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Abstract. In this paper we elaborated the concept that on what con-
ditions left almost semigroup (LA-Semigroup), right almost semigroup
(RA-Semigroup) and a groupoid become commutative and further ex-
tended these results on medial, LA-Group and RA-Group. We proved
that the relation of LA-Semigroup with left double displacement semi-
group (LDD-semigroup), RA-Semigroup with left double displacement
semigroup (RDD-semigroup) is only commutative property. We high-
lighted the errors in the recently developed results on LA-Semigroup and
semigroup [17, 1, 18] and proved that example discussed in [18] is semi-
group with left identity but not paramedial. We extended results on locally
associative LA-Semigroup explained in [20, 21] towards LA-Semigroup
and RA-Semigroup with left zero and right zero respectively. We also
discussed results on n-dimensional LA-Semigroup, n-dimensional RA-
Semigroup, non commutative finite medials with three or more than three
left or right identities and finite as well as infinite commutative idempotent
medials not studied in literature.
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1. INTRODUCTION

Kazim and Naseeruddin [8] introduced the concept of LA-Semigroup, RA-Semigroup
and Almost semigroup and elaborated that “If a groupoidS satisfies the condition(ab)c =
(cb)a thenS is LA-Semigroup and if groupoidS holds conditiona(bc) = c(ba) thenS is
RA-Semigroup and ifS satisfy both conditions thenS is almost semigroup. Mushtaq and
Yousaf [14, 15] developed the idea of locally associative LA-Semigroups that hold property
(aa)a = a(aa) and elaborated that on what conditions LA-Semigroups becomes commuta-
tive group. In [8, 14, 15] this is proved that “IfS is LA-Semigroup or RA-Semigroup then
S holds medial law or bisymmetry law i.e.S satisfies the condition(ab)(cd) = (ac)(bd)
but the converse may not be true” and further this is also proved that the connection of
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LA-Semigroup and RA-Semigroup with semigroup is only commutative property. Later in
1984 Jazek and Kepka [7] developed results on almost semigroup. In [7, 16] LA-Semigroup
is known as right modular groupoid, RA-Semigroup is known as left modular groupoid al-
most semigroup is known as bimodular groupoid. Seguier in1904 [19] used the term semi-
group for the first time in literature which is an algebraic structureS that holds associative
law i.e. (ab)c = a(bc). Kimura and Yamada [12, 13] developed idea idempotent semi-
group known as bands. Clifford, Preston and Howie [3, 6] wrote comprehensive books on
semigroup theory and elaborated the concept of E-semigroups, regular semigroups, ortho-
dox semigroups and also discussed about left ideals, right ideals, ideals and zero minimal
ideals of semigroups. Kehayopulu [9] elaborated ordering of elements and constructed
semigroups. Choet al. [4] discussed some results on paramedial groupoidS that satisfies
condition(ab)(cd) = (db)(ca) and discussed its relation with commutative groupoid and
medial. In [11, 10] concept of LA-Band also known as AG-Band has been developed and
the relation of medial, paramedial and LA-Semigroup was also developed. Nisaret al. [2]
introduced concept of LDD-Semigroup which is an algebraic structureS that holds condi-
tion (ab)(cd) = (cb)(ad) and explained thatR+ is LDD-Semigroup w.r.t binary operations
a.b = eb, aηb = b2. Some recent results were developed in LA-Semigroup, semigroup and
paramedial groupoid in [20, 21, 1, 17, 18]. We have found error on semigroup in [1], error
on LA-Semigroup in [17] and error on paramedial in [18]. Further following results were
also proved:

Proved Results-1 in[8, 14, 16]:
If groupoidS holds:
(a) left invertive law and associative law thenS is commutative semigroup as well as RA-
Semigroup.
(b) right invertive law and associative law thenS is commutative semigroup as well as LA-
Semigroup.
(c) associative law and commutative law thenS is LA-Semigroup as well as RA-Semigroup.
(d) left invertive law and commutative law thenS is commutative semigroup as well as RA-
Semigroup.
(e) right invertive law and commutative law thenS is commutative semigroup as well as
LA-Semigroup.

Proved Results-2 in[8, 14, 4, 2]:
If S is:
(a) LA-Semigroup with right identity thenS is commutative monoid.
(b) RA-Semigroup with left identity thenS is commutative monoid.
(c) Medial with identity is commutative monoid.
(d) Paramedial with identity is commutative monoid.
(e) LDD-semigroup with right identity is commutative monoid.
(f) If S is paramedial thenS is commutative: (i) If each element x∈ S is idempotent (ii)S
contains identity element.
(g) If S is LA-Monoid thenS is paramedial and by the converse paramedial with left iden-
tity is LA-Monoid.



Corrections and Extensions in Left and Right Almost Semigroups 477

2. NOTATIONS AND PRELIMINARIES

Definition 2.1 : In literature a groupoid S is called left almost semigroup (LA-Semigroup)
if for all elements a, b, c∈ S the left invertive law holds i.e.(ab)c = (cb)a.
Definition 2.2 : In literature a groupoid S is called right almost semigroup (RA-Semigroup)
if for all elements a, b, c∈ S right invertive law holds i.e.a(bc) = c(ba).
Definition 2.3 : A groupoid S is medial if∀ a, b, c, d lies in S, S satisfies medial law or
bisymmetry law i.e.(ab)(cd) = (ac)(bd). Every LA-Semigroup and RA-Semigroup satis-
fies medial law but the converse may not be true.
Definition 2.4 : A groupoid S is semigroup if∀ a, b, c∈ S the condition(ab)c = a(bc)
holds.
Definition 2.5 : Semigroup S is called E-semigroup if the subset of S containing its idem-
potents also form semigroup.
Definition 2.6 : Semigroup S is called regular semigroup if for each element a∈ S,∃ b ∈
S such thataba = a andbab = b.
Definition 2.7 : Semigroup S is called orthodox semigroup if S is E-semigroup as well as
regular semigroup.
Definition 2.8 : A semigroup T is called band if∀ t ∈ T the conditiont2 = t is satisfied.
Each band is orthodox semigroup.
Definition 2.9 : A groupoid T is called locally associative groupoid if∀ t ∈ T condition
(t2)t = t(t2) is satisfied. If∀ t ∈ groupoid T the conditiont2 = t is satisfied then then
T is locally associative groupoid. Every semigroup and commutative groupoid is locally
associative but converse may not be true.
Definition 2.10 : LA-Semigroup S is called LA-Monoid if∃ left identity si in S such that
for all sj in S the conditionsisj = sj holds.
Definition 2.11 : LA-Semigroup S is called LA-Group if there exists left identitysi ∈ S
and inverse of each element exists.
Definition2.12 : RA-Semigroup S is called RA-Monoid if there exists right identitysi ∈ S
such that∀ sj ∈ S,sjsi = sj .
Definition 2.13 : RA-Semigroup S is called RA-Group if∃ right identity elementsi ∈ S
and inverse of each element exists.
Definition 2.14 : A groupoid S is called paramedial if∀ a, b, c, d∈ S the condition
(ab)(cd) = (db)(ca) holds.
Definition 2.15 : Zero semigroup S is such semigroup that contains zero element a and∀
b, c∈ S the conditionbb = cc = bc = cb = a is satisfied. Zero semigroup is also called
zeropotent groupoid and this is such commutative semigroup which is not regular.
Definition 2.16 : A groupoid L is called left double displacement semigroup (LDD-semigroup)
if ∀ a, b, c, d∈ L the condition(ab)(cd) = (cb)(ad)”.
Definition 2.17 : A groupoid M is called right double displacement semigroup (RDD-
semigroup) if∀ a, b, c, d∈ M the condition(ab)(cd) = (ad)(cb)”.
This property(ab)(cd) = (cb)(ad) is left double displacement law (LDD-law) and(ab)(cd) =
(ad)(cb) is right double displacement law (RDD-law).

