Punjab University Journal of Mathematics (2023),55(5-6),197-204
https://doi.org/10.52280/pujm.2023.55(5-6)02

Decomposition of complete graphs into paths and cycles of distinct lengths
C. Sankari, R. Sangeetha, K. Arthi
Department of Mathematics,
A. V. V. M. Sri Pushpam College
Affiliated to Bharathidasan University),
613 503, Thanjavur (Dt.), Tamil Nadu, India.
mail.com, jaisangmaths@ yahoo.com, arthi1505@ gmail.com

Email: sankari9791@gmail.com, jaisangmaths@yahoo.com, arthi1505@gmail.com
Received: 14 April, 2021 / Accepted: 30 May, 2023 / Published online: 22 September, 2023

Abstract

Let P_{k} be the path with k edges and C_{k} be the cycle with k edges. For $r \geq 3$, we exhibit two decompositions of the complete graph $K_{2 r+3}$ into edge-disjoint paths and cycles: the first is of the form $\left\langle P_{3}, P_{4}, C_{5}, C_{6}, \ldots, C_{2 r-1}, C_{2 r+1}, C_{2 r+2}, C_{2 r+3}\right\rangle$ and the second $\left\langle P_{3}, P_{4}, P_{5}, C_{6}, \ldots, C_{2 r-1}, C_{2 r+1}, C_{2 r+2}, C_{2 r+3}\right\rangle$.

AMS (MOS) Subject Classification Codes: 05C38; 05C70
Key Words: Complete Graph, Decomposition, Path, Cycle.

1. Introduction

In this paper, all graphs are assumed to be finite and simple. If H is a subgraph of G, we denote by $G \backslash H$ the subgraph of G obtained by removing all edges of H. We denote by K_{n} the complete graph on n vertices, by P_{n} the path with n edges, and by C_{n} the cycle with n edges. The notation $\left[v_{0}, v_{1}, \ldots, v_{k}\right]$ denotes a path with k edges $v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{k-1} v_{k}$ and $\left(v_{0}, v_{1}, \ldots, v_{k-1}\right)$ denotes a cycle with k edges $v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{k-1} v_{0}$. We say that edgedisjoint subgraphs $H_{1}, H_{2}, \ldots, H_{l}$ of a graph G decompose G if their edges partition those of G and express this by writing $\left\langle H_{1}, \ldots, H_{l} \mid G\right\rangle$.

In [2], Alspach posed the following problem. Let n be a positive integer and $m_{1}, \ldots, m_{r} \geq$ 3 integers such that $m_{1}+\ldots+m_{r}=\left\{\begin{array}{l}n(n-1) / 2 \quad \text { if } n \text { is odd } \\ n(n-1) / 2-n / 2 \text { if } n \text { is even. }\end{array}\right.$
Then the complete graph K_{n} (when n is odd) or $K_{n}-I$ (when n is even and I ia a 1-factor) can be decomposed into m_{i}-cycles. Interest in this problem led at first to many partial solutions (see [[3], [6], [7], [8], [10], [12]]); it was settled completely in 2014 by Bryant et al. [9]. A general survey on cycle decompositions of K_{n} may be found in [4]. In 1995, Bryant and Adams [5] proved that if $n \geq 7$ is odd, then $\left\langle C_{3}, C_{4}, C_{5}, C_{6}, \ldots, C_{n-4}, C_{n-2}, C_{n-1}, C_{n}\right.$ $\left|K_{n}\right\rangle$. In this paper, we exhibit, for $r \geq 3$, two decompositions of $K_{2 r+3}$:
$\left\langle P_{3}, P_{4}, C_{5}, C_{6}, \ldots, C_{2 r-1}, C_{2 r+1}, C_{2 r+2}, C_{2 r+3}\right\rangle$ and
$\left\langle P_{3}, P_{4}, P_{5}, C_{6}, \ldots, C_{2 r-1}, C_{2 r+1}, C_{2 r+2}, C_{2 r+3}\right\rangle$.

