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Decomposition of complete graphs into paths and cycles of distinct lengths
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Abstract.: Let Pk be the path with k edges and Ck be the cycle with
k edges. For r ≥ 3, we exhibit two decompositions of the complete
graph K2r+3 into edge-disjoint paths and cycles: the first is of the form
⟨P3, P4, C5, C6, ..., C2r−1, C2r+1, C2r+2, C2r+3⟩ and the second
⟨P3, P4, P5, C6, ..., C2r−1, C2r+1, C2r+2, C2r+3⟩.
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1. INTRODUCTION

In this paper, all graphs are assumed to be finite and simple. If H is a subgraph of G,
we denote by GrH the subgraph of G obtained by removing all edges of H . We denote by
Kn the complete graph on n vertices, by Pn the path with n edges, and by Cn the cycle with
n edges. The notation [v0, v1, ..., vk] denotes a path with k edges v0v1, v1v2, ..., vk−1vk and
(v0, v1, ..., vk−1) denotes a cycle with k edges v0v1, v1v2, ..., vk−1v0. We say that edge-
disjoint subgraphs H1,H2, ..., Hl of a graph G decompose G if their edges partition those
of G and express this by writing ⟨H1, ..., Hl|G⟩.

In [2], Alspach posed the following problem. Let n be a positive integer and m1, ...,mr ≥

3 integers such that m1 + ...+mr=

{
n(n− 1)/2 if n is odd

n(n− 1)/2− n/2 if n is even.

Then the complete graph Kn (when n is odd) or Kn−I (when n is even and I ia a 1-factor)
can be decomposed into mi-cycles. Interest in this problem led at first to many partial so-
lutions (see [[3], [6], [7], [8], [10], [12]]); it was settled completely in 2014 by Bryant et al.
[9]. A general survey on cycle decompositions of Kn may be found in [4]. In 1995, Bryant
and Adams [5] proved that if n ≥ 7 is odd, then ⟨C3, C4, C5, C6, ..., Cn−4, Cn−2, Cn−1, Cn

|Kn⟩. In this paper, we exhibit, for r ≥ 3, two decompositions of K2r+3:
⟨P3, P4, C5, C6, ..., C2r−1, C2r+1, C2r+2, C2r+3⟩ and
⟨P3, P4, P5, C6, ..., C2r−1, C2r+1, C2r+2, C2r+3⟩.
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2. NOTATIONS AND PRELIMINARIES

A path with k edges is denoted by Pk and a cycle with k edges is denoted by Ck. Let
P = {Pi1 , Pi2 , ..., Pit} be the set of paths. If the terminal vertices of Pi1 , Pi2 , ..., Pit are
all distinct, then P is called the terminal-vertex disjoint.

The following lemma was proved independently by Bryant and Adams [5] and Chin-
Mei Fu et al. [11]. We give a proof of the lemma, in our own words, as it could be helpful
in understanding the construction of paths and cycles in the proofs of Theorem 3.1 and 3.2.

Lemma 2.1. [[5], [11]] For any rϵN, there exists a path decomposition ⟨P1, P2, ..., P2r|K2r+1⟩
such that P1, P3, ..., P2r−1 and P2, P4, ..., P2r are terminal-vertex disjoint.

Proof. Let V (K2r+1) = {v0, v1, ..., v2r−1}∪{∞}. Consider the decomposition of K2r+1

into Hamilton cycles constructed by Walecki [1]:
Hi = (∞, vi, v2r−1+i, v1+i, v2r−2+i, ..., vr−1+i, vr+i), (0 ≤ i ≤ r − 1), where the sub-
scripts of v are taken modulo 2r. These Hamilton cycles can be decomposed into paths of
distinct lengths whose terminal-vertices (u, v) are as follows:

(u, v) =


(v2i, vr+2i) if 0 ≤ i ≤ r − 1 and r is odd
(∞, v0) if i = 0 and r is even
(v2i−1, vr+2i−1) if 1 ≤ i ≤ r

2 and r is even
(v2i−r, v2i) if r

2 < i ≤ r − 1 and r is even

We observe that ∞ is not a terminal-vertex of any path when r is odd and vr is not a
terminal-vertex of any path when r is even in the above decomposition.