Throughout this paper we will use following notations:
R for set of real numbers.
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Q for set of rational numbers.
Z for set of integer.
k for finite positive integer.
Zn for modn.
S for LA-Semigroup.
T for RA-Semigroup.
X for groupoid.
G for commutative group.
(G, .) for commutative group.
H for group.
U andV for medial.
Y for almost semigroup.
D for semigroup.
f andg for functions defined fromR → R, Q → Q, Z → Z andZn → Zn.

3. MAIN RESULTS

We divided this section into four subsections. Subsection3.1 deals with the results on
LA-Semigroup and RA-Semigroups. In subsection3.2 we highlighted errors in recently
developed results on LA-Semigroup and semigroup in [1, 17] and extended results on lo-
cally associative LA-Semigroups in [20, 21]. In subsection3.3 we highlighted that example
discussed in [18] is semigroup with left identity but not paramedial. In subsection3.4 we
developed some results on n-dimensional LA-Semigroup as well as n-dimensional RA-
Semigroup, non commutative medials and commutative medials.

3.1. Results on LA-Semigroup and RA-Semigroup.

In this section we discussed relation of LA-Semigroup and RA-Semigroups with com-
mutative semigroup. We also developed the concept that how medial can be constructed
from commutative group. Further we elaborated the relation of medial, LA-Semigroup and
RA-Semigroup with LDD-Semigroup, RDD-Semigroup and paramedial groupoid by the
following results:

Theorem 3.2. If LA-SemigroupS holds the condition(ab)c = (ac)b ∀ a, b, c∈ S, thenS
is commutative.

Proof. From the given conditions we do the following steps:
(ab)(cd) = ((cd)b)a = ((cb)d)a

= ((cb)a)d = ((ab)c)d
= ((ab)d)c = (cd)(ab)

This shows thatS is commutative LA-Semigroup and every commutative LA-Semigroup
is commutative semigroup as well as commutative RA-Semigroup proved in [8, 14].¤
Remark 3.3. S is is commutative if∀ a, b, c, d∈ S, S holds any of the following conditions:
(i) (ab)c = (ba)c (ii) (ab)c = (bc)a or (ab)c = (ca)b (iii) a(bc) = (cb)a
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Theorem 3.4. If a groupoidX satisfies the conditions(ab)c = (ba)c and(ab)c = (ac)b ∀
a, b, c∈ X thenS is commutative semigroup.

Proof. Using the given conditions we do the following steps:
(ab)c = (ac)b = (ca)b = (cb)a which shows thatS is LA-Semigroup.
(cb)a = (bc)a = (ac)b which shows thatS satisfies the conditions(ab)c = (ac)b.
So by using theorem-3.2 this is straightforward thatX is commutative semigroup. ¤
Theorem 3.5. If X satisfies conditions(ab)c = (ba)c and (ab)c = (bc)a ∀ a, b, c∈ X
thenX is commutative semigroup.

Proof. From the given conditions we do the following steps:
(ab)c = (bc)a = (cb)a which shows thatS is LA-Semigroup.
So(ab)c = (ba)c = (ca)b = (ac)b.
Using theorem3.3 this is quite easy to prove thatX is commutative semigroup. ¤
Theorem 3.6. If X holds conditionsa(bc) = a(cb) anda(bc) = b(ac) ∀ a, b, c∈, thenX
is commutative semigroup.

Proof. From the given conditions we havea(bc) = a(cb) = c(ab) = c(ba) soS is RA-
Semigroup.
To prove thatS is commutative we do the following steps:
(ab)(cd) = d(c(ab)) = d(a(cb))

= a(d(cb) = a(b(cd))
= b(a(cd)) = (cd)(ab)

ThusX is commutative.
Soa(bc) = a(cb) = c(ab) = (ab)c which shows thatX is semigroup. ¤
Remark 3.7. RA-SemigroupT is commutative if∀ a, b, c∈ T , T holds any condition from
the following
(i) a(bc) = a(cb) (ii) a(bc) = b(ac) (iii) (ab)c = c(ba)
(iii) a(bc) = b(ca) or a(bc) = b(ca)

Theorem 3.8. If T satisfies conditiona(bc) = (ba)c ∀ a, b, c∈ T , thenT is commutative.

Proof. Using the given conditions we havea(bc) = c(ba) = (bc)a = (ba)c so we do the
following steps:
(ab)(cd) = d(c(ab)) = d((ab)c)

= d(b(ac)) = (bd)(ac)
Every RA-Semigroup satisfies medial law proved in [8, 14].
So(ab)(cd) = (ac)(bd) = (cd)(ab)⇒ T is commutative. ¤
Remark 3.9. If we define binary operation on finite groupoidX by ab = V (c) where
V (c) means value of the Cth entry andC = bth entry − ath entry + ith entry under the
modm then following conditions hold:
(a) ith element is left identity.
(b) S holds left invertive law.
(c) If order ofS i.e n(S) is even then the subset ofS sayS1 = {si, sj} forms cyclic group
and|i− j| = |j − i| = m/2.
(d) If order of S i.e n(S) is odd then subset ofS saySI that contains only left identity
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elementsi forms groupoid and LA-Semigroup which is trivial.
(e) Every elementsj is self inverse i.e.sjsj = si.