2. Notations and Preliminaries

A path with k edges is denoted by P_{k} and a cycle with k edges is denoted by C_{k}. Let $\mathcal{P}=\left\{P_{i_{1}}, P_{i_{2}}, \ldots, P_{i_{t}}\right\}$ be the set of paths. If the terminal vertices of $P_{i_{1}}, P_{i_{2}}, \ldots, P_{i_{t}}$ are all distinct, then \mathcal{P} is called the terminal-vertex disjoint.

The following lemma was proved independently by Bryant and Adams [5] and ChinMei Fu et al. [11]. We give a proof of the lemma, in our own words, as it could be helpful in understanding the construction of paths and cycles in the proofs of Theorem 3.1 and 3.2.

Lemma 2.1. [[5], [11]] For any $r \in \mathbb{N}$, there exists a path decomposition $\left\langle P_{1}, P_{2}, \ldots, P_{2 r} \mid K_{2 r+1}\right\rangle$ such that $P_{1}, P_{3}, \ldots, P_{2 r-1}$ and $P_{2}, P_{4}, \ldots, P_{2 r}$ are terminal-vertex disjoint.

Proof. Let $V\left(K_{2 r+1}\right)=\left\{v_{0}, v_{1}, \ldots, v_{2 r-1}\right\} \cup\{\infty\}$. Consider the decomposition of $K_{2 r+1}$ into Hamilton cycles constructed by Walecki [1]:
$H_{i}=\left(\infty, v_{i}, v_{2 r-1+i}, v_{1+i}, v_{2 r-2+i}, \ldots, v_{r-1+i}, v_{r+i}\right),(0 \leq i \leq r-1)$, where the subscripts of v are taken modulo $2 r$. These Hamilton cycles can be decomposed into paths of distinct lengths whose terminal-vertices (u, v) are as follows:

$$
(u, v)= \begin{cases}\left(v_{2 i}, v_{r+2 i}\right) & \text { if } 0 \leq i \leq r-1 \text { and } r \text { is odd } \\ \left(\infty, v_{0}\right) & \text { if } i=0 \text { and } r \text { is even } \\ \left(v_{2 i-1}, v_{r+2 i-1}\right) & \text { if } 1 \leq i \leq \frac{r}{2} \text { and } r \text { is even } \\ \left(v_{2 i-r}, v_{2 i}\right) & \text { if } \frac{r}{2}<i \leq r-1 \text { and } r \text { is even }\end{cases}
$$

We observe that ∞ is not a terminal-vertex of any path when r is odd and v_{r} is not a terminal-vertex of any path when r is even in the above decomposition.

For example, consider the complete graph K_{7}. Hence $r=3$. The Hamilton cycle $H_{0}=\left(\infty, v_{0}, v_{5}, v_{1}, v_{4}, v_{2}, v_{3}\right)$ can be decomposed into the paths $P_{2}=\left[v_{0}, \infty, v_{3}\right]$ and $P_{5}=\left[v_{0}, v_{5}, v_{1}, v_{4}, v_{2}, v_{3}\right]$. The Hamilton cycle $H_{1}=\left(\infty, v_{1}, v_{0}, v_{2}, v_{5}, v_{3}, v_{4}\right)$ can be decomposed into the paths $P_{6}=\left[v_{2}, v_{0}, v_{1}, \infty, v_{4}, v_{3}, v_{5}\right]$ and $P_{1}=\left[v_{2}, v_{5}\right]$. The Hamilton cycle $H_{2}=\left(\infty, v_{2}, v_{1}, v_{3}, v_{0}, v_{4}, v_{5}\right)$ can be decomposed into the paths $P_{4}=$ $\left[v_{1}, v_{2}, \infty, v_{5}, v_{4}\right]$ and $P_{3}=\left[v_{1}, v_{3}, v_{0}, v_{4}\right]$.