For example, consider the complete graph K7. Hence r = 3. The Hamilton cy-
cle H0=(∞, v0, v5, v1, v4, v2, v3) can be decomposed into the paths P2 = [v0,∞, v3]
and P5 = [v0, v5, v1, v4, v2, v3]. The Hamilton cycle H1=(∞, v1, v0, v2, v5, v3, v4) can
be decomposed into the paths P6 = [v2, v0, v1,∞, v4, v3, v5] and P1 = [v2, v5]. The
Hamilton cycle H2=(∞, v2, v1, v3, v0, v4, v5) can be decomposed into the paths P4 =
[v1, v2,∞, v5, v4] and P3 = [v1, v3, v0, v4].

�

3. DECOMPOSITION OF Kn, n ≥ 9 INTO PATHS AND CYCLES OF DISTINCT LENGTHS

Theorem 3.1. If r ≥ 3, then ⟨P3, P4, C5, C6, ..., C2r−1, C2r+1, C2r+2, C2r+3|K2r+3⟩.

Proof. The obvious edge-divisibility condition is not satisfied when r < 3. Consider
the subgraph H of K2r+3 induced by the vertices {∞, v0, v1, ..., v2r−1}. From Lemma
2.1, there exists a path decomposition ⟨P1, P2, ..., P2r|H⟩ such that P1, P3, ..., P2r−1 and
P2, P4, ..., P2r are terminal-vertex disjoint. Construct edge disjoint cycles C4, C6, ..., C2r+2

in K2r+3 by joining the endpoints of each of the paths P2, P4, ..., P2r in H to the vertex
v2r. Likewise, construct edge disjoint cycles C3, C5, ..., C2r+1 in K2r+3 by joining the
endpoints of each of the paths P1, P3, ..., P2r−1 in H to the vertex v2r+1. We now describe
the procedure for constructing our edge decomposition for K2r+3. To get the required de-
composition we divide the proof into two cases.
Case I: r ≥ 3 is odd.
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From Lemma 2.1, ∞ is not a terminal-vertex of any path in the P1, P2, ..., P2r decomposi-
tion of K2r+1. So the edges ∞v2r,∞v2r+1 and v2rv2r+1 are not in any cycles of K2r+3.
Consider the Hamilton cycles H0,H r−1

2
and H r+1

2
in K2r+1. The path decomposition

of these Hamilton cycles are ⟨P2, P2r−1|H0⟩,⟨P1, P2r|H r−1
2
⟩ and ⟨P3, P2r−2|H r+1

2
⟩. In

K2r+3, we have

C3 : P1 ∪ [v2r−1, v2r+1, vr−1]

C4 : P2 ∪ [vr, v2r, v0]

C5 : P3 ∪ [vr+1, v2r+1, v1]

C2r : P2r−2 ∪ [vr+1, v2r, v1]

C2r+1 : P2r−1 ∪ [vr, v2r+1, v0]

C2r+2 : P2r ∪ [v2r−1, v2r, vr−1]

By using these cycles and the triangle (∞, v2r, v2r+1), now we construct the paths P
′

3, P
′

4

and cycles C
′

5, C
′

2r+1, C
′

2r+2 and C
′

2r+3 and we keep the remaining cycles not taken for
construction. The reconstruction is as follows:

C
′

2r+1 : P3 ∪ P2r−2

C
′

2r+2 : (P2r−1 ∪ P2\∞v0) ∪ [∞, v2r, v0]

i.e., delete one edge ∞v0 from P2 and add 2 edges, ∞v2r from the triangle and v2rv0 from
C4.

