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Abstract.: In this paper, we introduce bundle, fibre bundle and princi-
pal G-bundle structures on the Core fundamental groupoid keeping its
standard projections and quotient topology intact. We give an explicit de-
scription of Core fundamental groupoids as such bundles including for
the uniguely geodesic spaces and formulate some results on bundle maps.
Further, we introduce sections on the Core fundamental groupoid bun-
dle, and also, present some basic properties including composition and in-
verse with the help of the induced groupoid homomorphisms on the Core
fundamental groupoids. With a group structure on the set of all continu-
ous sections of the Core fundamental groupoid bundle, a group action has
been built on the Core fundamental groupoid. A notion of relatedness of
homeomorphism and section are defined and discussed the pushforward,
pullback of sections and their properties. Finally, we investigate more
about relatedness notiomslro(z, ) (f), 7€l Homeo(rr)(X) and same on

the subsets based on both section related homeomorphisms and homeo-
morphism related sections. Further, some consequences based on an al-
gebraic structure on the new classi@froz, 1) (f), rel Homeo(ar) (X),

etc. have been placed. We present an interrelationship between subsets
of Homeo(M) andT°(7; M), which have nice applications in the left-
invariant sections and topological groups.
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1. INTRODUCTION

The theory of bundles as a branch of algebraic topology and geometry has a prominent
role in multi-purpose objectives of both geometry and topology. The fibre bundles and
vector bundles are heavily used in quantum mechanics, the theory of relativity under the
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Riemannian, sub-Riemannian setting. Bloch vector buB{iE) over the Brillouin zon&”

can be addressed for instance, where the fibres are the spaces of states with the same Bloch
momentumk [17]. The theory of fibre bundle has similar applications as vector bundles,

it plays a big role in geometry and physics. Developments in the theory of bundles have
taken a nice part in the classification theory, as classification of spaces developed due to
a lot of invariants like Euler characteristics, homotopy, the fundamental group, homology,
cohomology groups, etc.

In the decade of 1930, bundle theory grew tremendously and remarkably influenced all
branches of topology and geometry. For the first time in 1933, the terms fibre and fibre
space appeared in the paper of Herbert Seiirtlh 1935, Hassler Whitney9] gave the
first definition of fibre space under the name sphere space, but later in 1940, he changed it to
sphere bundlell(]. W. S. Massey mentioned i28] about the conference on fibre bundles
and differential geometry, which was held at Cornell University from May 3 to May 7,
1953. In the same paper, he discussed the developments and various definitions of different
mathematicians, as well as the profound research work of participants on the theory of
bundles existing at that time. Besides, in the paper, one can find different definitions of
fibre bundle and they are: fibre bundle in the American sense, fibre space in the sense of
Ehresmann and Feldbau, fibre space in the sense of Hurewicz and Steenrod, fibre space in
the sense of Serre, and also mentioned about the locally trivial fibre space as defined by
the French school. Sophistication and necessity objectives of the study have been taken
into the part of the existing recent definitions of bundle, fibre bundle, princighiindle
and vector bundle. A more general definition of bundle indeed appears in category theory.
Covering projection is a kind of fibre bundle with discrete fibre, and fibrations are also the
same.

Like the Hairy ball theorem on the non-existence of nowhere vanishing continuous vec-
tor field on the even-dimensional sphere, there are many issues in the theory of fibre bun-
dles, principal bundles in topology about homotopy, fibre and existence of sections. For
every topological group/, J. Milnor in [12, [13] has shown that there exist contractible
fibre spaces having/ as fibre. Relating to the similar result there is a questior28j [

- what should be the conditions to be put onBrspaceM such that there could exist a
contractible fibre space having as its fibre? For the same question, a well-known result

is that such a space always existdifis a compact Lie grouplfl]. Similar to this kind

of problem, Robert Hermai2{] gave a sufficient condition for a mapping of Riemannian
manifolds to be a fibre bundle. The triviality of bundles and the existence of a global section
of bundles are the most common problems in this theory. Norman Sted$jatigcussed

the homotopy of maps of bundles explicitly whenever the base space is the same. One can
extend this definition to the bundle maps with two different base spaces. He mentioned
that every fibre bundle whose base space is contractible is trivial and included the theorem
of first covering homotopy. The homotopy of bundle maps is essential to the study of the
fundamental topological structures of bundles. We are discussing a part of the homotopy
theory of bundle maps and their consequences here.

Concepts like the relatedness of a map on sections, vector fields, tensor fields and dif-
ferential forms lead to important theories like the theory of invariant vector fields, invariant
metrics and invariant sections. This has a dominant responsibility in the theory of the Lie
groups, One can see such a discussion of invariant vector fields in the adjcfd4).
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Besides, it is essential to study related morphisms of given sections of a bundle. Such an
essential study has been conducted in this paper. Sections of a bundle is general notion to
the vector field concept, because vector fields, differential forms are certain smooth sec-
tions of vector bundles. Vector bundles are crucial in the theory of connections and metrics
in Riemannian manifolds. Concerning the existence of a regular group action on space and
admittance of a topological group structure, a Lie group structure on a space requires some
basic quality on space. Such a need can be realised by the theory of bundles. In fact, in
this paper, we construct some classes of bundles on topological spaces, and their applica-
tions will be discussed in our next paper, while a hint of applications is mentioned in the
conclusion part.

