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Abstract.: In this paper, we introduce bundle, fibre bundle and princi-
pal G-bundle structures on the Core fundamental groupoid keeping its
standard projections and quotient topology intact. We give an explicit de-
scription of Core fundamental groupoids as such bundles including for
the uniquely geodesic spaces and formulate some results on bundle maps.
Further, we introduce sections on the Core fundamental groupoid bun-
dle, and also, present some basic properties including composition and in-
verse with the help of the induced groupoid homomorphisms on the Core
fundamental groupoids. With a group structure on the set of all continu-
ous sections of the Core fundamental groupoid bundle, a group action has
been built on the Core fundamental groupoid. A notion of relatedness of
homeomorphism and section are defined and discussed the pushforward,
pullback of sections and their properties. Finally, we investigate more
about relatedness notionsrelΓ0(π̄1M)(f), relHomeo(M)(X) and same on
the subsets based on both section related homeomorphisms and homeo-
morphism related sections. Further, some consequences based on an al-
gebraic structure on the new class ofrelΓ0(π̄1M)(f), relHomeo(M)(X),
etc. have been placed. We present an interrelationship between subsets
of Homeo(M) andΓ0(π̄1M), which have nice applications in the left-
invariant sections and topological groups.
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1. INTRODUCTION

The theory of bundles as a branch of algebraic topology and geometry has a prominent
role in multi-purpose objectives of both geometry and topology. The fibre bundles and
vector bundles are heavily used in quantum mechanics, the theory of relativity under the
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Riemannian, sub-Riemannian setting. Bloch vector bundleE(T ) over the Brillouin zoneT
can be addressed for instance, where the fibres are the spaces of states with the same Bloch
momentumk [17]. The theory of fibre bundle has similar applications as vector bundles,
it plays a big role in geometry and physics. Developments in the theory of bundles have
taken a nice part in the classification theory, as classification of spaces developed due to
a lot of invariants like Euler characteristics, homotopy, the fundamental group, homology,
cohomology groups, etc.

In the decade of 1930, bundle theory grew tremendously and remarkably influenced all
branches of topology and geometry. For the first time in 1933, the terms fibre and fibre
space appeared in the paper of Herbert Seifert [8]. In 1935, Hassler Whitney [9] gave the
first definition of fibre space under the name sphere space, but later in 1940, he changed it to
sphere bundle [10]. W. S. Massey mentioned in [23] about the conference on fibre bundles
and differential geometry, which was held at Cornell University from May 3 to May 7,
1953. In the same paper, he discussed the developments and various definitions of different
mathematicians, as well as the profound research work of participants on the theory of
bundles existing at that time. Besides, in the paper, one can find different definitions of
fibre bundle and they are: fibre bundle in the American sense, fibre space in the sense of
Ehresmann and Feldbau, fibre space in the sense of Hurewicz and Steenrod, fibre space in
the sense of Serre, and also mentioned about the locally trivial fibre space as defined by
the French school. Sophistication and necessity objectives of the study have been taken
into the part of the existing recent definitions of bundle, fibre bundle, principalG-bundle
and vector bundle. A more general definition of bundle indeed appears in category theory.
Covering projection is a kind of fibre bundle with discrete fibre, and fibrations are also the
same.

Like the Hairy ball theorem on the non-existence of nowhere vanishing continuous vec-
tor field on the even-dimensional sphere, there are many issues in the theory of fibre bun-
dles, principal bundles in topology about homotopy, fibre and existence of sections. For
every topological groupM , J. Milnor in [12, 13] has shown that there exist contractible
fibre spaces havingM as fibre. Relating to the similar result there is a question in [23]
- what should be the conditions to be put on anH-spaceM such that there could exist a
contractible fibre space havingM as its fibre? For the same question, a well-known result
is that such a space always exists ifM is a compact Lie group [11]. Similar to this kind
of problem, Robert Herman [20] gave a sufficient condition for a mapping of Riemannian
manifolds to be a fibre bundle. The triviality of bundles and the existence of a global section
of bundles are the most common problems in this theory. Norman Steenrod [19] discussed
the homotopy of maps of bundles explicitly whenever the base space is the same. One can
extend this definition to the bundle maps with two different base spaces. He mentioned
that every fibre bundle whose base space is contractible is trivial and included the theorem
of first covering homotopy. The homotopy of bundle maps is essential to the study of the
fundamental topological structures of bundles. We are discussing a part of the homotopy
theory of bundle maps and their consequences here.