Example: If binary operation∗ is defined onA100 = {a1, a2, a3, a4, ..., a100} in such way
thata23 is idempotent element and column entries follow one element preceding difference
pattern and the row entries follow the one element succeeding difference pattern thena23

is left identity and the subset ofA100 sayA100C = {a23, a73} forms cyclic group and this
is quite clear that|73 − 23| = |23 − 73| = 50 = 100/2.

Remark 3.10. If we define binary operation on finite groupoidX by ab = V (c) where
V (c) means value of the Cth entry andC = ath entry − bth entry + ith entry under the
modm then following conditions hold:
(a) ith element is right identity.
(b) S holds right invertive law.
(c) If order ofS i.e n(S) is even then the subset ofS sayS1 = {si, sj} forms cyclic group
and|i− j| = |j − i| = m/2.
(d) If order ofS i.e n(S) is odd then subset ofS saySI that contains only right identity
elementsi forms groupoid and RA-Semigroup which is trivial.
(e) Every elementsj is self inverse i.e.sjsj = si.

Example: If binary operation onB4 = {b1, b2, b3, .......b488} is defined in such way that
b175 is idempotent element and all elements follow one element succeeding difference
pattern in column and one element preceding element pattern in row then the subset of
B488 that contains elementsb175 andb419 forms cyclic group and clearly|419 − 175| =
|175 − 419| = 244 = 488/2.

Remarks On LA-Group:
(a) In case of odd number of elements only left identity elementsi is both (left and right)
regular.
(b) In case of even number of elements only two elements left identity elementsi and the
elementsj that forms cyclic group are both left and right regular.
(c) In case of even number of elements every element other than left identitysi andsj that
forms cyclic group is right regular w.r.t itself i.e.a2a = a and for each a,∃ b such that
ba2 = a i.e. each a other thansi andsj is left regular with other element b. When number
of elements are odd then also this condition holds but in this case onlysi is both (left and
right) regular with itself.
(d) Whensi is left identity then the elements a and b that satisfies the conditionba2 = a
andab2 = b also satisfies the condition thata∗si = b andb∗si = a.

Remarks On RA-Group:
(a) In case of odd number of elements only right identity elementsi is both (left and right)
regular.
(b) In Case of even number of elements only two elements right identity elementsi and the
elementsj that forms cyclic group are both left and right regular.
(c) In Case of even number of elements every element other than right identitysi andsj

that forms cyclic group is left regular w.r.t itself i.e.aa2 = a and for each a,∃ b such that
a2b = a i.e. each a other thansi andsj is right regular with other element b. When number
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of elements are odd then also this condition holds but in this case onlysi is both (left and
right) regular with itself.
(d) Whensi is right identity then the elements a and b that satisfies the conditiona2b = a
andb2a = b also satisfies the condition that∗sia = b and∗sib = a.

Corollary 3.11. If (G, .) is commutative group and we define binary operationµ onG by
aµb = bk.a−1 where k is non negative finite integer thenG satisfies medial law.

Corollary 3.12. If (G, .) is commutative group and we define binary operationν onG by
aνb = ak.b−1 and k is finite positive integer thenG satisfies medial law.

Note in Corollary 3.11 and 3.12:If k = 1 then(G, µ) is LA-Group in which each element
is self inverse and(G, ν) is RA-Group in which each element is self inverse respectively.

Theorem 3.13. If S is locally associative LA-Group in which each element is self inverse
thenS is commutative group.

Proof. Let e be the left identity in LA-GroupS then by using the given conditions, we
prove theorem by following steps:
(aa)a = ea = a = a(aa) = ae
Thus∀ a∈ S the conditionea = ae = a is satisfied which shows e is also right identity in
S.
So using “Proved Results 1”,S is commutative group. ¤
Theorem 3.14. If T is locally associative RA-Group in which each element is self inverse
thenT is commutative group.

Proof. Let e be the right identity in RA-GroupT then to prove the theorem we do the
following steps:
(aa)a = ea = a = a(aa) = ae
Thus∀ a∈ T the conditionea = ae = a is satisfied which shows that e is also left identity
in T .
So using “Proved Results 1”,T is commutative group. ¤
Theorem 3.15. If S satisfies the condition(ab)(cd) = ((ba)c)d ∀ a, b, c, d∈ S or T
satisfies condition(uv)(wx) = u(v(xw)) ∀ a, b, c, d∈ T thenS and T are paramedial.

Proof. Using the given conditions we prove results by the following steps:
(ab)(cd) = ((ba)c)d = (dc)(ba) = (db)(ca)⇒ S is paramedial.

(uv)(wx) = u(v(xw)) = (xw)(vu) = (xv)(wv)⇒ T is paramedial. ¤
Theorem 3.16. If Y is almost semigroup and paramedial thenY is commutative semi-
group.

Proof. From the given conditions∀ a, b, c, d∈ Y we have(ab)(cd) = (ac)(bd) =
(db)(ca) = (dc)(ba) and also(ab)c = (cb)a anda(bc) = c(ba).
There is no direct way to prove this so we take five elements a, b, c, d and f and prove the
theorem by the following steps:
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(ab)((cd)f) = (ab)((fd)c) = c((fd)(ab))
= c((bd))(af)) = c((ba)(df))
= (df)((ba)c) = (df)((ca)b)
= b((ca)(df)) = b((cd)(af))
= (af)((cd)b).

From the steps this is clear that∀ a, b, x and f∈ Y the condition(ab)(xf) = (af)(xb)
holds.
So this shows thatY is also RDD-semigroup. So using medial, paramedial and RDD laws
we prove the theorem by following steps:
(ab)(cd) = (ac)(bd) = (dc)(ba)

= (bc)(da) = (bd)(ca)
= (ad)(cb) = (cd)(ab) ¤

Lemma 3.17. If U is medial and LDD-Semigroup then∀ a, b, c, d∈ U , U satisfies the
following conditions hold:
(i) (ab)(cd) = (ba)(cd) (ii) (ab)(cd) = (ca)(bd)
(iii) (ab)(cd) = (bc)(ad) (iv) (ab)c = (ba)c

Theorem 3.18. If S is LA-Semigroup as well as LDD-semigroup thenS is commutative.

Proof. Using lemma3.17 and theorems3.2 and3.3 this is straightforward. ¤
Lemma 3.19. If U is medial and RDD-Semigroup then∀ a, b, c, d∈ U , U satisfies the
following conditions hold:
(i) (ab)(cd) = (ab)(dc) (ii) (ab)(cd) = (ac)(db)
(iii) (ab)(cd) = (ad)(cb) (iv) a(bc) = a(cb)

Theorem 3.20. If T is RA-Semigroup as well as RDD-semigroup thenT is commutative.