There are a lot of studies that have taken place on an algebraic structure groupoid. One
may see that they have different arms like groupoid, topological groupoid, Lie groupoid,
and also we may see similar names with different ideas, i.e. hypergroupoid and topolog-
ical hypergroupoid21, 22]. In [2], we have introduced a sufficient topological invariant,
namely the Core fundamental groupoid which contains the path homotopy equivalence
class of loop-based at all points of the space. In section 2]ofuje have proved that
the standard projection on the Core fundamental groupoid to its base space is a quotient
map. Here, we have constructed some bundle structures on the Core fundamental groupoid
and discussed some canonical bundle maps including prinGiiindle maps. We have
studied the sections of such bundles including algebraic structure associated with the set of
all sections of the Core fundamental groupoid bundle, and discussed relatedness on both
sections and functions (mainly on the homeomorphisms), including pullback and push-
forward of sections. The notions o0&l for sections, maps, homeomorphisms, subsets of
Homeo(M) andT'°(7; M) have been broadly studied for their algebraic structure on re-
spective outcomes.

2. PRELIMINARIES

In the entire paper, we denote b¥/, J,,) or whenever there is no confusion, simply
M for a topological space. Generally (M, z) is the fundamental group for topological
spaceM and with a base point € M [1,/15,/16]. Throughout this paper, we denotg for
a loop-based at and7 for the reverse of a path, and alsa:, to the constant loop based
atx. The~~, denotes path homotopy, thelenotes the concatenation of two paths/loops as
defined in the Core fundamental groupoid or fundamental groupoid or in the fundamental
group. In the fundamental group (M, z), indeed, the path homotopy equivalence class
[c.] is the identity element.

A description of Groupoid structure (algebraic sense) is availabl&,itd]. A non-
empty setG associated with—! : G — G a unary operation and : G x G — G a
partial function, but not a binary operation satisfying i) Associativitya b andb x a
defined theru x (b x ¢) and(a % b) x c are defined and x (b x ¢) = (a x b) * ¢, ii) Inverse:
a~ ! xa anda * o~ ! are always defined. iii) Identity: i « b defined, them xbxb~! = a
anda™!' x a x b = b are always defined, is called a groupoid. Generally, one can see that
(@)™ = aand(axb)~' = b1 xa! for defineda b, are often using properties in
groupoid. Commonly, denotes the set of all identities of groupdi] it is called the
identity set ofG. Here, there are some important definitions and results that will be used
later.
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Definition 2.1. [7] Let G, G’ be groupoids under partial functionsand+’ respectively,
thenamapl : G — G’ is called a groupoid homomaorphismiifi, b € G anda x b defined
impliesT'(a) =" T'(b) is defined in such casE(a x b) = T'(a) ¥ T'(b).

Definition 2.2. [7] Let G, G’ be groupoids then a map : G — G’ is called groupoid
isomorphism if it is bijective and botF and7~! are groupoid homomorphism.

Proposition 2.3. The composition of two groupoid homomorphisms is a groupoid homo-
morphism.

Definition 2.4. [18] A topological groupoid is a groupoifl7, x) together with a topology
on G such that unary operation and its partial function are continuous functions.

The Core fundamental groupoid of a topological spates the disjoint union of the
fundamental groups at points 8f, and is denoted by, M = |J, ., m1(M,z) and it
is a topological groupoid under the quotient topology on it yielded by spdcender
standard projectiop (i.e. the topology orr; M is the topologyd,,, = {p~'(U) : VU €
Jam}, Moreover, the fibre of each elementunder standard projection is, (M, =) and
it has indiscrete topology under subspace topolo@}y)the same is used here. For each
continuous magf : M — N the induced groupoid homomorphism is defined oy :
mM — TN by fu([v.]) = [f o 7.] for all equivalence classes containing loopsiin
ie. [’)/w] e mM.

In general, a bundle is a tripleZ, 7, M), wherer is a just surjection from total space
FE to base spacé/ [1,5,16,/19]. One can consider topologies on respective space and
projection as a continuous one. A fibre bundle is a quadrpler, M, F') whereE, M, F
are topological spaces and for every elemert M there is an open séf containingx
in M and a homeomorphism from 7=1(U) to U x F such thatr; o ¢ = 7 wheren,
is the first projection ot/ x F. Similarly a principalG-bundle is a fibre bundle in which
fibre spacel’ = G a topological group, and there is a continuous free right group action
on total space, and the restriction of group action on each fibre is a regular group action.
We are using fibre bundle maps, respective isomorphisms, and homotopy of bundle maps
as in [16,/19]. A uniquely geodesic space is a metric space in which every pair of points
has unique geodesic, infact they are topological spaces.

3. CORE FUNDAMENTAL GROUPOIO A BUNDLE

We have introduced the Core fundamental groupoid bundle and sections of it after be-
ing motivated by the standard notions of tangent bundle and vector fields of differential
geometry, but intuitively, the Core fundamental groupoid bundle and its sections give more
informative applications in the fields of topology and geometry, as we have seen using
group actions. The Core fundamental groupoid contains the path homotopy classes of all
loops based at each point of a topological spagenhich is denoted by, M. A standard
projection on the Core fundamental groupoid is defineg by, M — M, by p([y.]) = =
and it is a surjection. Thus, it is very clear that a trifite M, p, M) becomes a bundle, but
not necessarily a fibre bundle. In some cases, one can seg fffatan be endowed with a
fibre bundle structure, which we will see as a Proposition in this section. As we mentioned
in the preliminary part, the standard projectjpimduces the quotient topology on the Core
fundamental groupoid by base space, under which/ becomes a topological groupoid
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[2]. For each sub-groupoid of the Core fundamental groupoid of connected, locally path-
connected and semi locally simply connected splcthere is a covering spadd][ This

is a way one can have a bundle (take such a covering map as a bundle) with the help of
Core fundamental groupoid, but here we have shown the Core fundamental groupoid itself
admits a bundle structure. Moreover, the topologyren/ as in P] yields structures like

fibre, principalG-fibre structures as follows.