Concepts like the relatedness of a map on sections, vector fields, tensor fields and dif-
ferential forms lead to important theories like the theory of invariant vector fields, invariant
metrics and invariant sections. This has a dominant responsibility in the theory of the Lie
groups, One can see such a discussion of invariant vector fields in the articles [4, 6, 14].
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Besides, it is essential to study related morphisms of given sections of a bundle. Such an
essential study has been conducted in this paper. Sections of a bundle is general notion to
the vector field concept, because vector fields, differential forms are certain smooth sec-
tions of vector bundles. Vector bundles are crucial in the theory of connections and metrics
in Riemannian manifolds. Concerning the existence of a regular group action on space and
admittance of a topological group structure, a Lie group structure on a space requires some
basic quality on space. Such a need can be realised by the theory of bundles. In fact, in
this paper, we construct some classes of bundles on topological spaces, and their applica-
tions will be discussed in our next paper, while a hint of applications is mentioned in the
conclusion part.

There are a lot of studies that have taken place on an algebraic structure groupoid. One
may see that they have different arms like groupoid, topological groupoid, Lie groupoid,
and also we may see similar names with different ideas, i.e. hypergroupoid and topolog-
ical hypergroupoid [21, 22]. In [2], we have introduced a sufficient topological invariant,
namely the Core fundamental groupoid which contains the path homotopy equivalence
class of loop-based at all points of the space. In section 3 of [2], we have proved that
the standard projection on the Core fundamental groupoid to its base space is a quotient
map. Here, we have constructed some bundle structures on the Core fundamental groupoid
and discussed some canonical bundle maps including principalG-bundle maps. We have
studied the sections of such bundles including algebraic structure associated with the set of
all sections of the Core fundamental groupoid bundle, and discussed relatedness on both
sections and functions (mainly on the homeomorphisms), including pullback and push-
forward of sections. The notions ofrel for sections, maps, homeomorphisms, subsets of
Homeo(M) andΓ0(π̄1M) have been broadly studied for their algebraic structure on re-
spective outcomes.

2. PRELIMINARIES

In the entire paper, we denote by(M, IM ) or whenever there is no confusion, simply
M for a topological space. Generally,π1(M, x) is the fundamental group for topological
spaceM and with a base pointx ∈ M [1, 15, 16]. Throughout this paper, we denoteγx for
a loop-based atx andγ for the reverse of a pathγ, and alsocx to the constant loop based
atx. The'p denotes path homotopy, the∗ denotes the concatenation of two paths/loops as
defined in the Core fundamental groupoid or fundamental groupoid or in the fundamental
group. In the fundamental groupπ1(M, x), indeed, the path homotopy equivalence class
[cx] is the identity element.

A description of Groupoid structure (algebraic sense) is available in [7, 18]. A non-
empty setG associated with?−1 : G → G a unary operation and? : G × G → G a
partial function, but not a binary operation satisfying i) Associativity: Ifa ? b andb ? a
defined thena ? (b ? c) and(a ? b) ? c are defined anda ? (b ? c) = (a ? b) ? c, ii) Inverse:
a−1 ? a anda ? a−1 are always defined. iii) Identity: Ifa ? b defined, thena ? b ? b−1 = a
anda−1 ? a ? b = b are always defined, is called a groupoid. Generally, one can see that
(a−1)−1 = a and(a ? b)−1 = b−1 ? a−1 for defineda ? b, are often using properties in
groupoid. Commonly,G0 denotes the set of all identities of groupoidG, it is called the
identity set ofG. Here, there are some important definitions and results that will be used
later.
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Definition 2.1. [7] Let G,G′ be groupoids under partial functions? and?′ respectively,
then a mapT : G → G′ is called a groupoid homomorphism if∀a, b ∈ G anda ? b defined
impliesT (a) ?′ T (b) is defined in such caseT (a ? b) = T (a) ?′ T (b).

Definition 2.2. [7] Let G,G′ be groupoids then a mapT : G → G′ is called groupoid
isomorphism if it is bijective and bothT andT−1 are groupoid homomorphism.

Proposition 2.3. The composition of two groupoid homomorphisms is a groupoid homo-
morphism.

Definition 2.4. [18] A topological groupoid is a groupoid(G, ?) together with a topology
onG such that unary operation and its partial function are continuous functions.

The Core fundamental groupoid of a topological spaceM is the disjoint union of the
fundamental groups at points ofM , and is denoted bȳπ1M =

⋃
x∈M π1(M,x) and it

is a topological groupoid under the quotient topology on it yielded by spaceM under
standard projectionp (i.e. the topology on̄π1M is the topologyIpM

= {p−1(U) : ∀U ∈
IM}, Moreover, the fibre of each elementx under standard projection isπ1(M, x) and
it has indiscrete topology under subspace topology) [2], the same is used here. For each
continuous mapf : M → N the induced groupoid homomorphism is defined byf# :
π̄1M → π̄1N by f#([γx]) = [f ◦ γx] for all equivalence classes containing loops inM ,
i.e. [γx] ∈ π̄1M .