3. DECOMPOSITION OF $K_{n}, n \geq 9$ INTO PATHS AND CYCLES OF DISTINCT LENGTHS

Theorem 3.1. If $r \geq 3$, then $\left\langle P_{3}, P_{4}, C_{5}, C_{6}, \ldots, C_{2 r-1}, C_{2 r+1}, C_{2 r+2}, C_{2 r+3} \mid K_{2 r+3}\right\rangle$.
Proof. The obvious edge-divisibility condition is not satisfied when $r<3$. Consider the subgraph H of $K_{2 r+3}$ induced by the vertices $\left\{\infty, v_{0}, v_{1}, \ldots, v_{2 r-1}\right\}$. From Lemma 2.1, there exists a path decomposition $\left\langle P_{1}, P_{2}, \ldots, P_{2 r} \mid H\right\rangle$ such that $P_{1}, P_{3}, \ldots, P_{2 r-1}$ and $P_{2}, P_{4}, \ldots, P_{2 r}$ are terminal-vertex disjoint. Construct edge disjoint cycles $C_{4}, C_{6}, \ldots, C_{2 r+2}$ in $K_{2 r+3}$ by joining the endpoints of each of the paths $P_{2}, P_{4}, \ldots, P_{2 r}$ in H to the vertex $v_{2 r}$. Likewise, construct edge disjoint cycles $C_{3}, C_{5}, \ldots, C_{2 r+1}$ in $K_{2 r+3}$ by joining the endpoints of each of the paths $P_{1}, P_{3}, \ldots, P_{2 r-1}$ in H to the vertex $v_{2 r+1}$. We now describe the procedure for constructing our edge decomposition for $K_{2 r+3}$. To get the required decomposition we divide the proof into two cases.
Case I: $r \geq 3$ is odd.

From Lemma 2.1, ∞ is not a terminal-vertex of any path in the $P_{1}, P_{2}, \ldots, P_{2 r}$ decomposition of $K_{2 r+1}$. So the edges $\infty v_{2 r}, \infty v_{2 r+1}$ and $v_{2 r} v_{2 r+1}$ are not in any cycles of $K_{2 r+3}$. Consider the Hamilton cycles $H_{0}, H_{\frac{r-1}{2}}$ and $H_{\frac{r+1}{2}}$ in $K_{2 r+1}$. The path decomposition of these Hamilton cycles are $\left\langle P_{2}, P_{2 r-1} \mid H_{0}\right\rangle,\left\langle P_{1}, P_{2 r} \left\lvert\, H_{\frac{r-1}{2}}\right.\right\rangle$ and $\left\langle P_{3}, P_{2 r-2} \left\lvert\, H_{\frac{r+1}{2}}\right.\right\rangle$. In $K_{2 r+3}$, we have

$$
\begin{array}{ll}
C_{3} & : P_{1} \cup\left[v_{2 r-1}, v_{2 r+1}, v_{r-1}\right] \\
C_{4} & : P_{2} \cup\left[v_{r}, v_{2 r}, v_{0}\right] \\
C_{5} & : P_{3} \cup\left[v_{r+1}, v_{2 r+1}, v_{1}\right] \\
C_{2 r} & : P_{2 r-2} \cup\left[v_{r+1}, v_{2 r}, v_{1}\right] \\
C_{2 r+1} & : P_{2 r-1} \cup\left[v_{r}, v_{2 r+1}, v_{0}\right] \\
C_{2 r+2} & : P_{2 r} \cup\left[v_{2 r-1}, v_{2 r}, v_{r-1}\right]
\end{array}
$$

By using these cycles and the triangle $\left(\infty, v_{2 r}, v_{2 r+1}\right)$, now we construct the paths $P_{3}^{\prime}, P_{4}^{\prime}$ and cycles $C_{5}^{\prime}, C_{2 r+1}^{\prime}, C_{2 r+2}^{\prime}$ and $C_{2 r+3}^{\prime}$ and we keep the remaining cycles not taken for construction. The reconstruction is as follows:

$$
\begin{gathered}
C_{2 r+1}^{\prime}: P_{3} \cup P_{2 r-2} \\
C_{2 r+2}^{\prime}:\left(P_{2 r-1} \cup P_{2} \backslash \infty v_{0}\right) \cup\left[\infty, v_{2 r}, v_{0}\right]
\end{gathered}
$$

i.e., delete one edge ∞v_{0} from P_{2} and add 2 edges, $\infty v_{2 r}$ from the triangle and $v_{2 r} v_{0}$ from C_{4}.