Proposition 3.1. Let M be a topological space such that each pair of fundamental groups
of M be isomorphic, them, M, p, M, w1 (M, x()) is a fibre bundle for some, in M.

Proof. Since each pair of fundamental groups\éfis isomorphic, hence each fitwe! (z()

is isomorphic to all fibre at each point, so homeomorphic to indiscrete spddd, o).
The standard projectiop : 7y M — M from the fundamental groupoid to base space
M is a surjection. FromZ] it is a continuous map under the quotient topology. For
each element € M, we can choose any open détcontainingz, then define a map
Y ip N U) — U x m1(M,20), by $(0s) = (2, Ty uo([2])), whered, = [y,] € p~1(U)
andT, ., is one of the isomorphism from; (M, x) to 71 (M, zo) ( there are many iso-
morphisms between two such fundamental groups but for each choice, we will get a same
expected behaviour of the functiar{6,.) even isomorphism is different), which is a well-
defined homeomorphism. Because, bijection is due to bijectidfi,qf , and subspace
topology onp~!(U) of 7; M guarantees continuity af andy~!. Itis true thatp; oy = p,
where the projectiop; : U x 71 (M,xz¢) — U is given byp(z,[y,]) = «. Thus the
(T M, p, M, m (M, x0)) is a fibre bundle. O

Proposition 3.2. Let M be a topological space and each pair of fundamental groupgd of
be isomorphic, then the fibre bundke, M, p, M, 1 (M, z¢)) is a trivial bundle.

Proof. Define(E, x, M, 71 (M, zo)) by E = M x 71(M, x9), and a projectionr : £ —

M, by m(x, [vs,]) = x then(E, 7, M, 71 (M, x0)) is a product bundle, in fact, it is bundle
isomorphic to(m M, p, M, m (M, xy)), thus a trivial bundle. Because one can define a
pair of maps(F([v.]) = (z, Te.«,), Idas) is an isomorphism of bundle map, whefg

is one of the isomorphism from; (M, x) to 1 (M, x¢) and following diagram commute.

O
mM E
1 F
p‘ "
M > M
Id

Proposition 3.3. Let M be a connected topological manifold then M, p, M, 71 (M, xo))
is a fibre bundle.

Proof. Since fundamental groups between any two points of topological manifolds are
isomorphic, therefore from Proposition 3.1 the result is true. O
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Corollary 3.4. If a topological spaceVl has the trivial fundamental group at each point
then(71 M, p, M, {0}) is a fibre bundle.

Proof. This is followed by Proposition 3.1. O
Corollary 3.5. Let M be a simply connected space thi@gn)M, p, M, {0}) is a fibre bundle.
Proof. This is followed by Corollary 3.4. O

Proposition 3.6. Let M be a uniquely geodesic space then bur@le\/, p, M, 71 (M, x¢))
is a principalm, (M, z()-bundle for some; in M.

Proof. From Proposition 3.3, ther; M, p, M, 71 (M, x¢)) is a fibre bundle. Define a group
actiony : T M x (M, x0) — T M, BY 1([Vz], [0z0]) = [Va %0 %Oz, *T] (OF [0 % Oy, % T %

vz]) is a free right group action, whetreis the geodesic from: to zy. Since, spacé/ is
uniquely geodesic space, therefore there exist unique geodesic between any two arbitrary
elements of\/, henceu is well-defined. We can s@€[v.], [czo]) = [Va %0 *Cao *T] = [Vax]
and.u(,u(hx]’ [ﬂm]% [5380]) = /‘(hw *0 * Oz, *E]’ [69?0]) = [%ﬂ *0 % [y, %0 %0 % Og *E] =

(Yo % 0 % By * 0y % 0] = pu([Val, [Bzy * 0z, ]). Wheneveyu([v.], [z,]) = [7] this implies

(Yo * 0 % Oz * T) = [Vz] OF Yz * 0 % 0y * T 2p Y, €QUiIVAlENtlyy, « o * 65, ) v * 0.
This ensures thalk,, is contractible tacy. Hences,,, path homotopic to constant loap,,
thereforeld,,, ] = [c4,] identity. This implies group action is free.

Moreover, itis true thafpo . = id op x k, wherep : 71 M — M is the standard projection,
pxk: M xm(M,x0) = M X [cy,] defined byp x k([7v2], [0z,]) = (0([V2]), [¢z,]) @nd

id : M X [cg] = M byid (x,[cy,]) = . Moreover, induced group action on each fibre
ie. p:m(M,z) x m(M,z9) — m (M, ) is obviously free and transitive. Let us have
the transitivity of group action, sincg/ is path-connected space hence all fundamental
group are isomorphic to each other (In fact, one can sedd¢his),,, * 7] is a canonical
isomorphism fromry (M, ) to w1 (M, x)). Now we compute,

orbit of ([vz]) = {m[ra)s [0x]) : [0n) € T1(M, 20)}
= {[Va*0 %0y, x| : [0z,] € m1(M,20)}

This o * ., * & is bijective fromm, (M, z¢) to w1 (M, =), because it is a composition of
translation by, | with canonical isomorphism. Accordingly,

orbit of ([vz]) = m(M,x)
This concludes that the group action is transitive. Hence the result. O

Corollary 3.7. Let M be a simply connected space theh M,p, M,{0} = G) is a
principal G-bundle or(7 M, p, M, 71 (M, x)) is a principal =1 (M, x()-bundle for some
xo in M.