In general, a bundle is a triple(E, π, M), whereπ is a just surjection from total space
E to base spaceM [1, 5, 16, 19]. One can consider topologies on respective space and
projection as a continuous one. A fibre bundle is a quadruple(E, π, M, F ) whereE,M,F
are topological spaces and for every elementx ∈ M there is an open setU containingx
in M and a homeomorphismφ from π−1(U) to U × F such thatπ1 ◦ φ = π whereπ1

is the first projection ofU × F . Similarly a principalG-bundle is a fibre bundle in which
fibre spaceF = G a topological group, and there is a continuous free right group action
on total space, and the restriction of group action on each fibre is a regular group action.
We are using fibre bundle maps, respective isomorphisms, and homotopy of bundle maps
as in [16, 19]. A uniquely geodesic space is a metric space in which every pair of points
has unique geodesic, infact they are topological spaces.

3. CORE FUNDAMENTAL GROUPOID: A BUNDLE

We have introduced the Core fundamental groupoid bundle and sections of it after be-
ing motivated by the standard notions of tangent bundle and vector fields of differential
geometry, but intuitively, the Core fundamental groupoid bundle and its sections give more
informative applications in the fields of topology and geometry, as we have seen using
group actions. The Core fundamental groupoid contains the path homotopy classes of all
loops based at each point of a topological spaceM , which is denoted bȳπ1M . A standard
projection on the Core fundamental groupoid is defined byp : π̄1M → M , by p([γx]) = x
and it is a surjection. Thus, it is very clear that a triple(π̄1M,p, M) becomes a bundle, but
not necessarily a fibre bundle. In some cases, one can see thatπ̄1M can be endowed with a
fibre bundle structure, which we will see as a Proposition in this section. As we mentioned
in the preliminary part, the standard projectionp induces the quotient topology on the Core
fundamental groupoid by base space, under whichπ̄1M becomes a topological groupoid
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[2]. For each sub-groupoid of the Core fundamental groupoid of connected, locally path-
connected and semi locally simply connected spaceM there is a covering space [3]. This
is a way one can have a bundle (take such a covering map as a bundle) with the help of
Core fundamental groupoid, but here we have shown the Core fundamental groupoid itself
admits a bundle structure. Moreover, the topology onπ̄1M as in [2] yields structures like
fibre, principalG-fibre structures as follows.

Proposition 3.1. LetM be a topological space such that each pair of fundamental groups
of M be isomorphic, then(π̄1M, p, M, π1(M, x0)) is a fibre bundle for somex0 in M .

Proof. Since each pair of fundamental groups ofM is isomorphic, hence each fibrep−1(x0)
is isomorphic to all fibre at each point, so homeomorphic to indiscrete spaceπ1(M, x0).
The standard projectionp : π̄1M → M from the fundamental groupoid to base space
M is a surjection. From [2] it is a continuous map under the quotient topology. For
each elementx ∈ M , we can choose any open setU containingx, then define a map
ψ : p−1(U) → U × π1(M,x0), by ψ(θx) = (x, Tx,x0([γx])), whereθx = [γx] ∈ p−1(U)
andTx,x0 is one of the isomorphism fromπ1(M,x) to π1(M, x0) ( there are many iso-
morphisms between two such fundamental groups but for each choice, we will get a same
expected behaviour of the functionψ(θx) even isomorphism is different), which is a well-
defined homeomorphism. Because, bijection is due to bijection ofTx,x0 , and subspace
topology onp−1(U) of π̄1M guarantees continuity ofψ andψ−1. It is true that,p1◦ψ = p,
where the projectionp1 : U × π1(M, x0) → U is given byp1(x, [γx]) = x. Thus the
(π̄1M,p, M, π1(M,x0)) is a fibre bundle. ¤
Proposition 3.2. LetM be a topological space and each pair of fundamental groups ofM
be isomorphic, then the fibre bundle(π̄1M,p, M, π1(M,x0)) is a trivial bundle.

Proof. Define(E, π, M, π1(M, x0)) by E = M × π1(M, x0), and a projectionπ : E →
M , by π(x, [γx0 ]) = x then(E, π, M, π1(M, x0)) is a product bundle, in fact, it is bundle
isomorphic to(π̄1M,p, M, π1(M,x0)), thus a trivial bundle. Because one can define a
pair of maps(F ([γx]) = (x, Tx,x0), IdM ) is an isomorphism of bundle map, whereTx,x0

is one of the isomorphism fromπ1(M,x) to π1(M,x0) and following diagram commute.
¤

Proposition 3.3. LetM be a connected topological manifold then(π̄1M, p, M, π1(M, x0))
is a fibre bundle.