Proof. Using lemma3.19, theorems3.7 and theorem3.8 the proof is straightforward. ¤
Remark 3.21. We investigated following results on almost semigroups:
(i) Almost semigroupY is commutative ifY is:
(a) Paramedial (b) Semigroup (c)LDD-semigroup (d) RDD-semigroup
(ii) The proof of following theorems are not easy by direct way:
(a) If S is LA-Semigroup and LDD-Semigroup thenS is commutative.
(b) If T is RA-Semigroup and RDD-Semigroup thenT is commutative.
(c) If almost semigroupY is paramedial thenY is commutative.
We have to use lemmas and results on the relation of medial with LDD-Semigroup or RDD-
Semigroup to prove (a) or (b) respectively, and use the idea of taking five or six elements to
prove (c).

3.22. Corrections and Extensions.
In this section we highlighted errors in [1, 17] explained by the following tables and dis-
cussion:

Indicating Errors in LA-Semigroup and Semigroup Results:



Corrections and Extensions in Left and Right Almost Semigroups 483

Imtiaz et al. [1] took setA = {p, q, r, s, t, u} constructed example3.24 on semigroup
and Nooret al. [17] took setB = {a, b, c} and constructed example on LA-Semigroup by
the following tables:

TABLE 1. Table ForA andB

* p q r s t u * a b c
p q s q q u q a a a a
q t q q q q q b c c c
r q q q q q q c a a c
s u q q q q q
t q q q q q q
u q q q q q q

ClearlyA is not semigroup because(pt)t = ut = q but p(tt) = pq = s and alsoB is not
LA-Semigroup because(bb)c = cc = c but (cb)b = ab = a. So the examples in [1, 17] are
not correct.
Further we have some LA-Semigroup tables which are for setS = {a, b, c}.

TABLE 2. Tables For S

* a b c . a b c µ a b c ν a b c
a a b c a a a a a c c b a c c c
b c a b b a a a b b b b b b b b
c b c a c a b a c b b b c b b b

η a b c ρ a b c φ a b c χ a b c
a a a a a a a a a a a a a b b b
b a a a b a a a b c a a b b b b
c b a b c a c a c a a a c b a b

There are also some other ways to construct LA-Semigroups of order three which are ex-
plained in [21]. Here we only mentioned some of them. The concept that every finite
LA-Semigroup can be converted into RA-Semigroup by just taking the transpose of the
LA-matrix generated by the binary operation applied on elements in some finite groupoid
may not be correct e.g. if we have setĀ with the following tables:

TABLE 3. Table for LA-Semigroup not Converted to RA-Semigroup

∗ a b c d . a b c d
a a a a a a a a a a
b a a a a b a a a a
c a a a a c a a a d
d a a d a d a a a a
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In both cases̄A is LA-Semigroup but not RA-Semigroup, so the concept that each finite
LA-Semigroup can be converted into RA-Semigroup by taking the transpose in the table
of some LA-Semigroup structure is not correct.
We investigated that in most cases by changing the order of elements in the table usually
by taking the transpose some LA-matrix table, we get RA-matrix table.
Further we constructed finite LA-Semigroups of order4 without any idempotent element
by the following tables:

TABLE 4. Table for LA-Semigroup without Idempotent

∗ a b c d . a b c d
a b c a d a b d c a
b d a c b b c a b d
c c b d a c a c d b
d a d b c d d b a c

Extensions in Locally Associative LA-Semigroup Discussed in[20, 21] Shahet al. [20,
21] constructed new example on locally associative LA-Semigroup with zero element in
which they took setS = {0, 1, 2} and binary operation . was defined in such way in
the table1.0 = 0 and all other entries were substituted by2, so 2 is zero element of
the structure(S, .). Also we are using the concept of zero semigroup A in which binary
operation is defined in such way that any two elements are operated and we get zero element
of that structure A or in simple words a semigroup in which the we get only zero element in
the cayley table. But in Case-3 we do some changes and there are two elementsa1 anda2

which are not zero elements but they disturbs the commutative and associative properties of
the whole structure in which eithera1a2 = a2 or a1a2 = a1 or we have the other situation
in which a2a1 = a1 or a2a1 = a2. We extend this concept to such LA-Semigroup C in
such way that we can have two, three, four or more idempotents in which one idempotent
is the zero element of the LA-Semigroup C and the subsetC1 of C having these idempotent
members of C forms commutative orthodox semigroup andC1 is also the ideal of C. We
takeC4 = {c1, c2, c3, c4}, C5 = {c1, c2, c3, c4, c5} andC6 = {c1, c2, c3, c4, c5, c6} and
binary operationη (eta) is defined onC1, C2 andC3 elaborated in “Table ForC4, C5 and
C6”.

TABLE 5. Table ForC4, C5 andC6

c1 c2 c3 c4 c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c6

c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1

c2 c1 c1 c1 c1 c2 c1 c1 c1 c1 c1 c2 c1 c1 c1 c1 c1 c1

c3 c1 c2 c1 c1 c3 c1 c2 c1 c1 c1 c3 c1 c2 c1 c1 c1 c1

c4 c1 c1 c1 c4 c4 c1 c1 c1 c4 c1 c4 c1 c1 c1 c4 c1 c1

c5 c1 c1 c1 c1 c5 c5 c1 c1 c1 c1 c5 c1

c6 c1 c1 c1 c1 c1 c6
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Scheme In Locally Associative LA-Semigroups with Zero Element:
Select two elements which are neither left nor right zero and also not idempotents sayc1

andc2 and use this condition that eitherc1c2 = c2 andc2c1 = co i.e. zero element or
c1c2 = c1 andc2c1 = co. This clearly makes the groupoid neither commutative nor asso-
ciative but this groupoid will be locally associative LA-Semigroup.
Clearly from the tables the groupoidsC4, C5 andC6 are neither commutative nor associa-
tive however they are locally associative LA-Semigroups with zero elementc1. The subset
of C4 sayC4A = {c1, c4} is commutative orthodox semigroup and ideal ofC4. The set
C5A = {c1, c4, c5} is commutative orthodox semigroup and ideal ofC5. Similarly this is
also clear from the table thatC6A = {c1, c4, c5, c6} is commutative orthodox semigroup
and ideal ofC6.