Proof. From Proposition 3.1, thér, M, p, M, {0} = G) is a fibre bundle. Define a group
actiony : T M x {0} — 71 M, by u([v.],0) = [y.] is a trivial right group action, and this
is free. This is easy to see thatp ;. = id’ o p x k, wherep : 71 M — M is the standard
projection,p x k : 1M x {0} — M x {0} defined byp x k([v.],0) = (p([y.]),0) and

id : M x {0} — M byid'(x,0) = z. Moreover, the induced group action restricted to
each fibre oveff; M i.e. p: w1 (M, z) x {0} — m (M, x) is obviously free and transitive.
Hence the result.
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Or, it is true that instead af in the above group action, we can consider the fundamental
groupm (M, zo) for group action. For that define the: 71 M x 71 (M, xo) — T M, by
(2], [exe]) = [72], then all axioms regard principal (M, x) bundle will be satisfied.

]

Proposition 3.8. Let (71 M, par, M, w1 (M, xg)), (71N, pn, N, 71 (N, yo)) be fibre bun-
dles, for somery in M andy, in N and f : M — N be a continuous map theif, f)
is a fibre bundle map, whergy : (71 M,J,,,) — (71N,3J,,) is the induced groupoid
homomorphism.

Proof. From Proposition 3.36 ir2] induced groupoid homomorphisify. : (71 M, 3,,,)
— (mN,7J,,) is a topological groupoid homomorphism, for each continuous fhap
M — N. Also, from [2] the following diagram commute.

f

M———=N

FMT T Py

T M——> TN

f

Thus(fx, f) is a fibre bundle map. O

Corollary 3.9. Let(m1 M, par, M, 71 (M, x0)), (m1 N, pn, N, 71 (N, y0)) be fibre bundles,
for somez, in M andyy in N and f : M — N be a homeomorphism thérf, f) is a
fibre bundle isomorphism, whefe. : (71 M, 3,,,) — (71N, J,, ) is the induced groupoid
homomorphism.

Proposition 3.10. Let (71 M, pas, M, w1 (M, x0)), (71N, pn, N, 71 (N, 30)) be fibre bun-
dles, for somery in M andy, in N and f,¢g : M — N be homotopic, then bundle maps
fx andgy are homotopic in the sense of bundle maps.

Proof. Itis followed by Propositions 4.30, 4.31 i@][ O

Proposition 3.11. Let (71 M, pas, M, 71 (M, x9)), (71N, pn, N, 71 (N, y0)) be fibre bun-
dles, for somex, in M andy, in N and M and N be same homotopic type then bundle
(T M, pyr, M, m (M, 20)) is same homotopic to bund{é; N, pn, N, 71 (N, yo))

Proof. It is followed by Proposition 4.32 ir2]. O

4. SECTIONS OFCORE FUNDAMENTAL GROUPOID BUNDLE

A section is a more generalized notion of the vector field; a basic object in differential
geometry/L6,[19]. This is also a well-studied terminology in topology, generally a section
of a bundle is a continuous map that gives an identity when it is composed with a stan-
dard projection from the bundle. Sections of the Core Fundamental groupoid bundle have



188 C. Badiger and T.Venkatesh

important applications in group actions and classification of topological spaces, and also
have rich consequences with pullback and pushforward. For instance, establishing this no-
tion helps us to give a necessary condition for the existence of regular group action on any
topological space, as well as smooth manifolds. Such an application will be discussed in a
future research paper. Here, we define sections of the Core fundamental groupoid bundle
for all kinds of bundles that we have introduced. In this context, a section assigns each
point by a unique path homotopy class of a loop. See proposition 4.4 which shows conti-
nuity is obvious one. In our study, section means continuous section, therefore we include
continuity in the definition of section and by keeping in mind a buri@ieM, p, M) (by
considering both\/, 7, M are topological spaces, but one can also define sections without
continuity). Further, the definition is the same for both fibre buriéle\/, p, M, F) and
principal G-bundle(7; M, p, M, G) accordingly.

Definition 4.1. A section of the Core fundamental groupoid bundle is a continuous map
X : M — 7 M suchthatpo X = Idy,.

Example 4.2. In the Euclidean spac®™ defineX : R" — mR", by X(z) = [ca],
wherec, is the constant loop based at Then it is easy to see thaf is a section due to
po X = Idg~ and continuity is from Proposition 4.4.

Remark 4.3. i) The zero/identity section af; M is the continuous max : M — m M
defined byX (z) = [c,]. Generally, it will be denoted b¥ or O.
i) For any simply connected space there is only one section, that is zero.

Proposition 4.4. Let M be a topological space then every functidn: M — 7 M
satisfyingp o X = Id,, is a section ofr{ M.

Proof. It is enough to see only continuity df. Take arbitrary open sdb of 7y M, then
p~1(V) = D for some open set i¥ in M. ConsiderX—}(D) = X~ Y(p~1(V)) =
(po X)~Y(V) = Idy (V) = V, which is an open i/. ThereforeX is continuous and
a section oft, M. O

Remark 4.5. Different topologies on the Core fundamental groupoid other than this quo-
tient topology need not give the result in Proposition 4.4.

