into m;-cycles. Interest in this problem led at first to many partial so-
lutions (see [[3], [6], [7], [8], [10], [12]]); it was settled completely in 2014 by Bryant et al.
[9]. A general survey on cycle decompositions of K,, may be found in [4]. In 1995, Bryant
and Adams [5] proved thatif n > 7is odd, then (C5, Cy, C5, Cs, ..., Cri_g, Ci—2,Cp_1, Cy,
| K,,). In this paper, we exhibit, for » > 3, two decompositions of Ko, 3:
(P3, Py, Cs5,C, ..., Cop_1,Copy1, Copyo, Cory3) and
(Ps, Py, Ps5, C, ..., Cap 1, Copy1, Cory2, Coryy).

3 integers such that m; + ... + m,.=
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2. NOTATIONS AND PRELIMINARIES

A path with k£ edges is denoted by P}, and a cycle with k edges is denoted by C. Let
P ={P,,P,,.., P} be the set of paths. If the terminal vertices of P, , P;,, ..., P;, are
all distinct, then P is called the terminal-vertex disjoint.

The following lemma was proved independently by Bryant and Adams [5] and Chin-
Mei Fu et al. [11]. We give a proof of the lemma, in our own words, as it could be helpful
in understanding the construction of paths and cycles in the proofs of Theorem 3.1 and 3.2.

Lemma 2.1. [[5], [11]] For any reN, there exists a path decomposition (Py, Py, ..., Po.|Ko11)
such that Py, Ps, ..., Por_1 and Ps, Py, ..., Py, are terminal-vertex disjoint.

Proof. LetV (Kapy1) = {vo, v1, ..., ¥ar—1 } U{o0}. Consider the decomposition of Ko,
into Hamilton cycles constructed by Walecki [1]:

H,' = (OO,UZ', V2r—1+4145 Ul+4i, U2r—24iy «evy 1}7-_1+Z‘,’U7~+i), (0 < ) <r-— 1), where the sub-
scripts of v are taken modulo 2r. These Hamilton cycles can be decomposed into paths of
distinct lengths whose terminal-vertices (u, v) are as follows:

(v2i, Vrt2:) if0<i<r—1andrisodd

(00, v0) ifi = 0 and r is even

(u,0) = (v2i—1,Vry2,-1) if1<i < Zandriseven
(v2i—r, V2;) if 5 <i<r—1andriseven

We observe that co is not a terminal-vertex of any path when r is odd and v, is not a
terminal-vertex of any path when r is even in the above decomposition.

For example, consider the complete graph K7. Hence r = 3. The Hamilton cy-
cle Ho=(co, v, vs5,v1,v4,v2,v3) can be decomposed into the paths P, = [vg, 00, vs]
and Ps = [vg, vs,v1, 04, U2, vs3]. The Hamilton cycle Hy=(c0, v, v, v2, U5, V3, V4) can
be decomposed into the paths Py = [vs, vg, V1,00, v4,v3,v5] and Py = [va,vs]. The
Hamilton cycle Ha=(00, va,v1,v3,v9, V4, v5) can be decomposed into the paths P, =
[1}1, V2, 00, Vs, ’1)4} and P3 = [’Ul, V3, Vo, ’U4].

O

3. DECOMPOSITION OF K,,, n > 9 INTO PATHS AND CYCLES OF DISTINCT LENGTHS
Theorem 3.1. Ifr > 3, then (P3, Py, C5, Cs, ..., Cop—1,Copy1, Corya, Corg3| Kopys).

Proof. The obvious edge-divisibility condition is not satisfied when r < 3. Consider
the subgraph H of K5, 3 induced by the vertices {00, vg, v1, ..., V2,—1}. From Lemma
2.1, there exists a path decomposition (Py, P, ..., Po,.|H) such that Py, Ps, ..., Pa,_1 and
Py, Py, ..., Py, are terminal-vertex disjoint. Construct edge disjoint cycles Cy, Cy, ..., Copy2
in Ky, 13 by joining the endpoints of each of the paths P, Py, ..., Ps, in H to the vertex
vo,. Likewise, construct edge disjoint cycles Cs, Cs, ..., Cyr41 in Ko,y 3 by joining the
endpoints of each of the paths P, Ps, ..., P>, in H to the vertex va,11. We now describe
the procedure for constructing our edge decomposition for K5, 3. To get the required de-
composition we divide the proof into two cases.