Remarks in Locally Associative LA-Semigroup with Zero Element:
a. This is locally associative LA-Semigroup with zero element.
b. Zero element with other idempotent(s) forms commutative orthodox semigroup as well
as ideal of LA-Semigroup C.
c. Zero element with two non idempotent members that violates commutative and associa-
tive property only form LA-Semigroup.
d. Each commutative orthodox semigroup which is also ideal of LA-Semigroup structure
must contain zero element.
e. The product of two idealsCI andCJ is {0} whenCI = {0, c1

i , c
2
i , c

3
i , ...., c

n
i } andCJ =

{0, c1
j , c

2
j , c

3
j , ...., c

n
j } whereI = {c1

i , c
2
i , c

3
i , ...., c

n
i } andJ = {c1

j , c
2
j , c

3
j , ...., c

n
j } are dis-

joint sets. Here we are not taking power of elements, here this meansi1, i2, ...,in andj1, j2,
....,jn. We can simply writeCI = {0, i1, i2, i3, ...., in} andCJ = {0, j1, j2, j3, ...., jn}.
f. LA-Semigroup C has many proper ideals but this has no zero minimal ideal and the
trivial zero minimal ideal is{0}.
g. This is the case of LA-Semigroup which is the not regular, neither left not right regular.
h. The idempotents of this locally associative LA-Semigroup forms regular as well as in-
verse semigroup because all the idempotent elements commute with each other.

Practical Application: A useful practical application can be for setting some password
for some bank locker or some safe if by clicking any two digits entries give specific same
number but two entries give different number e.g. if password is to close and open some
safe or vault is55557 then1.1, 2.1, 3.1 and4.1 execute5 but 6.7 executes7 and7.6 exe-
cutes5 and the lock can be closed or opened.
For securing the important documents in some safe or vault the pattern discussed in [20, 21]
and in it’s extensions can be useful tool. Also from0to9 we can select two or more than
idempotents digits and password can be set for securing digital locks of safes or vaults.
This can be used in cryptography procedures. The more complicated will be the binary
operation the more safe and secure will be information.

Extension-1 in[21]: We extended this idea of LA-Semigroup in which non cyclic but com-
mutative group (Klein-4 group) is contained if we just have setC7 = {c1, c2, c3, c4, c5, c6, c7}
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andC8 = {c1, c2, c3, c4, c5, c6, c7, c8} and binary operation. is defined onC7 andC8 in
such way thatC7 andC8 are LA-Semigroups and first four elements forms Klein-4 group;
see “Extension-1 Table In [21].

TABLE 6. Extension-1 Table

. c1 c2 c3 c4 c5 c6 c7 . c1 c2 c3 c4 c5 c6 c7 c8

c1 c1 c2 c3 c4 c5 c5 c5 c1 c1 c2 c3 c4 c5 c5 c5 c5

c2 c2 c1 c4 c4 c5 c5 c5 c2 c2 c1 c4 c4 c5 c5 c5 c5

c3 c3 c4 c1 c2 c5 c5 c5 c3 c3 c4 c1 c2 c5 c5 c5 c5

c4 c4 c3 c2 c1 c5 c5 c5 c4 c4 c3 c2 c1 c5 c5 c5 c5

c5 c5 c5 c5 c5 c5 c5 c5 c5 c5 c5 c5 c5 c5 c5 c5 c5

c6 c5 c5 c5 c5 c5 c5 c5 c6 c5 c5 c5 c5 c5 c5 c5 c5

c7 c5 c5 c5 c5 c5 c6 c5 c7 c5 c5 c5 c5 c5 c6 c5 c5

c8 c5 c5 c5 c5 c5 c5 c5 c8

Extension-2 in [21]: This idea can be extended to infinite set on which binary opera-
tion can be defined is in such way that the set having infinite idempotents in which only
one element is zero element and the set containing all the elements that are idempotents
forms commutative orthodox semigroup e.g. If we take set of non negative integers (say
W) set of whole numbers and binary operation is defined on W in such way that0 be-
comes zero element in W and the subset of W sayW1 that includes elements1, 2, 3 and4
forms Klein-4 group. The setW2 = {8, 10, 12, 14, ...} is set of idempotents while the
set W3 = {7, 9, 11, 13, ....} is set in which every element is self zero divisor and the
product of each element inW3 with each element of W gives0. Let W4 = {5, 6} and
5.5 = 6.6 = 6.5 = 0 but 5.6 = 6. Thus W w.r.t binary operation. is infinite locally
associative LA-Semigroup with zero element0 and this containsW − 1 which Klein-4
group and the subset of W sayWA = {0, 5, 6} is locally associative LA-Semigroup with
zero element0. The subset of W sayWB = {0, 8, 10, 12, 14, ....} is commutative ortho-
dox semigroup andWB is also ideal of W. This is example in Case-3 in which first four
elements do not form Klein-4 group.

Extension-3 in [21]: This is not difficult to construct a LA-Semigroup with zero element
that contains cyclic group as well as Klein-4 group.
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TABLE 7. Extension-3(A) and Extension-3(B) Table

∗ 1 2 3 4 5 6 7 8 9 10 . 1 2 3 4 5 6 7 8 9 10 11
1 1 2 3 4 5 5 5 5 5 5 1 1 2 3 4 5 5 5 5 5 5 5
2 2 1 4 4 5 5 5 5 5 5 2 2 1 4 4 5 5 5 5 5 5 5
3 3 4 1 2 5 5 5 5 5 5 3 3 4 1 2 5 5 5 5 5 5 5
4 4 3 2 1 5 5 5 5 5 5 4 4 3 2 1 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 5 5 5 5 5 5 5 5 5 5 6 5 5 5 5 5 6 5 5 5 5 5
7 5 5 5 5 5 6 5 5 5 5 7 5 5 5 5 5 5 5 8 5 5 5
8 5 5 5 5 5 5 5 8 9 10 8 5 5 5 5 5 5 5 5 5 5 5
9 5 5 5 5 5 5 5 9 10 8 9 5 5 5 5 5 5 5 5 5 5 5
10 5 5 5 5 5 5 5 10 1 9 10 5 5 5 5 5 5 5 5 5 5 5

11 5 5 5 5 5 5 5 5 5 5 5

Extension-4 in [21]: We construct LA-Semigroup containing cyclic group and commuta-
tive orthodox semigroup which is locally associative and contain zero element elaborated
in “Extension-4 Table”.