Definition 4.6. Let N be a subspace af/ then a section ovelN is a continuous map
X : N — 7 M such thatpy o X = Idy, wherepy : p~1(N) — N is the restriction of
p-

Proposition 3.2 implies the existence of global sections, so we concentrate on them
rather than sections over subspaces. Further, a local séctafr, M is a section defined
on an open sdt/ of M.
Here we concentrate on sections of the wholé/. For a given topological spacd,
the set of all sections of the Core fundamental groupoitt/ds denoted by® (7, M). i.e.,
%7 M)={X:M — 7, M : X continuous angho X = Id,;}. The sef®(7, M) has
a nice algebraic structure coming from the fundamental groups.

Proposition 4.7. For each[y,,] € 71 M then there exists a sectioki of 7; M such that
X (o) = [y ]-
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Proof. DefineX : M — m M by X(x) = { by fOrz =z it is trivial to see

[cz]  otherwise ’
po X = Idys. Hence by Proposition 4.4 it is a well-defined section and sati&figs ) =
[’Yxo]' 0

Proposition 4.8. Let M be a topological space, and consider the following nw@p:
FO(7_T1M) X FO(TUM) — FO(’J_le\/[) by(X,Y) - X®Y,whereX®Y : M — 71 M
defined by X ® Y)(z) = X(z) = Y(z) (it is the concatenation between th&x) and
Y (x)) with this map th&° (7, M) is a group.

Proof. The operation® : I'°(7, M) x T%(7 M) — I'%(7 M) by (X,Y) - X ®Y,
whereX ® Y : M — 7 M defined by(X ® Y)(z) = X(x) * Y(x) is clearly well-
defined. Becaus& (z) « Y (z) € m (M,z) C 7 M, well-defined function, also this is
clear thatp o (X ® Y') = Idys and by Proposition 4.4 ® Y is a section. Associativity
X®Y®Z)=(X®Y)® Z will follow from the group structure of each fundamental
group. The element zero secti6his in I'°(7; M) and for every sectiok, we can see
O®X = X®0 = X, becauseD® X (z) = O(z)+« X (z) = X (x), forallz in M. Finally,
given any sectionX there is a sectio” : M — 7, M defined byY (z) = (X (x))
(wherex—1(X(x)) is inverse of the elemedt (z) in the fundamental group dff based at
x), thenitis obviousthak ® Y = Y @ X = O. This completes the proof. d

Remark 4.9. i) If all fundamental groups over each point of the space are abelian then
I'%(7, M) is an abelian group.

ii) Since the fundamental group of each element of a topological group is an abelian
(Eckamann-Hilton result). Therefore for any topological gradghe I'(7,G) becomes
abelian.

iii) If M is simply connected therf (7, M) is an abelian group.

iv) For the Projective plan&® P? theT'°(RP?) is an abelian group.

Proposition 4.10. Let f : M — N be a continuous injection anl be a section ofr; M
then there exists a sectidnin 7; N such thatf, o X =Y o f.

Proof. Let f : M — N be a continuous injection, the continuity pfimplies f is well-
defined, and for the sectioN : M — 7, M, we can define mapsay : N — 7N,
by
Y(y) = { fa (X (1)) fory € f(M)
[cy] fory € N\ f(M)

obviously, this becomes a section®fN by Proposition 4.4. Moreover, this satisly, o
fl@) =Y (f(2) = fe(X(f1(f(2) = fe(X(2)) = fg o X(x), forz € M. Hence
the result. O

This result needg to be injective. Supposg is not injective such sections cannot be
defined from codomain to its Core fundamental groupoid, because, in that case, induced
groupoid homomorphisnfiy assigns more than two elements to the elements of the same
fundamental group of the same element of the codomagn Bbr example, lef : St — S!
be defined byf(z) = 22 which is not an injection but continuous. For = ¢2>*%] and
[_1 = —e?™] element oft; St and 4 ([y1 = ¢*™]) and fx ([a—1 = —e™]) elements
in 1 (S, 1) € 7St but they are not same elements dug to~y; is not path homotopic to
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f o a_y. Therefore for the uniqueness and non-triviality of such a section in Proposition
4.10 needs the map to be a homeomorphism.

Proposition 4.11. Let f : M — N be a homeomorphism ar be a section ofr; M then
there exists a unique sectidhin 7; N such thatf, o X =Y o f.

Proof. DefineaY : N — 71N by Y (y) = f« o X o f~!(y) which is a well-defined map
and becomes a section obviously. Moreover, it satigfies X = Y o f. For uniqueness,
suppose there is another sectiéhsatisfyingY’o f = fxoX impliesY’ = fgoXof~! =
Y. Hence it is unique. O

Proposition 4.12. Let f : M — N be a homeomorphism and for any sectiérof 7y N
then there exists a unique sectighin 7, M such thatfy o X =Y o f.

Proof. DefineX : M — m M by X (z) = j;l oY o f(x) which is a section obviously.
Uniqueness is due to the homeomorphisnyf of O

Propositions 4.11, 4.12 help to define notions calfegtlatedness, pushforward, pull-
back.

Definition 4.13. Let f : M — N be a homeomorphism and be a section ofr; M then
the section ofr; N defined byf*(X) = f4 o X o f~! is called pushforward of sectioX
under f. This gives a mag* : T'°(7 M) — I'°(71 N), defined byf*(X) = fpoX o f~1
is called pushforward map.

Definition 4.14. Let f : M — N be a homeomorphism arid be a section ofr; N then
the section oft; M defined byf*(Y') = f;l oY o f is called pullback of sectiolr” under
f. This gives amag* : T°(7; N) — I'°(7; M), defined byf*(Y) = f; oY o f called
pullback map.