$$
C_{2 r+3}^{\prime}:\left(P_{1} \cup P_{2 r} \backslash v_{2 r-1} v_{r}\right) \cup\left[v_{2 r-1}, v_{2 r}, v_{2 r+1}, v_{r}\right]
$$

i.e., delete one edge $v_{2 r-1} v_{r}$ from $P_{2 r}$ and add 3 edges, $v_{2 r-1} v_{2 r}$ from $C_{2 r+2}, v_{2 r} v_{2 r+1}$ from the triangle and $v_{2 r+1} v_{r}$ from $C_{2 r+1}$.

The remaining paths and edges are $\left[v_{2 r-1}, v_{2 r+1}, v_{r-1}\right], v_{r} v_{2 r},\left[v_{r+1}, v_{2 r+1}, v_{1}\right], v_{2 r+1} v_{0}$, $v_{2 r} v_{r-1},\left[v_{r+1}, v_{2 r}, v_{1}\right], \infty v_{2 r+1}, v_{2 r-1} v_{r}$ and ∞v_{0}. These paths and edges are used to construct $P_{3}^{\prime}, P_{4}^{\prime}$ and C_{5}^{\prime}, see Figure 1.

$$
\begin{array}{ll}
P_{3}^{\prime} & :\left[\infty, v_{0}, v_{2 r+1}, v_{1}\right] \\
P_{4}^{\prime} & :\left[v_{1}, v_{2 r}, v_{r-1}, v_{2 r+1}, \infty\right] \\
C_{5}^{\prime} & :\left(v_{2 r}, v_{r+1}, v_{2 r+1}, v_{2 r-1}, v_{r}\right)
\end{array}
$$

These newly constructed paths and cycles along with the cycles which were not taken for the construction give the required decomposition.
Case II: $r \geq 4$ is even.
From Lemma 2.1, v_{r} is not a terminal-vertex of any path in the $P_{1}, P_{2}, \ldots, P_{2 r}$ decomposition of $K_{2 r+1}$. So the edges $v_{r} v_{2 r}, v_{r} v_{2 r+1}$ and $v_{2 r} v_{2 r+1}$ are not in any cycles of $K_{2 r+3}$. Consider the Hamilton cycles H_{0}, H_{1} and $H_{\frac{r}{2}}$ in $K_{2 r+1}$. The path decomposition of these Hamilton cycles are $\left\langle P_{1}, P_{2 r} \mid H_{0}\right\rangle,\left\langle P_{2}, P_{2 r-1} \mid H_{1}\right\rangle$ and $\left\langle P_{3}, P_{2 r-2} \left\lvert\, H_{\frac{r}{2}}\right.\right\rangle$. In $K_{2 r+3}$, we

Figure 1. $P_{3}^{\prime}, P_{4}^{\prime}$ and C_{5}^{\prime} in $K_{2 r+3}, r$ is odd
have

$$
\begin{array}{ll}
C_{3} & : P_{1} \cup\left[\infty, v_{2 r+1}, v_{0}\right] \\
C_{4} & : P_{2} \cup\left[v_{r+1}, v_{2 r}, v_{1}\right] \\
C_{5} & : P_{3} \cup\left[v_{2 r-1}, v_{2 r+1}, v_{r-1}\right] \\
C_{2 r} & : P_{2 r-2} \cup\left[v_{2 r-1}, v_{2 r}, v_{r-1}\right] \\
C_{2 r+1} & : P_{2 r-1} \cup\left[v_{r+1}, v_{2 r+1}, v_{1}\right] \\
C_{2 r+2} & : P_{2 r} \cup\left[\infty, v_{2 r}, v_{0}\right]
\end{array}
$$