TABLE 8. Extension-4 Table

. 1 2 3 4 5 6 7 8 . 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 5 5 5 1 1 2 3 4 5 5 5 5 5
2 2 3 4 1 5 5 5 5 2 2 3 4 1 5 5 5 5 5
3 3 4 1 2 5 5 5 5 3 3 4 1 2 5 5 5 5 5
4 4 1 2 3 5 5 5 5 4 4 1 2 3 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
7 5 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5
8 5 5 5 5 5 5 5 8 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5

Extension-5 Towards LA-Semigroups with Left Zero Element: We constructed LA-
Semigroups which is not locally associative and contains left zero element on setsS3 and
S4. We use acronym LZLA-Semigroup. Following is table for Tables forS3 andS4:

TABLE 9. Extension-5 Table

. 1 2 3 . 1 2 3 4 η 1 2 3 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 3 1 1 2 1 1 1 1 2 1 1 1 1
3 1 1 1 3 2 1 1 1 3 1 1 1 1

4 1 1 1 1 4 2 1 1 1

η 1 2 3 ∗ 1 2 3 4 θ 1 2 3 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 2 1 1 1 1 2 1 1 1 1
3 2 1 1 3 4 1 1 1 3 1 1 1 1

4 1 1 1 1 4 3 1 1 1

Remarks on 5th Extension
(a) This is LA-Semigroup with left zero element in which product of each element with
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itself is left zero element.
(b) This is not locally associative LA-Semigroup.
(c) Each ideal of LZLA-Semigroups in Table For LZLA-Semigroup is right ideal and right
ideal I does not contain element b such thatb.L = c whereb 6= c and L means left zero
element of LA-Semigroup.
(d) If any semigroup S or LA-Semigroup T contains left zero element then the subset of S
or T that contains left zero element is right ideal of S or T.

Extension-6 Towards RA-Semigroup with Right Zero Element: We extend the idea
of LA-Semigroups and constructed RA-Semigroups with right zero element by the follow-
ing table:

TABLE 10. Extension-6 Table

. 1 2 3 . 1 2 3 4 η 1 2 3 4
1 1 3 1 1 1 3 1 1 1 1 1 2 1
2 1 1 1 2 1 1 1 1 2 1 1 1 1
3 1 1 1 3 1 1 1 1 3 1 1 1 1

4 1 1 1 1 4 1 1 1 1

η 1 2 3 ∗ 1 2 3 4 θ 1 2 3 4
1 1 1 2 1 1 4 1 1 1 1 1 4 1
2 1 1 1 2 1 1 1 1 2 1 1 1 1
3 1 1 1 3 1 1 1 1 3 1 1 1 1

4 1 1 1 1 4 1 1 1 1

Remarks on 6th Extension
(a) This is RA-Semigroup with right zero element in which product of each element with
itself is right zero.
(b) This is not locally associative RA-Semigroup.
(c) Each ideal of RZRA-Semigroups in Table For RZRA-Semigroup is left ideal and left
ideal I does not contain element b such thatb.M = c whereb 6= c and M means right zero
element of RA-Semigroup.
(d) If any semigroup S or RA-Semigroup T contains right zero element then the subset of
S or T that contains right zero element is left ideal of S or T.

Extensions towards LA-Semigroup and RA-Semigroup without Zero Element
We constructed examples on LA-Semigroups with left zero element and RA-Semigroups
with right zero element by the following tables:

TABLE 11. Table for LA-Semigroup and RA-Semigroup without Zero Element

∗ x y z . x y z
x y z y x y z z
y z z z y z z z
z z z z z y z z
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3.23. Indicating Error in Paramedial Groupoid.
Sawatraksa and Namnak constructed an example on a setĀ and discussed that this semi-
group holds paramedial law by the following table:

TABLE 12. TableT − 1 By Sawatraksa and Namnak

. a b c
a a a a
b a a a
c a b c

Clearly from tableĀ is semigroup with left identity but̄A is not paramedial if we see
(bc)(cc) = ac = a but (cc)(cb) = cb = b i.e. the condition(ab)(cd) = (db)(ca) is not
satisfied.

This is an example of three square matrices of order2 × 2, by lettingM1 =
(

0 0
0 0

)
,

M2 =
(

0 1
0 0

)
andM2 =

(
1 0
0 0

)
respectively. Clearly The set saȳM = {M1,M2,M3}

is closed, associative and semigroup with left identity w.r.t matrix multiplication butS does
not satisfy paramedial law.

If we take set sayN̄ = {N1, N2, N3} whereN1 =
(

0 0
0 0

)
, N2 =

(
0 1
0 0

)
and

N3 =
(

0 0
0 1

)
thenN̄ w.r.t matrix multiplication is semigroup with right identity but

does not hold paramedial law.
So the claim of Sawatraksa and Namnak in Example2.2 [18] is not correct. Also we can
extend this idea of semigroup with left identity and semigroup with right identity on infinite
set either countable or uncountable e.g. if we take setM1 that contains matrices of order

2 × 2 having setsO =
(

0 0
0 0

)
, BN =

(
0 n
0 0

)
andA =

(
1 0
0 0

)
whereBN

means all square matrices of order2× 2 in whichn 6= 0 and n is any natural number then
the setM1 is semigroup with left identity and by the same way if we have setBR where
instead of n if we use r where r is any real number other than zero then we have example of
semigroup with left identity on uncountable set.

Similarly if we have setN1 having square matrices of order2×2 which areO =
(

0 0
0 0

)
,

BN =
(

0 n
0 0

)
andC =

(
0 0
0 1

)
whereBN means all square matrices of order2×2

in whichn 6= 0 and n is any natural number then the setN1 is semigroup with right identity
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and by the same way if we have setBR where instead of n if we use r where r is any real
number other than zero then we have example of semigroup with right identity on uncount-
able set.

Note: In above examples semigroups hold medial law. Semigroup with left identity is
medial and LDD-Semigroup while semigroup with right identity is medial and RDD-
Semigroup. Further we have following example on non commutative semigroup with two
left(right) identities holding LDD(RDD)-law:

Example of Semigroup, medial and LDD-Semigroup with Two Left Identities:
If we define binary operationµ on R by aµb = |a|.b thenR is semigroup, medial and
LDD-Semigroup with two left identities−1 and1.

Example of Semigroup, medial and RDD-Semigroup with Two Right Identities:
If we define binary operationν on R by aνb = a.|b| thenR is semigroup, medial and
RDD-Semigroup with two right identities−1 and1.

Remark 3.24.
(i) If D with left identity holds medial law thenD also holds LDD-law and vice versa.
(ii) If D with right identity holds medial law thenD also holds RDD-law and vice versa.

We further investigated that some non commutative idempotent semigroups i.e. bands holds
either medial and LDD-law or medial as well as RDD-law explained by the following ex-
amples:

Examples of Non Commutative Bands which are Medial and LDD-Semigroup:
(a): The set of all constant functions from setS to S w.r.t binary operation composition of
mapping.
(b): The set of all collinear vectors saȳV w.r.t binary operationuv = (û.v).v̂ ∀ u andv ∈
V̄ whereû andv̂ are unit vectors of vectorsu andv respectively.
(c): The power set of non empty setS sayP (S) w.r.t binary operation defined byAB =
(A ∩B)−Bc.