Proposition 4.15. Let f : M — N be a homeomorphism then both : (7, M) —
(7 N)andf* : 97 N) — I'°(7, M) are group homomorphisms.

Proof. Let us see forf* : T'(7, M) — T'°(7; N), choose arbitrary elemenis, , X2 from
07 M). We can have™* (X1 ® Xo) = fgo (X1 ®Xo)of 1= froXjof 1@ fuo
Xyo f7h = f*(X;) ® f*(X2), because for every € N the
fro(Xi®Xo)o [T y) = fuar1Xa(f W) = X2(f1(y))
Far10) (X (F 1 W)) * 1) (X2 (f 1 (®)))
= (fgoXiof () * (fgo X0 f ) (y)
Similarly, for, f* : T9(7; N) — I'°(71; M ), choose arbitrary elemernits, Y fromI'° (7, V).
We can havef* (Y, @ Y2) = fy to (Vi@ Ya)of = fu toYiof@ fyu toYao f=
f*(Y1) ® f*(Y3), because for every € M the,
(fg loMeYa)of)x) = farw N(f(2)*Ya(f(2)))
Fasr” (N(f@) * fapa ™ (Ya(f(2))
(fg " oYio f)(x)  (fg o Yao f)(x)
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Proposition 4.16. Let f : M — N be a homeomorphism then,

i) fU = =

i) f7 ==

Proof. i) The homeomorphisnf : M — N implies the inverse mag—' : N — M is
a homeomorphism. Therefofe '™ : T°(7,N) — I'%(7,M) is well-defined and for any
Y eT0(mN)thef (V) = f71oVo(f71) " = fz oYof = 1Y) = (V).
ii) This is similar to (i). O

Proposition 4.17. LetId : M — M be the identity map then
i) Id* = Idro(z, ar).-
i) Id* = Idro(z, ).

Proof. i) HypothesisId : M — M is the identity map, sdd* : T°(7 M) — (71 M)
satisfyId*(X) = Idgo X oId ™' = X = Idro(z, vy (X), for everyX e T9(7 M).
ii) HypothesisId : M — M is the identity map, séd* : I'°(7 M) — I'°(7, M) satisfy
Id*(X)=1Idy 'oXold=X = Idroz, vy (X), for everyX € T9(m M). O
Proposition 4.18. Let f : M — N andg : N — R be homeomorphism then
D (gof) =g of"
i) (go f)" = f*oyg"
Proof. i) Both f* : T%(7; M) — I'°(7;N) andg* : T%(7; N) — I'°(R) are composable
and giveg* o f* : T%(7; M) — T°(R) as well-defined. Also, we have for eve €
Fo(ﬁ'lM), the

(9o )"(X) = (gof)ygoXolgen)”
g#of#o)(offlogf1
gx 0 (F*(X)) 0g™" = g"(f*(X)).

Hence(go f)* = g* o f*.
i) Both f* : T(7 N) — I'°(7, M) andg* : T°(R) — T'°(7, V) are composable and give
f*og*: T°%R) — I'°(7, M) as well-defined. Also, we have for evetyc I'°(R), the

(go)"(Z2) = (90f)y "oZo(gof)
fo togy toZogof
fa~to(g"(Z))o f
= f*(g*(2)).
Hence(go f)" = f* o g*. O

Proposition 4.19. Let M be a topological space then : T°(7 M) x 7yM — 7T M
defined by (X, [v.]) = [X (z) * 7,] is a well-defined non-regular group action.

Proof. SinceX (z) and~, are elements of the same fundamental greu@\/, z), hence
w is well-defined. Lefv,] € 71 M and for zero sectio®, we havev(O, [v,]) = [O(z) *
v2] = [72]- And also for[y,] € mM andX,Y € I'°(7; M) thenw(X,w(Y, [v:])) =
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w(X, [V (2) % 7s]) = [X(2) * (V(2) *72)] = [(X(2) % Y (2)) % %e] =w(X ®Y, [12]). It
is clear to see that is non-transitive and not free, so a non-regular group action. [

5. SECTION-RELATED HOMEOMORPHISMS HOMEOMORPHISM-RELATED SECTIONS
AND THEIR ALGEBRAIC STRUCTURES

Propositions 4.10, 4.11, and 4.12 are fundamental to define pullback and pushforward.
In geometry, such vector field notions serve as motivations forfthelated vector field
and the left-invariant vector field. Moreover, the same results motivate us to define homeo-
morphism related sections and section related to homeomorphisms on a given topological
space. The rel sets acquire a group structure that helps us to have group actions in respective
spaces. We are introducing such notions as given below.

Definition 5.1. [9,/10,/16] Let f : M — N be a continuous map, a sectioh e ' (71, M)
is said to bef-related to a sectio¥’ € I'°(71N), if fz o X =Y o f, or the following
diagram commute,

In this case, we calf is pair (X, Y')-related continuous map.
i) Foragivenf € C(M, N) then the set of all pairs of sections frdifi(7; M) x (7, N)
for which fx o X = Y o f, is called f-related pair of sections. We will denote it by
Telrﬂ(ﬁl M)xIO(71N) (f)-
i) For agiven X € I'°(7, M) andY € I'°(7; N) then set of all continuous magsfrom
M to N for which fx o X = Y o f, is called pair(X,Y)-related continuous maps, is
denoted by-elc(ar,n) (X, Y).