By using these cycles and the triangle $\left(v_{r}, v_{2 r}, v_{2 r+1}\right)$, now we construct the paths $P_{3}^{\prime}, P_{4}^{\prime}$ and cycles $C_{5}^{\prime}, C_{2 r+1}^{\prime}, C_{2 r+2}^{\prime}$ and $C_{2 r+3}^{\prime}$ and we keep the remaining cycles not taken for construction. The reconstruction is as follows:

$$
\begin{gathered}
C_{2 r+1}^{\prime}: P_{3} \cup P_{2 r-2} \\
C_{2 r+2}^{\prime}:\left(P_{1} \cup P_{2 r} \backslash v_{r-1} v_{r}\right) \cup\left[v_{r-1}, v_{2 r+1}, v_{r}\right]
\end{gathered}
$$

i.e., delete one edge $v_{r-1} v_{r}$ from $P_{2 r}$ and add 2 edges, $v_{r-1} v_{2 r+1}$ from C_{5} and $v_{2 r+1} v_{r}$ from the triangle.

$$
C_{2 r+3}^{\prime}:\left(P_{2 r-1} \cup P_{2} \backslash \infty v_{1}\right) \cup\left[\infty, v_{2 r}, v_{2 r+1}, v_{1}\right]
$$

i.e., delete one edge ∞v_{1} from P_{2} and add 3 edges, $\infty v_{2 r}$ from $C_{2 r+2}, v_{2 r} v_{2 r+1}$ from the triangle and $v_{2 r+1} v_{1}$ from $C_{2 r+1}$.

The remaining paths and edges are $\left[\infty, v_{2 r+1}, v_{0}\right],\left[v_{r+1}, v_{2 r}, v_{1}\right], v_{2 r-1} v_{2 r+1}, v_{2 r} v_{0}$, $v_{r+1} v_{2 r+1},\left[v_{2 r-1}, v_{2 r}, v_{r-1}\right], \infty v_{1}, v_{r-1} v_{r}$ and $v_{r} v_{2 r}$. These paths and edges are used to construct $P_{3}^{\prime}, P_{4}^{\prime}$ and C_{5}^{\prime}, see Figure 2.

Figure 2. $P_{3}^{\prime}, P_{4}^{\prime}$ and C_{5}^{\prime} in $K_{2 r+3}, r$ is even

$$
\begin{aligned}
P_{3}^{\prime} & :\left[v_{r}, v_{r-1}, v_{2 r}, v_{2 r-1}\right] \\
P_{4}^{\prime} & :\left[v_{2 r-1}, v_{2 r+1}, v_{r+1}, v_{2 r}, v_{r}\right] \\
C_{5}^{\prime} & :\left(\infty, v_{2 r+1}, v_{0}, v_{2 r}, v_{1}\right)
\end{aligned}
$$

These newly constructed paths and cycles along with the cycles which were not taken for the construction give the required decomposition.

In Theorem 3.1, we have proved that the complete graph $K_{2 r+3}$ can be decomposed into paths and cycles of distinct lengths such that the paths are of lengths 3 and 4 and the cycles are of lengths $5,6, \ldots, 2 r-1,2 r+1,2 r+2$ and $2 r+3$. In the following theorem we prove a similar decomposition of $K_{2 r+3}$ in which paths are of lengths 3,4 and 5 and cycles are of lengths $6,7, \ldots, 2 r-1,2 r+1,2 r+2$ and $2 r+3$.

In the proof of Theorem 3.2, the constrction of the cycles $C_{3}, C_{4}, \ldots, C_{2 r+2}$ is similar to that of Theorem 3.1. Among these cycles we choose appropriate edges to interchange between them to get the required decomposition.

Theorem 3.2. If $r \geq 3$, then $\left\langle P_{3}, P_{4}, P_{5}, C_{6}, \ldots, C_{2 r-1}, C_{2 r+1}, C_{2 r+2}, C_{2 r+3} \mid K_{2 r+3}\right\rangle$.
Proof. First we construct the cycles $C_{3}, C_{4}, \ldots, C_{2 r+1}, C_{2 r+2}$ in $K_{2 r+3}$ as in Theorem 3.1. Case I: $r \geq 3$ is odd.
We construct $C_{3}, C_{4}, C_{5}, C_{2 r}, C_{2 r+1}, C_{2 r+2}$ in $K_{2 r+3}$ as in Case I of Theorem 3.1. By using these cycles and the triangle $\left(\infty, v_{2 r}, v_{2 r+1}\right)$, we construct the paths $P_{3}^{\prime}, P_{4}^{\prime}, P_{5}^{\prime}$ and cycles $C_{2 r+1}^{\prime}, C_{2 r+2}^{\prime}$ and $C_{2 r+3}^{\prime}$ as follows:

$$
\begin{gathered}
C_{2 r+1}^{\prime}: P_{1} \cup P_{2 r} \\
C_{2 r+2}^{\prime}:\left(P_{2} \cup P_{2 r-1} \backslash v_{r-1} v_{r}\right) \cup\left[v_{r-1}, v_{2 r+1}, v_{r}\right]
\end{gathered}
$$

Figure 3. $P_{3}^{\prime}, P_{4}^{\prime}$ and P_{5}^{\prime} in $K_{2 r+3}, r$ is odd
i.e., delete one edge $v_{r-1} v_{r}$ from $P_{2 r-1}$ and add 2 edges, $v_{r-1} v_{2 r+1}$ from C_{3} and $v_{2 r+1} v_{r}$ from $C_{2 r+1}$.

$$
C_{2 r+3}^{\prime}:\left(P_{2 r-2} \cup P_{3} \backslash v_{r} v_{0}\right) \cup\left[v_{r}, v_{2 r}, v_{2 r+1}, v_{0}\right]
$$

i.e., delete one edge $v_{r} v_{0}$ from P_{3} and add 3 edges, $v_{r} v_{2 r}$ from $C_{4}, v_{2 r} v_{2 r+1}$ from the triangle and $v_{2 r+1} v_{0}$ from $C_{2 r+1}$.

The remaining paths and edges are $v_{2 r-1} v_{2 r+1}, v_{2 r} v_{0},\left[v_{r+1}, v_{2 r+1}, v_{1}\right],\left[v_{2 r-1}, v_{2 r}, v_{r-1}\right]$, $\left[v_{r+1}, v_{2 r}, v_{1}\right], \infty v_{2 r}, \infty v_{2 r+1}, v_{r} v_{0}$ and $v_{r-1} v_{r}$. These paths and edges are used to construct $P_{3}^{\prime}, P_{4}^{\prime}$ and P_{5}^{\prime}, see Figure 3.

$$
\begin{aligned}
P_{3}^{\prime} & :\left[v_{r+1}, v_{2 r}, v_{2 r-1}, v_{2 r+1}\right] \\
P_{4}^{\prime} & :\left[v_{r-1}, v_{2 r}, v_{1}, v_{2 r+1}, v_{r+1}\right] \\
P_{5}^{\prime} & :\left[v_{r-1}, v_{r}, v_{0}, v_{2 r}, \infty, v_{2 r+1}\right]
\end{aligned}
$$

Case II: $r \geq 4$ is even.
We construct $C_{3}, C_{4}, C_{5}, C_{2 r}, C_{2 r+1}, C_{2 r+2}$ in $K_{2 r+3}$ as in Case II of Theorem 3.1. By using these cycles and the triangle $\left(v_{r}, v_{2 r}, v_{2 r+1}\right)$, we construct the paths $P_{3}^{\prime}, P_{4}^{\prime}, P_{5}^{\prime}$ and cycles $C_{2 r+1}^{\prime}, C_{2 r+2}^{\prime}$ and $C_{2 r+3}^{\prime}$ as follows:

$$
\begin{gathered}
C_{2 r+1}^{\prime}: P_{2} \cup P_{2 r-1} \\
C_{2 r+2}^{\prime}:\left(P_{1} \cup P_{2 r} \backslash v_{r-1} v_{r}\right) \cup\left[v_{r-1}, v_{2 r+1}, v_{r}\right]
\end{gathered}
$$

i.e., delete one edge $v_{r-1} v_{r}$ from $P_{2 r}$ and add 2 edges, $v_{r-1} v_{2 r+1}$ from C_{5} and $v_{2 r+1} v_{r}$ from the triangle.

$$
C_{2 r+3}^{\prime}:\left(P_{2 r-2} \cup P_{3} \backslash v_{r-1} v_{0}\right) \cup\left[v_{r-1}, v_{2 r}, v_{2 r+1}, v_{0}\right]
$$

i.e., delete one edge $v_{r-1} v_{0}$ from P_{3} and add 3 edges, $v_{r-1} v_{2 r}$ from $C_{2 r}, v_{2 r} v_{2 r+1}$ from the triangle and $v_{2 r+1} v_{0}$ from C_{3}.