Proof. Since fundamental groups between any two points of topological manifolds are
isomorphic, therefore from Proposition 3.1 the result is true. ¤
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Corollary 3.4. If a topological spaceM has the trivial fundamental group at each point
then(π̄1M,p, M, {0}) is a fibre bundle.

Proof. This is followed by Proposition 3.1. ¤
Corollary 3.5. LetM be a simply connected space then(π̄1M,p, M, {0}) is a fibre bundle.

Proof. This is followed by Corollary 3.4. ¤
Proposition 3.6. LetM be a uniquely geodesic space then bundle(π̄1M, p,M, π1(M, x0))
is a principalπ1(M, x0)-bundle for somex0 in M .

Proof. From Proposition 3.3, the(π̄1M, p, M, π1(M, x0)) is a fibre bundle. Define a group
actionµ : π̄1M×π1(M, x0) → π̄1M , byµ([γx], [δx0 ]) = [γx ∗σ∗δx0 ∗σ] (or [σ∗δx0 ∗σ∗
γx]) is a free right group action, whereσ is the geodesic fromx to x0. Since, spaceM is
uniquely geodesic space, therefore there exist unique geodesic between any two arbitrary
elements ofM , henceµ is well-defined. We can seeµ([γx], [cx0 ]) = [γx∗σ∗cx0 ∗σ] = [γx]
andµ(µ([γx], [βx0 ]), [δx0 ]) = µ([γx ∗σ ∗βx0 ∗σ], [δx0 ]) = [γx ∗σ ∗βx0 ∗σ ∗σ ∗δx0 ∗σ] =
[γx ∗ σ ∗ βx0 ∗ δx0 ∗ σ] = µ([γx], [βx0 ∗ δx0 ]). Wheneverµ([γx], [δx0 ]) = [γx] this implies
[γx ∗ σ ∗ δx0 ∗ σ] = [γx] or γx ∗ σ ∗ δx0 ∗ σ 'p γx equivalentlyγx ∗ σ ∗ δx0 'p γx ∗ σ.
This ensures thatδx0 is contractible tox0. Henceδx0 path homotopic to constant loopcx0 ,
therefore[δx0 ] = [cx0 ] identity. This implies group action is free.
Moreover, it is true that,p◦µ = id′◦p×k, wherep : π̄1M → M is the standard projection,
p×k : π̄1M×π1(M,x0) → M× [cx0 ] defined byp×k([γx], [δx0 ]) = (p([γx]), [cx0 ]) and
id′ : M × [cx0 ] → M by id′(x, [cx0 ]) = x. Moreover, induced group action on each fibre
i.e. µ : π1(M,x) × π1(M,x0) → π1(M, x) is obviously free and transitive. Let us have
the transitivity of group action, sinceM is path-connected space hence all fundamental
group are isomorphic to each other (In fact, one can see this[σ ∗ δx0 ∗ σ] is a canonical
isomorphism fromπ1(M,x0) to π1(M, x)). Now we compute,

orbit of ([γx]) = {µ([γx], [δx0 ]) : [δx0 ] ∈ π1(M, x0)}
= {[γx ∗ σ ∗ δx0 ∗ σ] : [δx0 ] ∈ π1(M, x0)}

This σ ∗ δx0 ∗ σ is bijective fromπ1(M, x0) to π1(M, x), because it is a composition of
translation by[γx] with canonical isomorphism. Accordingly,

orbit of ([γx]) = π1(M, x)

This concludes that the group action is transitive. Hence the result. ¤
Corollary 3.7. Let M be a simply connected space then(π̄1M, p,M, {0} = G) is a
principal G-bundle or(π̄1M,p, M, π1(M,x0)) is a principalπ1(M, x0)-bundle for some
x0 in M .

Proof. From Proposition 3.1, the(π̄1M,p, M, {0} = G) is a fibre bundle. Define a group
actionµ : π̄1M ×{0} → π̄1M , byµ([γx], 0) = [γx] is a trivial right group action, and this
is free. This is easy to see that,p ◦ µ = id′ ◦ p × k, wherep : π̄1M → M is the standard
projection,p × k : π̄1M × {0} → M × {0} defined byp × k([γx], 0) = (p([γx]), 0) and
id′ : M × {0} → M by id′(x, 0) = x. Moreover, the induced group action restricted to
each fibre over̄π1M i.e. µ : π1(M, x)× {0} → π1(M, x) is obviously free and transitive.
Hence the result.
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Or, it is true that instead ofG in the above group action, we can consider the fundamental
groupπ1(M, x0) for group action. For that define theµ : π̄1M × π1(M, x0) → π̄1M , by
µ([γx], [cx0 ]) = [γx], then all axioms regard principalπ1(M, x0) bundle will be satisfied.