Remark 5.2. With reference to Definition 5.1, we define a relatién: C(M,N) —
(7 M) x T%(71N), given byR(f) = (X,Y), if f4 o X =Y o f. Further, we have the
following results,

We can se&R({f}) = relroz, axro@n)(f) and RH((X,Y)) = reloorn) (X, Y).
Fora givenX € I'(m; M) andY € I'’(7N) the setrelc(ar,ny(X,Y) may sometimes
be empty, since the relation is not universal. Howexgfoz, ar)xrox, v (f) is always
non-empty due tgx o Opr = Op o f. Interestingly for a given continuous mgp the
relro iz ayxro(z N (f) is @ subgroup of (7, M) x I'°(7,N), under coordinate-wise
operation by=.

The most useful notion gfrelated is whery is a homeomorphism, which gives the idea of
invariant sections. Therefore, we have highlighted the same in the below Remark.
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Remark 5.3. Suppose the functiofiin Definition 5.1 is a homeomorphism then we have
the following concepts and results. We define a relaffonH omeo(M, N) — T'%(71 M) x
IO(m N), by Q(f) = (X, Y),if fg0 X =Y o f.

i) For a given f € Homeo(M, N) then set of all pairs of sections frob (7, M) x
%7, N) for which fx o X = Y o f, is called f-related pair of sections, is denoted by
relro(z, myxTo (= ) (f). Moreover, we can se@({f}) = relroz, aryxro(z, n)(f)-

i) For a given X € I'%(7; M) andY € T°(# N) then set of all homeomorphisnfs
from M to N for which fx o X = Y o f, is called pair (X,Y)-related homeomor-
phisms, is denoted byelromeo(ar,n)(X,Y). Moreover, we can se@ 1((X,Y)) =
TelHomeo(M,N) (X7 Y)

For a givenX e I'’(7; M) andY € I'°(7,N) the setrel gomeo(ar,n)(X,Y) may some-
times be empty, since the relation is not universal. Howewk# (z, nr)x o (=, v (f) is al-
ways non-empty. Interestingly, for a given homeomorplfistherelroz, ary <o vy (f)

is a subgroup of °(7; M) x I'°(7; N), under coordinate-wise operation .

Invariant of sections are only defined whé¢nis homeomorphism o/, because both
fyoX andX o f are sections ofr; M, hence we can compare them for the same behavior.
Therefore, we have restricted it to homeomorphism for the notion of invariants of sections.

Remark 5.4. Suppose the functiofi in Definition 5.1 is a homeomorphism between the
same space and a section € I'’(7; M) satisfies the condition in Definition 5.1 théf

is called f-related or f-invariant section. With reference to this definition, we have the
following concepts and results.

We define a relatios : Homeo(M) — I'(71 M), by S(f) = X,if froX =X o f.

i) For a givenf € Homeo(M ) then set of all sections af; M for whichfy o X = X o f,

is called f-related sections of -invariant sections, is denoted bylro, 1) (f) = {X €
(7 M) : fu o X = X o f}. Moreover, we can se&({f}) = relro(z,ar)(f).

ii) For a given X € I'Y(7; M) the set of all homeomorphisnfson M for which fx o X =

X o f, is called X -related homeomorphisms, is denotedrby omeo(ar) (X ). Explicitly

rel gomeo(nr)(X) = {f € Homeo(M) : fu o X = X o f}, which is equal t&5— ({X}).

For a givenX € I'’(7; M) the setrel gomeo(ar) (X) is @lways non-empty, due el o

X = X o Id for any section, thereforeld € relgomeo(ar)(X). And also always set
relrocz, ) (f) is non-empty due tg, c O = O o f.

Proposition 5.5. For a givenX € I'°(7; M) the setrel gomeo(ar)(X) is @ subgroup of
Homeo(M).

Proof. Obviously el gomeo(ar)(X) is non-empty subset of all homeomorphisms /an
Take any twof, g € relgomeo(ar) (X), consider(f og)# oX = fgogpoX = fuo
Xog= Xo(fog). Thereforef o g € relyomeo(ar)(X). Associativity comes from
the common property of the composition. Sinke € rel g omeo(ar)(X) and act as iden-
tity in relgomeo(ar)(X). And also for anyf € relyomeoar)(X) One can seg ™! e
rel omeo(ar)(X), because considéf 1), o X = (f1),0Xofoft = (f),0
fpoXoft=Xof 1 Hencerel gomeo(nr) (X) is a subgroup. O

Remark 5.6. For O € T'°(m M) thenrel g ymeo(ar) (O) = Homeo(M).
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Definition 5.7. For a givenB C I'°(7; M) the set of all homeomorphisnfson M for
which fx o X = X o f, forall X € B is called B-related homeomorphisms, denoted by
rel Homeo(r)(B). Thus i.erelgomeo(ar)(B) = {f € Homeo(M) : fy 0 X = X o f, for

all X € B}.

Proposition 5.8. For a given subset of sectiols C ' (7, M) then setrel gomeo(ar) (B)
is a subgroup oH omeo(M).

Proof. Similar to Proposition 5.5. and indeed, it is an intersectiomaf;omeo(nr) (X)
groups for allX € B.

Remark 5.9. rel g omeo(an) (T (T1 M) = {Id}

The groups given by Propositions 5.5 and 5.8 can be seen as the isotropic subgroup of
the point inT°(7, M) or stabilizer of a section or intersection of the stabilizer of more
points under a crucial group action 6f(7; M) by Homeo(M).