Figure 4. $P_{3}^{\prime}, P_{4}^{\prime}$ and P_{5}^{\prime} in $K_{2 r+3}, r$ is even
The remaining paths and edges are $\infty v_{2 r+1},\left[v_{r+1}, v_{2 r}, v_{1}\right], v_{2 r-1} v_{2 r+1},\left[\infty, v_{2 r}, v_{0}\right],\left[v_{r+1}, v_{2 r+1}, v_{1}\right]$, $v_{2 r-1} v_{2 r}, v_{r-1} v_{0}, v_{r} v_{2 r}$ and $v_{r-1} v_{r}$. These paths and edges are used to construct $P_{3}^{\prime}, P_{4}^{\prime}$ and P_{5}^{\prime}, see Figure 4.

$$
\begin{aligned}
P_{3}^{\prime} & :\left[v_{2 r+1}, \infty, v_{2 r}, v_{1}\right] \\
P_{4}^{\prime} & :\left[v_{1}, v_{2 r+1}, v_{2 r-1}, v_{2 r}, v_{0}\right] \\
P_{5}^{\prime} & :\left[v_{0}, v_{r-1}, v_{r}, v_{2 r}, v_{r+1}, v_{2 r+1}\right]
\end{aligned}
$$

Hence we get the required decomposition as in the previous theorem.

4. AcKnowledgments

The authors thank the referees for their valuable comments and suggestions which modified the article considerably. The authors are grateful to the DST-FIST (SR/FST/College222/2014) and DBT-STAR College scheme (HRD-11011/18/2022-HRD-DBT) for providing financial assistance for this research. The authors sincerely express their thanks to the management of A.V.V. M. Sri Pushpam College (Autonomous), Poondi, for providing the necessary facilities and support to carry out this work.

References

[1] B. Alspach, The Wonderful Walecki Construction, Bull. Inst. Combin. Appl. 52, (2008) 7-20.
[2] B. Alspach, Research problems, Discrete Math. 36, (1981) 333-334.
[3] B. Alspach, H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B. 81, (2001) 77-99.
[4] D. Bryant, Cycle decompositions of complete graphs. In: Hilton, A., Talbot. J.: (eds.) Surveys in Combinatorics 2007, London Mathematical Society Lecture Note Series, vol. 346, Proceedings of the 21st British Combinatorial Conference, Cambridge University Press, (2007) 67-97.
[5] D. Bryant, P. Adams, Decomposing the complete graph into cycles of many lengths, Graphs Combin. 11, (1995) 97-102.
[6] D. Bryant, D. Horsley, Decompositions of complete graphs into long cycles, Bull. Lond. Math. Soc. 41, (2009) 927-934.
[7] D. Bryant, D. Horsley, An asymptotic solution to the cycle decomposition problem for complete graph, J. Combin. Theory Ser. A 117, (2010) 1258-1284.
[8] D. Bryant, D. Horsley, B. Maenhaut, Decompositions into 2-regular subgraphs and equitable partial cycle decompositions, J. Combin. Theory Ser. B. 93, (2005) 67-72.
[9] D. Bryant, D. Horsley, W. Pettersson, Cycle decompositions V: complete graphs into cycles of arbitrary lengths, Proc. Lond. Math. Soc. 108, (2014) 1153-1192.
[10] D. Bryant, B. Maenhaut, Decompositions of complete graphs into triangles and Hamilton cycles, J. Combin. Des. 12, (2004) 221-232.
[11] C. M. Fu, K. C. Huang, M. Mishima, Decomposition of complete bipartite graphs into cycles of distinct even lengths, Graphs and combin. 32, (2016) 1397-1413.
[12] M. Sajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Des. 10, (2002) 27-78.