Examples of Non Commutative Bands which are Medial and RDD-Semigroup:
(a): The set of all constant functions from setS to S w.r.t binary operation composition of
functions.
(b): The set of all collinear vectors saȳV w.r.t binary operationuv = (v̂.u).û ∀ u, v ∈ V̄
whereû andv̂ are unit vectors of vectorsu andv respectively.
(c:) The power set of non empty setS sayP (S) w.r.t binary operation defined byAB =
(A ∩B)−Ac.

3.25. Results on n-dimensional LA(RA)-Semigroups, Non Commuttaive as well as
Commutative Medials.
In this section we developed some results on finite as well as infinite LA-Semigroups,
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RA-Semigroups, n-dimensional LA-Semigroup, n-dimensional RA-Semigroup, non com-
mutative medials with more than two left or right identities and commutative idempotent
medial groupoids.
Through out this section we will use f and g which are defined functions fromR to R, Q to
Q, Z to Z andZn to Zn. For readers to grasp the idea of results, we constructed following
examples:

Example 3.25.1: Binary Operation to Construct Infinite LA-Semigroup
If we define binary operation∗ onR orQ bya∗b = f(a) + f2(b) thenR is LA-Semigroup
w.r.t the following conditions:
(a) f(x) = 0 thenR or Q are zero semigroups with zero element0.
(b) f(x) = k where k is any constant number then againR andQ are zero semigroups
with zero element2.k.
(c) f(x) = x i.e. identity function thenR orQ are commutative groups because this simply
means thatab = a + b.
(d) f(x) = −x i.e. negative identity function thenR or Q are LA-Groups with left identity
element0 and each element is self inverse.

Note in 3.25.1: Heref2(x) meansf(f(x)) i.e. composition of functions or composite
function rule.

Example 3.25.2: Binary Operation to Construct Infinite RA-Semigroup
If we define binary operationη on R by aηb = f2(a) + f(b) thenR is RA-Semigroup
w.r.t following conditions:
(a) f(x) = 0 thenR is zero semigroup with zero element0.
(b) f(x) = k where k is any constant number then againR is zero semigroup with zero
element2.k.
(c) f(x) = x i.e. identity function thenR is commutative group because this simply means
thatab = a + b.
(d) f(x) = −x i.e. negative identity function thenR is RA-Group with right identity ele-
ment0 and each element is self inverse.

Note in 3.25.2: Heref2(x) meansf(f(x)) i.e. composition of functions or composite
function rule.

Example 3.25.3: Binary Operation to Construct Different Algebraic Structures
If we define binary operationκ on R by aκb = f(a) + g(b) then following conditions
holds:
(a) If f(x) = g(x) = 0 then this is case of zero semigroup.
(b) If f(x) = g(x) = k then this is case of zero semigroup with zero element k.
(c) If f(x) = g(x) = x then this is case of cyclic group.
(d) If f(x) = g(x) = −x then this is case of non associative but commutative groupoid
that satisfies medial as well paramedial law.
(e) If f(x) = x andg(x) = −x then this is case of LA-Semigroup.
(f) If f(x) = −x andg(x) = x then this is case of RA-Semigroup.
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(g) If f(x) = x andg(x) = 0 then this is case of semigroup which is medial as well as
RDD-semigroup.
(h) If f(x) = 0 andg(x) = x then this is case of semigroup which is medial as well as
LDD-semigroup.
(i) If f(x) = −x andg(x) = 0 then this is case of medial and RDD-semigroup.
(j) If f(x) = 0 andg(x) = −x then this is case of medial and LDD-semigroup.

Example 3.25.4: Binary Operation to Construct n-dimensional LA-Semigroup and
RA-Semigroup
(a): If we define binary operation onR3 by xσy = (a, b, c)σ(d, e, f) = (c + d, b + e, a +
f) thenR3 holds left invertive law.

(b): If we define binary operation onR3 by xσy = (a, b, c)σ(d, e, f) = (a + f, b +
e, c + d) thenR3 holds right invertive law.

(c): If we define binary operation onRn byxσy = (x1, x2, x3, ..., xn)σ(y1, y2, y3, ..., yn) =
(xn + y1, xn−1 + y2, xn−2 + y3, ...., x1 + yn) thenRn is LA-Semigroup.

(d): If we define binary operation onRn byxσy = (x1, x2, x3, ..., xn)ς(y1, y2, y3, ..., yn) =
(x1 + yn, x2 + yn−1, x3 + yn−2, ...., xn + y1) thenRn is RA-Semigroup.

Note in 3.25.4: The same procedure can be done for multiplication and by this way we
can develop the concept of LA-Ring, RA-Ring, LA-Field and RA-Field.

Example 3.25.5: Binary Operation to Construct Non Commutative Medials with more
than Two Left(Right) Identities
If n is finite positive even number with the conditionn ≥ 6 and we define binary operation
onZn by xy = [y + kx]mod n wherek = n

2 thenZn is finite non commutative medial with
k idempotents and thesek idempotents are also left identities. The subset ofZn sayZL

containing elements{0, 2, 4, ..., k − 2, k, k + 2, k + 4, ..., n − 2} forms non commutative
band that holds medial as well as LDD-law.

Zn is medial and contains k idempotents which are right identities if n is finite posi-
tive even number with the conditionn ≥ 6 and we define binary operation onZn by
xy = [x + ky]mod n wherek = n

2 .
In this case the subset ofZn sayZR containing elements{0, 2, 4, ..., k − 2, k, k + 2, k +
4, ..., n− 2} forms non commutative band that holds medial as well as RDD-law.

Note in 3.25.5:Zn also holds medial law with three or more than three left or right iden-
tities if n is finite positive odd composite number or even number and we define following
binary operations:
xy = (y + 6x)mod 48 xy = (y + 5x)mod 5

xy = (x + 6y)mod 48 xy = (x + 5y)mod 35

Example 3.25.6: Binary Operation to Construct Commutative Medial



Corrections and Extensions in Left and Right Almost Semigroups 493

(i) If n ≥ 3 and we define binary operationτ on Zn by xτy = [f(x) + f(y)]mod n then
Zn is commutative medial w.r.t following conditions:
(a) If f(x) = 0 is defined onZn thenZn is zero semigroup with zero element0.
(b) If f(x) = x i.e. identity function thenZn is cyclic group.
(c) If f(x) = −x i.e. negative identity function thenZn is cyclic group ifn = 2, and
if n > 2 thenZn is commutative groupoid that satisfies medial law but does not satisfy
associative law. If n is finite positive even number with conditionn ≥ 4 then the subset of
Zn sayZC = {0, n

2 } is cyclic group.