C
′

2r+3 : (P1 ∪ P2r\v2r−1vr) ∪ [v2r−1, v2r, v2r+1, vr]

i.e., delete one edge v2r−1vr from P2r and add 3 edges, v2r−1v2r from C2r+2, v2rv2r+1

from the triangle and v2r+1vr from C2r+1.
The remaining paths and edges are [v2r−1, v2r+1, vr−1], vrv2r, [vr+1, v2r+1, v1], v2r+1v0,

v2rvr−1, [vr+1, v2r, v1], ∞v2r+1, v2r−1vr and ∞v0. These paths and edges are used to
construct P

′

3, P
′

4 and C
′

5, see Figure 1.

P
′

3 :[∞, v0, v2r+1, v1]

P
′

4 :[v1, v2r, vr−1, v2r+1,∞]

C
′

5 :(v2r, vr+1, v2r+1, v2r−1, vr)

These newly constructed paths and cycles along with the cycles which were not taken
for the construction give the required decomposition.
Case II: r ≥ 4 is even.
From Lemma 2.1, vr is not a terminal-vertex of any path in the P1, P2, ..., P2r decomposi-
tion of K2r+1. So the edges vrv2r, vrv2r+1 and v2rv2r+1 are not in any cycles of K2r+3.
Consider the Hamilton cycles H0,H1 and H r

2
in K2r+1. The path decomposition of these

Hamilton cycles are ⟨P1, P2r|H0⟩, ⟨P2, P2r−1|H1⟩ and ⟨P3, P2r−2|H r
2
⟩. In K2r+3, we
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FIGURE 1. P
′

3, P
′

4 and C
′

5 in K2r+3, r is odd

have

C3 : P1 ∪ [∞, v2r+1, v0]

C4 : P2 ∪ [vr+1, v2r, v1]

C5 : P3 ∪ [v2r−1, v2r+1, vr−1]

C2r : P2r−2 ∪ [v2r−1, v2r, vr−1]

C2r+1 : P2r−1 ∪ [vr+1, v2r+1, v1]

C2r+2 : P2r ∪ [∞, v2r, v0]

By using these cycles and the triangle (vr, v2r, v2r+1), now we construct the paths P
′

3, P
′

4

and cycles C
′

5, C
′

2r+1, C
′

2r+2 and C
′

2r+3 and we keep the remaining cycles not taken for
construction. The reconstruction is as follows:

C
′

2r+1 : P3 ∪ P2r−2

C
′

2r+2 : (P1 ∪ P2r\vr−1vr) ∪ [vr−1, v2r+1, vr]

i.e., delete one edge vr−1vr from P2r and add 2 edges, vr−1v2r+1 from C5 and v2r+1vr
from the triangle.

C
′

2r+3 : (P2r−1 ∪ P2\∞v1) ∪ [∞, v2r, v2r+1, v1]

i.e., delete one edge ∞v1 from P2 and add 3 edges, ∞v2r from C2r+2, v2rv2r+1 from the
triangle and v2r+1v1 from C2r+1.

The remaining paths and edges are [∞, v2r+1, v0], [vr+1, v2r, v1], v2r−1v2r+1, v2rv0,
vr+1v2r+1, [v2r−1, v2r, vr−1], ∞v1, vr−1vr and vrv2r. These paths and edges are used to
construct P

′

3, P
′

4 and C
′

5, see Figure 2.
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FIGURE 2. P
′

3, P
′

4 and C
′

5 in K2r+3, r is even

P
′

3 :[vr, vr−1, v2r, v2r−1]

P
′

4 :[v2r−1, v2r+1, vr+1, v2r, vr]

C
′

5 :(∞, v2r+1, v0, v2r, v1)

These newly constructed paths and cycles along with the cycles which were not taken
for the construction give the required decomposition. �

In Theorem 3.1, we have proved that the complete graph K2r+3 can be decomposed into
paths and cycles of distinct lengths such that the paths are of lengths 3 and 4 and the cycles
are of lengths 5, 6, ..., 2r−1, 2r+1, 2r+2 and 2r+3. In the following theorem we prove
a similar decomposition of K2r+3 in which paths are of lengths 3,4 and 5 and cycles are of
lengths 6, 7, ..., 2r − 1, 2r + 1, 2r + 2 and 2r + 3.