¤

Proposition 3.8. Let (π̄1M, pM ,M, π1(M, x0)), (π̄1N, pN , N, π1(N, y0)) be fibre bun-
dles, for somex0 in M andy0 in N andf : M → N be a continuous map then(f#, f)
is a fibre bundle map, wheref# : (π̄1M, IpM

) → (π̄1N, IpN
) is the induced groupoid

homomorphism.

Proof. From Proposition 3.36 in [2] induced groupoid homomorphismf# : (π̄1M, IpM
)

→ (π̄1N, IpN
) is a topological groupoid homomorphism, for each continuous mapf :

M → N . Also, from [2] the following diagram commute.

Thus(f#, f) is a fibre bundle map. ¤

Corollary 3.9. Let (π̄1M,pM ,M, π1(M,x0)), (π̄1N, pN , N, π1(N, y0)) be fibre bundles,
for somex0 in M andy0 in N andf : M → N be a homeomorphism then(f#, f) is a
fibre bundle isomorphism, wheref# : (π̄1M, IpM

) → (π̄1N, IpN
) is the induced groupoid

homomorphism.

Proposition 3.10. Let (π̄1M, pM ,M, π1(M, x0)), (π̄1N, pN , N, π1(N, y0)) be fibre bun-
dles, for somex0 in M andy0 in N andf, g : M → N be homotopic, then bundle maps
f# andg# are homotopic in the sense of bundle maps.

Proof. It is followed by Propositions 4.30, 4.31 in [2]. ¤

Proposition 3.11. Let (π̄1M, pM ,M, π1(M, x0)), (π̄1N, pN , N, π1(N, y0)) be fibre bun-
dles, for somex0 in M andy0 in N andM andN be same homotopic type then bundle
(π̄1M,pM ,M, π1(M,x0)) is same homotopic to bundle(π̄1N, pN , N, π1(N, y0))

Proof. It is followed by Proposition 4.32 in [2]. ¤

4. SECTIONS OFCORE FUNDAMENTAL GROUPOID BUNDLE

A section is a more generalized notion of the vector field; a basic object in differential
geometry [16, 19]. This is also a well-studied terminology in topology, generally a section
of a bundle is a continuous map that gives an identity when it is composed with a stan-
dard projection from the bundle. Sections of the Core Fundamental groupoid bundle have
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important applications in group actions and classification of topological spaces, and also
have rich consequences with pullback and pushforward. For instance, establishing this no-
tion helps us to give a necessary condition for the existence of regular group action on any
topological space, as well as smooth manifolds. Such an application will be discussed in a
future research paper. Here, we define sections of the Core fundamental groupoid bundle
for all kinds of bundles that we have introduced. In this context, a section assigns each
point by a unique path homotopy class of a loop. See proposition 4.4 which shows conti-
nuity is obvious one. In our study, section means continuous section, therefore we include
continuity in the definition of section and by keeping in mind a bundle(π̄1M,p, M) (by
considering bothM, π̄1M are topological spaces, but one can also define sections without
continuity). Further, the definition is the same for both fibre bundle(π̄1M,p, M, F ) and
principalG-bundle(π̄1M, p, M, G) accordingly.

Definition 4.1. A section of the Core fundamental groupoid bundle is a continuous map
X : M → π̄1M such thatp ◦X = IdM .

Example 4.2. In the Euclidean spaceRn defineX : Rn → π̄1Rn, by X(x) = [cx],
wherecx is the constant loop based atx. Then it is easy to see thatX is a section due to
p ◦X = IdRn and continuity is from Proposition 4.4.

Remark 4.3. i) The zero/identity section of̄π1M is the continuous mapX : M → π̄1M
defined byX(x) = [cx]. Generally, it will be denoted byE or O.
ii) For any simply connected space there is only one section, that is zero.

Proposition 4.4. Let M be a topological space then every functionX : M → π̄1M
satisfyingp ◦X = IdM is a section of̄π1M .

Proof. It is enough to see only continuity ofX. Take arbitrary open setD of π̄1M , then
p−1(V ) = D for some open set isV in M . ConsiderX−1(D) = X−1(p−1(V )) =
(p ◦X)−1(V ) = IdM

−1(V ) = V , which is an open inM . ThereforeX is continuous and
a section of̄π1M . ¤

Remark 4.5. Different topologies on the Core fundamental groupoid other than this quo-
tient topology need not give the result in Proposition 4.4.