Proposition 5.10. Let M be a topological space and lgt: Homeo(M) x T'°(7, M) —
(7 M) given byu(f, X) = fg o X o f~1, then

i) is non-transitive (IfM is non-simply connected and for simply connected space it is
transitive) group action (one can also define right group action).

ii) Isotropy(X) = stabgomeo(ar)(X) = relgomeo(ar)(X) for everyX e I'° (7, M).

iii)For a given subset of section$ C I'(7, M), then the

TelHomeo(M) (B) = ﬂXeB StabHomeo(]M)(X)-

iv) Fixed point sel® (7, M)7°"°™) — (0},

Proof. i) For a topological spac#!, the Homeo(M) group acts by.(f, X) = fyo X o

f~'. ltis clear thatfdy o X o Id~* = X for all sections, and also that f, u(g, X)) =

p(f.g40Xog ) =(fog)yoXo(fog) " =u(fog X).

The orbit of zero section under this group action then it is a singleton trivial section, that
is orb, (O) = {u(f,0) :forall f € Homeo(M)} = {O}, hence the group action is
non-transitive for non-simply connected space.

ii) For all X e I'°(7, M) we computel sotropy(X) = Stabp omeo(ar) (X),

StabHomeo(M)(X) = {fGHOmGO(M)Z[L(f7X):f#OXOf71:X}

= {fe Homeo(M): fpoX =Xof}
= TelHomeo(M) (X)

It is well-known that isotropyX') is a subgroup off omeo(M), SO isTel g omeo(ar) (X).

Hence it is a subgroup.

iii) For a given set of section§ c T'°(7; M), we compute,

reliromeoary(B) = {f € Homeo(M): p(f,X) = fgoXo f' =X VX € B}
= {feHomeoM): fpuoX =Xo fVX € B}

= ﬂ StabHoTn,eo(]\f) (X)
XeB
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iv) The setl* (7, M)HomeoM) = (X € TO(7 M) : u(f, X) = fgpoXof~t = X, for
every f € Homeo(M)}. Pushforward of the section under all homeomorphisms is only
the zero section. Therefore the fixed point setds . O

Proposition 5.11. For a givenf € Homeo(M) the setrelro(z, ar)(f) is @ subgroup of
o7 M).

Proof. Obviouslyrelro(z, ar)(f) is @a non-empty subset of set of all sectionsrol/. Take
any twoX,Y € relro(z, ar)(f), considerfyo(X®Y) = fyuoX® fuoY = Xof®Yof =
(X®Y)oF. Whereitisclearthafy o (X ®Y) = fu 0o X ® fx oY, because, for all
x € M the

frpo(X@Y)(x) Jaa (X () x Y ()
Jua(X(2)) * fg(Y(2))
fu o X(x)* faoY(x)
= (fpoX® fgoY)(x),
thereforeX ® Y € relpoz, ar)(f). Also for everyX € relrocz an(f) there is ay” =
X1 e relpogz, ar(f), defined byY (z) = «~1(X (z)) because for alt: € M the
froXMz) = [fr(X 7M@) = (fpa(X ()™
= (fga0X(@) = (Xof(a))
= (X(f)™
= X '(f(2)
= X o f(x),
this impliesf, o X~! = X 1o f. Thus setelro(z, ) (f) is @ subgroup of* (7, M). O
Remark 5.12. For theId € Homeo(M) thenrelroz, ar)(Id) = T° (7 M).

Definition 5.13. LetH C Homeo(M) then the set of all sections € I'°(7; M) such that
fuoX = Xof,forall f € H, is calledH-related sections ot-invariant sections, denoted
by ’I"@lpo(ﬁ—llu) (H) EXpllClﬂy T@lFO(ﬁ-lM) (H) = {X S Fo(ﬁ'lM) : f# oX =Xo f, for
all f e H}.

For a given non-empty subsktof homeomorphism group ol the setrelroz, o) (H)
is always non-empty, due t. o O = Oo f, forall f € 'H, thereforeO € relvo(z, pry(H).

Proposition 5.14. For a givenH C Homeo(M ) the setrelro(z, ar)(H) is a subgroup of
o7 M).

Proof. This is similar to Proposition 5.11. (Indeed, it is an intersection of all subgroups
relroz vy (f), wheref € H). d

Remark 5.15. relpo(z, ary (Homeo(M)) = {O}.

Here there are some questions we will try to answer in future works,
i) For every non-trivial proper subgrou of I'°(71 M) is rel i omeo(nr) (B) always equal
to a non-trivial subgroup of homeomorphisms that yield by a group action?
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ii) For every non-trivial proper subgrould of Homeo(M) for which relro(z, vy (H) is it
always a group which is isomorphic to a subgroup of the fundamental group of a point in
M?

We are working onrel operations in both senses and formulating results by iteratively
operating fromrel. We will come up with results to the posed issues in a forthcoming
research paper.

6. CONCLUSION

The Core fudamental groupoid is an algebraic structure on topological spaces and it is
a sufficient topological invarian®?]. In general, the Core fundamental groupoid admits
bundle structures but not fibre bundles. If the fundamental group of a topological space is
isomorphic to any two points in the space, then its Core fundamental groupoid forms a fibre
bundle. This is an important result that helps to conclude whether a space is a topological
group or not. Further, the relatedness is a more general notion to the left-invariant vector
fields in differential geometry. The relatedness in both senses is interrelated, and they
absorb some special class (we will discuss them in a future paper) of continuous sections
of the Core fundamental groupoid bundle when a topological space admits a group action.
The Core fundamental groupoids of topological spaces are key to conclude the existence
of regular group action and the existence of topological group structure on them.
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