Note in (a): Zn is not medial if we definef(x) = xk wherek ∈ {0, 1, 2, ...., n −
1} − {0, 1} e.g. if we define binary operation onZ8 by xy = x2 + y2.
Also if we define binary operationxy = (x + y)2 onZ8 then surelyZ8 is neither associa-
tive nor medial groupoid butZ8 is commutative.

(ii): If we define binary operation onR or Q by uκv = (u + v)
k where k is any real number

other than0 and1 thenR or Q is commutative medial and ifk = 2 thenR or Q are com-
mutative idempotent medial.
(iii): If we define binary operation onZn by xκy = [(n+1

2 )(x + y)]mod n where n is finite
positive odd number with the conditionn ≥ 3 thenZn is finite commutative idempotent
medial.

Example 3.25.7: Binary Operation to Construct Medials
If we define binary operations∗, ., θ, η, κ, µ, ν, ρ and% onZ10 by the following ways:
a∗b = (a + b + k)mod10

a.b = (a + 2.b + 2.k)mod10

aθb = (a + 3.b + 3.k)mod10

aηb = (a + 4.b + 4.k)mod10

aκb = (a + 5.b + 5.k)mod10

aµb = (a + 6.b + 6.k)mod10

aνb = (a + 7.b + 7.k)mod10

aρb = (a + 8.b + 8.k)mod10

a%b = (a + 9.b + 9.k)mod10

Here we fixk = 1 and have following results:
With respect to∗, ., θ andν the subset{9, 4} forms cyclic group with identity9.
With respect toη, µ andρ {4, 9} forms semigroup which also satisfies medial law as well
as RDD-law.
With respect toκ the subset{1, 3, 5, 7, 9} forms semigroup which also satisfies medial
law as well as RDD-law.
With respect to% Z10 is RA-Group with right identity9.

Note in Example 3.25.7:
(a) We use binary operationab = (a + L.b + L.k)mod n, and ifL = 0 thenab = a which
is case of semigroup, medial and RDD-Semigroup, and ifL = n − 1 with conditionk = 0
thenZn is RA-Group.



494 N. Ahmad, S. A. Shah, W. K. Mashwani and N. Ullah

(b) The same results can be converted into LA-Groups and LDD-Semigroups e.g. if we use
binary operationab = (b + L.a + L.k)mod n,, and ifL = 0 thenab = b which is case of
semigroup, medial and LDD-Semigroup.

4. CONCLUSION

We concluded our results, simmilarities and dissimilarities of LA-Semigroup and RA-
Semigroup with semigroup, and simmilarities and dissimilarities of LA-Group and RA-
Group with group by the following remarks:

(i) Groups in which each element is self inverse are always commutative but this may
not be true in case of LA-Groups and RA-Groups.
(ii) Both Medial and LA-Semigroup with left identity hold the conditiona(bc) = b(ac) but
if medial S contains left identity thenS may not be LA-Monoid e.g. if we define binary
operation onR by ab = |a|.ak.b where . means product and k is finite positive integer then
R is medial with one left identity1 if k is finite positive odd number andR is medial with
two left identities−1 and1 if k is finite positive even number.
(iii) Both Medial and RA-Semigroup with right identity hold the condition(ab)c = (ac)b
but if medialS contains right identity thenS may not be RA-Monoid e.g. if we define bi-
nary operation onR by ab = a.|b|.bk where . means product and k is finite positive integer
thenR is medial with one right identity1 if k is finite positive odd number andR is medial
with two right identities−1 and1 if k is finite positive even number.
(iv) If any groupH or any LA-SemigroupS satisfies the condition(ab)c = (ba)c then
H andS are commutative but if medialU satisfy this property thenU is LDD-semigroup
but may not be commutative. Similarly if any groupG or any RA-SemigroupT satisfies
the conditiona(bc) = a(cb) thenG andT are commutative but if medialV satisfy this
property thenV is RDD-semigroup but may not be commutative.
(v) Non commutative group and non commutative monoid can not hold medial, parame-
dial, LDD, RDD, left invertive or right invertive law and further the relation of semigroup
with paramedial is only commutative property.
(vi) Non commutative semigroup may be medial, LDD-Semigroup or RDD-Semigroup.
(vii) Every LA-Monoid as well as RA-Monoid holds paramedial law, and by converse para-
medial with left(right) identity is LA(RA)-Monoid.
(viii) Non commutative semigroup may not hold medial law, LDD-law or RDD-law e.g.
Free semigroup.
(ix) To construct neither commutative nor associative finite groupoid which is either LA-
Semigroup or RA-Semigroup, the order of groupoid must be atleast3 but groups, commu-
tative bands and semigroups can be constructed of order2. Further every groupoid of order
1 is always commutative monoid, and may be group if we take singleton set{0} and use
binary operation of addition.
See “Tables For Groups and Semigroups of Order2” in which binary operations for groups,
commutative bands and semigroups of order2 are defined by the following:

a∗b = (a + b)mod 2

a.b = (a× b) with elements{−1, 1}.



Corrections and Extensions in Left and Right Almost Semigroups 495

aµb = (a× b)mod 2 with elements{0, 1}.
aνb = (a× b)mod 6 with elements{1, 3}.
aηb = (a.b)mod 4 where we take subset ofZ4 say2Z4 = {0, 2} in which0 is zero element.
aρb = (a.b)mod 24 where we take elements{4, 16} in which16 is zero element.
aθb = a for constant functions fromA to A whereA = {1, 2} and binary operation is
composition of functions or composite function rule.
aκb = b for constant functions fromA to A whereA = {1, 2} and binary operation is
composition of mapping.

TABLE 13. Table For Groups and Semigroups of Order2

∗ a b . a b µ a b ν c d
a a b a b a a a b a a a
b b a b a b b b b b a b

ρ a b η a b θ a b κ a b
a a a a b b a a a a a b
b a a b b b b b b b a b

(x) Finite semigroups always contain atleast one idempotent [22, 5] but finite LA-Semigroup,
RA-Semigroup, medial, medial and either LDD-Semigroup or RDD-Semigroup may not
contain any idempotent.
(xi) The smallest medial and LDD-Semigroup has order2 e.g. if we define binary operation
ab = (b + 1)mod 2 on Z2 and by the same way the smallest medial and RDD-Semigroup
has also order2 e.g. if we define binary operationab = (a + 1)mod 2 onZ2.
(xii) Near-Ring may be or may not be Ring but LA-Near Ring and LA-Ring are same terms,
and by the same way RA-Near Ring and RA-ring are same terms.
(xiii) If semigroupD with left identity holds LDD-law thenS also holds medial law and
vice versa and by the same way if semigroupT with right identity holds RDD-law thenS
also holds medial law and vice versa.
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