In the proof of Theorem 3.2, the constrction of the cycles C3, C4, ..., C2r+2 is similar
to that of Theorem 3.1. Among these cycles we choose appropriate edges to interchange
between them to get the required decomposition.

Theorem 3.2. If r ≥ 3, then ⟨P3, P4, P5, C6, ..., C2r−1, C2r+1, C2r+2, C2r+3|K2r+3⟩.

Proof. First we construct the cycles C3, C4, ..., C2r+1, C2r+2 in K2r+3 as in Theorem 3.1.
Case I: r ≥ 3 is odd.
We construct C3, C4, C5, C2r, C2r+1, C2r+2 in K2r+3 as in Case I of Theorem 3.1. By
using these cycles and the triangle (∞, v2r, v2r+1), we construct the paths P

′

3, P
′

4, P
′

5 and
cycles C

′

2r+1, C
′

2r+2 and C
′

2r+3 as follows:

C
′

2r+1 : P1 ∪ P2r

C
′

2r+2 : (P2 ∪ P2r−1\vr−1vr) ∪ [vr−1, v2r+1, vr]
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FIGURE 3. P
′

3, P
′

4 and P
′

5 in K2r+3, r is odd

i.e., delete one edge vr−1vr from P2r−1 and add 2 edges, vr−1v2r+1 from C3 and v2r+1vr
from C2r+1.

C
′

2r+3 : (P2r−2 ∪ P3\vrv0) ∪ [vr, v2r, v2r+1, v0]

i.e., delete one edge vrv0 from P3 and add 3 edges, vrv2r from C4, v2rv2r+1 from the
triangle and v2r+1v0 from C2r+1.

The remaining paths and edges are v2r−1v2r+1, v2rv0, [vr+1, v2r+1, v1], [v2r−1, v2r, vr−1],
[vr+1, v2r, v1], ∞v2r, ∞v2r+1, vrv0 and vr−1vr. These paths and edges are used to con-
struct P

′

3, P
′

4 and P
′

5, see Figure 3.

P
′

3 :[vr+1, v2r, v2r−1, v2r+1]

P
′

4 :[vr−1, v2r, v1, v2r+1, vr+1]

P
′

5 :[vr−1, vr, v0, v2r,∞, v2r+1]

Case II: r ≥ 4 is even.
We construct C3, C4, C5, C2r, C2r+1, C2r+2 in K2r+3 as in Case II of Theorem 3.1. By
using these cycles and the triangle (vr, v2r, v2r+1), we construct the paths P

′

3, P
′

4, P
′

5 and
cycles C

′

2r+1, C
′

2r+2 and C
′

2r+3 as follows:

C
′

2r+1 : P2 ∪ P2r−1

C
′

2r+2 : (P1 ∪ P2r\vr−1vr) ∪ [vr−1, v2r+1, vr]

i.e., delete one edge vr−1vr from P2r and add 2 edges, vr−1v2r+1 from C5 and v2r+1vr
from the triangle.

C
′

2r+3 : (P2r−2 ∪ P3\vr−1v0) ∪ [vr−1, v2r, v2r+1, v0]

i.e., delete one edge vr−1v0 from P3 and add 3 edges, vr−1v2r from C2r, v2rv2r+1 from
the triangle and v2r+1v0 from C3.
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FIGURE 4. P
′

3, P
′

4 and P
′

5 in K2r+3, r is even

The remaining paths and edges are ∞v2r+1, [vr+1, v2r, v1], v2r−1v2r+1, [∞, v2r, v0],[vr+1, v2r+1, v1],
v2r−1v2r, vr−1v0, vrv2r and vr−1vr. These paths and edges are used to construct P

′

3, P
′

4

and P
′

5, see Figure 4.

P
′

3 :[v2r+1,∞, v2r, v1]

P
′

4 :[v1, v2r+1, v2r−1, v2r, v0]

P
′

5 :[v0, vr−1, vr, v2r, vr+1, v2r+1]

Hence we get the required decomposition as in the previous theorem. �
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