Definition 4.6. Let N be a subspace ofM then a section overN is a continuous map
X : N → π̄1M such thatp|N ◦X = IdN , wherep|N : p−1(N) → N is the restriction of
p.

Proposition 3.2 implies the existence of global sections, so we concentrate on them
rather than sections over subspaces. Further, a local sectionX of π̄1M is a section defined
on an open setU of M .

Here we concentrate on sections of the wholeπ̄1M . For a given topological spaceM ,
the set of all sections of the Core fundamental groupoid ofM is denoted byΓ0(π̄1M). i.e.,
Γ0(π̄1M) = {X : M → π̄1M : X continuous andp ◦X = IdM}. The setΓ0(π̄1M) has
a nice algebraic structure coming from the fundamental groups.

Proposition 4.7. For each[γx0 ] ∈ π̄1M then there exists a sectionX of π̄1M such that
X(x0) = [γx0 ].



Core Fundamental Groupoid Bundle, Its Sections and Relatedness 189

Proof. DefineX : M → π̄1M by X(x) =
{

[γx0 ] for x = x0

[cx] otherwise
, it is trivial to see

p ◦X = IdM . Hence by Proposition 4.4 it is a well-defined section and satisfiesX(x0) =
[γx0 ]. ¤

Proposition 4.8. Let M be a topological space, and consider the following map~ :
Γ0(π̄1M) × Γ0(π̄1M) → Γ0(π̄1M) by (X, Y ) → X ~ Y , whereX ~ Y : M → π̄1M
defined by(X ~ Y )(x) = X(x) ∗ Y (x) (it is the concatenation between theX(x) and
Y (x)) with this map theΓ0(π̄1M) is a group.

Proof. The operation~ : Γ0(π̄1M) × Γ0(π̄1M) → Γ0(π̄1M) by (X, Y ) → X ~ Y ,
whereX ~ Y : M → π̄1M defined by(X ~ Y )(x) = X(x) ∗ Y (x) is clearly well-
defined. BecauseX(x) ∗ Y (x) ∈ π1(M, x) ⊂ π̄1M , well-defined function, also this is
clear thatp ◦ (X ~ Y ) = IdM and by Proposition 4.4X ~ Y is a section. Associativity
X ~ (Y ~ Z) = (X ~ Y ) ~ Z will follow from the group structure of each fundamental
group. The element zero sectionO is in Γ0(π̄1M) and for every sectionX, we can see
O~X = X~O = X, because,O~X(x) = O(x)∗X(x) = X(x), for all x in M . Finally,
given any sectionX there is a sectionY : M → π̄1M defined byY (x) = ∗−1(X(x))
(where∗−1(X(x)) is inverse of the elementX(x) in the fundamental group ofM based at
x), then it is obvious thatX ~ Y = Y ~ X = O. This completes the proof. ¤

Remark 4.9. i) If all fundamental groups over each point of the space are abelian then
Γ0(π̄1M) is an abelian group.
ii) Since the fundamental group of each element of a topological group is an abelian
(Eckamann-Hilton result). Therefore for any topological groupG theΓ0(π̄1G) becomes
abelian.
iii) If M is simply connected thenΓ0(π̄1M) is an abelian group.
iv) For the Projective planeRP 2 theΓ0(RP 2) is an abelian group.

Proposition 4.10. Let f : M → N be a continuous injection andX be a section of̄π1M
then there exists a sectionY in π̄1N such thatf# ◦X = Y ◦ f .

Proof. Let f : M → N be a continuous injection, the continuity off impliesf# is well-
defined, and for the sectionX : M → π̄1M , we can define map sayY : N → π̄1N ,
by

Y (y) =
{

f#

(
X

(
f−1(y)

))
for y ∈ f(M)

[cy] for y ∈ N\f(M)
obviously, this becomes a section ofπ̄1N by Proposition 4.4. Moreover, this satisfy,Y ◦
f(x) = Y (f(x)) = f#(X(f−1(f(x)))) = f#(X(x)) = f# ◦X(x), for x ∈ M . Hence
the result. ¤

This result needsf to be injective. Supposef is not injective such sections cannot be
defined from codomain to its Core fundamental groupoid, because, in that case, induced
groupoid homomorphismf# assigns more than two elements to the elements of the same
fundamental group of the same element of the codomain off . For example, letf : S1 → S1

be defined byf(z) = z2 which is not an injection but continuous. For[γ1 = e2πit] and
[α−1 = −e4πit] element of̄π1S1 andf#([γ1 = e2πit]) andf#([α−1 = −e4πit]) elements
in π1(S1, 1) ⊂ π̄1S1 but they are not same elements due tof ◦ γ1 is not path homotopic to
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f ◦ α−1. Therefore for the uniqueness and non-triviality of such a section in Proposition
4.10 needs the map to be a homeomorphism.