Case I: » > 3 is odd.
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From Lemma 2.1, oo is not a terminal-vertex of any path in the P, P, ..., P», decomposi-
tion of Ky, 1. So the edges covs,., cove,4+1 and va,.ve,41 are not in any cycles of Ko, 3.
Consider the Hamilton cycles Hy, H =1 and H 41 in K5,.41. The path decomposition
of these Hamilton cycles are (Py, Pa.—1|Ho),(P1, P2T|H%> and (Ps, P2T,2|H%>. In
Ko, 43, we have

Cs 0 PLU [vap—1,V2r41, Ur—1]
Cy : Py U vy, v2r, v

Cs ¢ Py U [Upg1,V2r41, 1]
Coy 2 Por_o U [Upg1, Vo, 1]

Cory1 t Por—1 U [y, v2r41, 00

Corya : Pop U vor_1, 02, Up_1]

By using these cycles and the triangle (0o, v, V2,11), NOW We construct the paths P;;, Pzi
and cycles C, Cy,. 15 Cy, 12 and Cy, 13 and we keep the remaining cycles not taken for
construction. The reconstruction is as follows:

CQT+1IP3UP2T_2

Cér+2 . (Pgr_l U PQ\OO’U()) U [OO,UQT,’U()]

i.e., delete one edge covy from P» and add 2 edges, covs,. from the triangle and vq,.vg from
Cy.

C;r+3 : (P U Py \var_1v,) U [V2r_1, Var, Uart1, Ur)

i.e., delete one edge vo,_1v, from Ps,. and add 3 edges, vo,_1va, from Cop o, Vo, V2,11
from the triangle and vy, 1v, from Cy; 1.

The remaining paths and edges are [vo,—1, Vor41, Ur—1], UrV2ps [Ur41, V241, U1]s U2r+100,
VopUp—1, [Urt1, V2r, V1], 00U2r41, V2,r—10, and covg. These paths and edges are used to
construct Pé, Pzi and Cé, see Figure 1.

Py :[Oo7v03U2T+17’U1]
P4 :[U17U2T7U’F—17v2’r+1aoo]
Cs (V2r, Vpg1, V241, V2r—1,Ur)

These newly constructed paths and cycles along with the cycles which were not taken
for the construction give the required decomposition.
Case II: » > 4 is even.
From Lemma 2.1, v,. is not a terminal-vertex of any path in the P, P, ..., P», decomposi-
tion of K9,41. So the edges v,.va,, V,v2,41 and vo,v2,41 are not in any cycles of Ky, 3.
Consider the Hamilton cycles Hy, H; and H z in Ko,4;. The path decomposition of these
Hamilton cycles are (Py, Py,.|Hp), (P, Por—1|H1) and <P37P2,,,2|H%>. In K513, we
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RPN Vi

FIGURE 1. P;, P, and Cy in Ky, 3,  is odd

have
Cs : Py U [00, U241, V0]
Cy 2 PoU [Upy1, v, 1]
Cs 0 Py U [vor_1, V2041, V1]
Cay t Por_o U [v2r—1, V2, Up 1]

Cort1 : Por—1 U [Upq1, V2541, v1]
Corya @ Py UJ[00, v2r, 0]

By using these cycles and the triangle (v,., va,., v2,+1), NOW we construct the paths P:;, Péi
and cycles Cy, Cy, T1s Cy, 1o and C, 13 and we keep the remaining cycles not taken for
construction. The reconstruction is as follows:

C2T+1IP3UP2T,2

Cér+2 : (Pl U PQT\/Urflfvr) ) [vr71702r+1a vr]

i.e., delete one edge v,_1v, from Ps, and add 2 edges, v,_1v2,41 from Cs and vo, 110,
from the triangle.

Copys t (Par—1 U Py\oowy) U [00, vay, U241, 01]

i.e., delete one edge cov; from P» and add 3 edges, cove,. from Cy,. o, Vo, v2,41 from the
triangle and vo,41v1 from Co, 4 1.