Proposition 4.11. Letf : M → N be a homeomorphism andX be a section of̄π1M then
there exists a unique sectionY in π̄1N such thatf# ◦X = Y ◦ f .

Proof. Define aY : N → π̄1N by Y (y) = f# ◦X ◦ f−1(y) which is a well-defined map
and becomes a section obviously. Moreover, it satisfiesf# ◦X = Y ◦ f . For uniqueness,
suppose there is another sectionY ′ satisfyingY ′◦f = f#◦X impliesY ′ = f#◦X◦f−1 =
Y . Hence it is unique. ¤

Proposition 4.12. Let f : M → N be a homeomorphism and for any sectionY of π̄1N
then there exists a unique sectionX in π̄1M such thatf# ◦X = Y ◦ f .

Proof. DefineX : M → π̄1M by X(x) = f−1
# ◦ Y ◦ f(x) which is a section obviously.

Uniqueness is due to the homeomorphism off . ¤

Propositions 4.11, 4.12 help to define notions calledf -relatedness, pushforward, pull-
back.

Definition 4.13. Let f : M → N be a homeomorphism andX be a section of̄π1M then
the section of̄π1N defined byf∗(X) = f# ◦X ◦ f−1 is called pushforward of sectionX
underf . This gives a mapf∗ : Γ0(π̄1M) → Γ0(π̄1N), defined byf∗(X) = f# ◦X ◦ f−1

is called pushforward map.

Definition 4.14. Let f : M → N be a homeomorphism andY be a section of̄π1N then
the section of̄π1M defined byf?(Y ) = f−1

# ◦ Y ◦ f is called pullback of sectionY under

f . This gives a mapf? : Γ0(π̄1N) → Γ0(π̄1M), defined byf?(Y ) = f−1
# ◦ Y ◦ f called

pullback map.

Proposition 4.15. Let f : M → N be a homeomorphism then bothf∗ : Γ0(π̄1M) →
Γ0(π̄1N) andf? : Γ0(π̄1N) → Γ0(π̄1M) are group homomorphisms.

Proof. Let us see for,f∗ : Γ0(π̄1M) → Γ0(π̄1N), choose arbitrary elementsX1, X2 from
Γ0(π̄1M). We can havef∗(X1 ~ X2) = f# ◦ (X1 ~ X2) ◦ f−1 = f# ◦X1 ◦ f−1 ~ f# ◦
X2 ◦ f−1. = f∗(X1) ~ f∗(X2), because for everyy ∈ N the

f# ◦ (X1 ~ X2) ◦ f−1(y) = f#f−1(y)(X1(f−1(y)) ∗X2(f−1(y)))

= f#f−1(y)(X1(f−1(y))) ∗ f#f−1(y)(X2(f−1(y)))

= (f# ◦X1 ◦ f−1)(y) ∗ (f# ◦X2 ◦ f−1)(y)

Similarly, for,f? : Γ0(π̄1N) → Γ0(π̄1M), choose arbitrary elementsY1, Y2 fromΓ0(π̄1N).
We can havef?(Y1 ~ Y2) = f#

−1 ◦ (Y1 ~ Y2) ◦ f = f#
−1 ◦ Y1 ◦ f ~ f#

−1 ◦ Y2 ◦ f =
f?(Y1) ~ f?(Y2), because for everyx ∈ M the,

(f#
−1 ◦ (Y1 ~ Y2) ◦ f)(x) = f#f(x)

−1(Y1(f(x)) ∗ Y2(f(x)))

= f#f(x)
−1(Y1(f(x))) ∗ f#f(x)

−1(Y2(f(x)))

= (f#
−1 ◦ Y1 ◦ f)(x) ∗ (f#

−1 ◦ Y2 ◦ f)(x)

¤
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Proposition 4.16. Letf : M → N be a homeomorphism then,
i) f−1∗ = f∗−1 = f?

ii) f−1? = f?−1 = f∗

Proof. i) The homeomorphismf : M → N implies the inverse mapf−1 : N → M is
a homeomorphism. Thereforef−1∗ : Γ0(π̄1N) → Γ0(π̄1M) is well-defined and for any
Y ∈ Γ0(π̄1N) thef−1∗(Y ) = f−1

#◦Y ◦(f−1)−1 = f#
−1◦Y ◦f = f∗−1(Y ) = f?(Y ).

ii) This is similar to (i). ¤

Proposition 4.17. Let Id : M → M be the identity map then
i) Id∗ = IdΓ0(π̄1M).
ii) Id? = IdΓ0(π̄1M).