The remaining paths and edges are [00, V2,41, V0], [Ur41, V2r, V1], V2r—1V2r41, V2,00,
Vp41V2r 415 [V2r—1, U2y, Up—1], OOV, V10, and v, vg,.. These paths and edges are used to
construct P:;, Pzi and Cj, see Figure 2.
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FIGURE 2. Pj, P, and Cy in Ko, 5, 7 is even

P3 :[Ura Up—1,V2r, U27-—1]
P4 :[U27’—1a V2r4+1, Ur41, V2r, UT‘]
Cs  :(00, V241,00, V2r, V1)

These newly constructed paths and cycles along with the cycles which were not taken
for the construction give the required decomposition. O

In Theorem 3.1, we have proved that the complete graph K5, 3 can be decomposed into
paths and cycles of distinct lengths such that the paths are of lengths 3 and 4 and the cycles
are of lengths 5,6, ...,2r — 1, 2r + 1, 2r + 2 and 2r + 3. In the following theorem we prove
a similar decomposition of Ks,.; 3 in which paths are of lengths 3,4 and 5 and cycles are of
lengths 6,7, ...,2r — 1,2r +1,2r + 2 and 2r + 3.

In the proof of Theorem 3.2, the constrction of the cycles Cs, Cy, ..., Cop 4o is similar
to that of Theorem 3.1. Among these cycles we choose appropriate edges to interchange
between them to get the required decomposition.

Theorem 3.2. Ifr > 3, then (Ps3, Py, Ps, Cs, ..., C2r 1, Cor i1, Copyo, Copy 3| Koy 3).

Proof. First we construct the cycles Cs, Cy, ..., Ca 41, Copyo in Ko,y 3 as in Theorem 3.1.
Case I: » > 3 is odd.

We construct C's, Cy, Cs5, Cop, Copq1, Coryo in Koy 3 as in Case I of Theorem 3.1. By
using these cycles and the triangle (0o, va;., v2,-11), We construct the paths P?i, Pzi, Pg and
cycles CéT_H, C’ér+2 and C;H_B as follows:

C2T+1ZP1UP2T

02r+2 : (P2 U P27’71\’U7"71’U7") ) [’Urfly V2r+1, U’r]
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FIGURE 3. P}, P, and Py in Ky, 43, r is odd

i.e., delete one edge v,_1v, from Py,._; and add 2 edges, v,_1v2,41 from C3 and vo, 110,
from Cy;y 1.
C;r+3 : (Pap—2 U P3\vyvg) U [, Uor, V241, V0]
i.e., delete one edge v,vy from P3 and add 3 edges, v,va, from Cy, vo,v2,41 from the
triangle and vo,1vg from Cy,. 1.
The remaining paths and edges are va,.—1 V2,41, V2,U0, [Ur41, V2r41, V1], [V2r—1, Vor, Up—1],

[Vrt1, Vo, V1], 0OV, OOV241, UrUg and v,._1v,.. These paths and edges are used to con-
struct Pgi, Pzi and P5/, see Figure 3.

’
P3;  :[vpg1, Vo, Vor—1,V2p41]
Py :[vp_1,v20,01, V2041, Urg1]
P5 :[UT—MUT”vOaUQTaOoav2r+l]
CaseIl: r > 4 is even.
We construct C's, Cy, Cs, Coyp, Cory1,Corgo in Ko,y 3 as in Case II of Theorem 3.1. By
using these cycles and the triangle (v, va,, v2,41), We construct the paths Py, P,, Py and

cycles Cy, 11 Cy, 1o and Cy, . 3 as follows:
02r+1 :PQUPQT-_l

C2r+2 : (Pl ) PQT\Urflvr) U [’U’I‘717U2’I‘+1) U’I‘]
i.e., delete one edge v,_1v, from P5, and add 2 edges, v,_1v2,41 from Cs and vg,. 410,
from the triangle.

Copiz: (Par—2 U P3\vp_1v0) U [Ur_1, V2r, V2r41, V0]
i.e., delete one edge v,_1vg from P5 and add 3 edges, v,_1va, from Co,., v9,v9,11 from
the triangle and v, 1vg from Cs.
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FIGURE 4. Pj, P, and P} in Ky,,3, 7 is even

The remaining paths and edges are covo, 11, [Up41, Var, V1], V2r— 102741, (00, Var, Vo ls[Vrt1, Vort1, V1]

/ /

V2r—1V2r, Up—1v0, VrV2, and v,._1v,. These paths and edges are used to construct Py, P,
/ .

and P;, see Figure 4.

P;  :[vgpq1, 00,02, 1]
P, :[vi,v2041, Var—1, Var, Vo]
Ps :[vg, vp—1, Ur, Vo, Vpi1, Vorg1]

Hence we get the required decomposition as in the previous theorem. 0
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