Proof. i) HypothesisId : M → M is the identity map, soId∗ : Γ0(π̄1M) → Γ0(π̄1M)
satisfyId∗(X) = Id# ◦X ◦ Id−1 = X = IdΓ0(π̄1M)(X), for everyX ∈ Γ0(π̄1M).
ii) HypothesisId : M → M is the identity map, soId? : Γ0(π̄1M) → Γ0(π̄1M) satisfy
Id?(X) = Id#

−1 ◦X ◦ Id = X = IdΓ0(π̄1M)(X), for everyX ∈ Γ0(π̄1M). ¤

Proposition 4.18. Letf : M → N andg : N → R be homeomorphism then
i) (g ◦ f)∗ = g∗ ◦ f∗.
ii) (g ◦ f)? = f? ◦ g?.

Proof. i) Both f∗ : Γ0(π̄1M) → Γ0(π̄1N) andg∗ : Γ0(π̄1N) → Γ0(R) are composable
and giveg∗ ◦ f∗ : Γ0(π̄1M) → Γ0(R) as well-defined. Also, we have for everyX ∈
Γ0(π̄1M), the

(g ◦ f)∗(X) = (g ◦ f)# ◦X ◦ (g ◦ f)−1

= g# ◦ f# ◦X ◦ f−1 ◦ g−1

= g# ◦ (f∗(X)) ◦ g−1 = g∗(f∗(X)).

Hence(g ◦ f)∗ = g∗ ◦ f∗.
ii) Both f? : Γ0(π̄1N) → Γ0(π̄1M) andg? : Γ0(R) → Γ0(π̄1N) are composable and give
f? ◦ g? : Γ0(R) → Γ0(π̄1M) as well-defined. Also, we have for everyZ ∈ Γ0(R), the

(g ◦ f)?(Z) = (g ◦ f)#
−1 ◦ Z ◦ (g ◦ f)

= f#
−1 ◦ g#

−1 ◦ Z ◦ g ◦ f

= f#
−1 ◦ (g?(Z)) ◦ f

= f?(g?(Z)).

Hence(g ◦ f)? = f? ◦ g?. ¤

Proposition 4.19. Let M be a topological space thenω : Γ0(π̄1M) × π̄1M → π̄1M
defined byω(X, [γx]) = [X(x) ∗ γx] is a well-defined non-regular group action.

Proof. SinceX(x) andγx are elements of the same fundamental groupπ1(M,x), hence
ω is well-defined. Let[γx] ∈ π̄1M and for zero sectionO, we haveω(O, [γx]) = [O(x) ∗
γx] = [γx]. And also for[γx] ∈ π̄1M andX, Y ∈ Γ0(π̄1M) thenω(X, ω(Y, [γx])) =
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ω(X, [Y (x) ∗ γx]) = [X(x) ∗ (Y (x) ∗ γx)] = [(X(x) ∗ Y (x)) ∗ γx] = ω(X ~ Y, [γx]). It
is clear to see thatω is non-transitive and not free, so a non-regular group action. ¤

5. SECTION-RELATED HOMEOMORPHISMS, HOMEOMORPHISM-RELATED SECTIONS

AND THEIR ALGEBRAIC STRUCTURES

Propositions 4.10, 4.11, and 4.12 are fundamental to define pullback and pushforward.
In geometry, such vector field notions serve as motivations for thef -related vector field
and the left-invariant vector field. Moreover, the same results motivate us to define homeo-
morphism related sections and section related to homeomorphisms on a given topological
space. The rel sets acquire a group structure that helps us to have group actions in respective
spaces. We are introducing such notions as given below.

Definition 5.1. [9, 10, 16] Letf : M → N be a continuous map, a sectionX ∈ Γ0(π̄1M)
is said to bef -related to a sectionY ∈ Γ0(π̄1N), if f# ◦ X = Y ◦ f , or the following
diagram commute,

In this case, we callf is pair (X, Y )-related continuous map.
i) For a givenf ∈ C(M, N) then the set of all pairs of sections fromΓ0(π̄1M)×Γ0(π̄1N)
for which f# ◦ X = Y ◦ f , is calledf -related pair of sections. We will denote it by
relΓ0(π̄1M)×Γ0(π̄1N)(f).
ii) For a givenX ∈ Γ0(π̄1M) andY ∈ Γ0(π̄1N) then set of all continuous mapsf from
M to N for which f# ◦ X = Y ◦ f , is called pair(X,Y )-related continuous maps, is
denoted byrelC(M,N)(X, Y ).

Remark 5.2. With reference to Definition 5.1, we define a relationR : C(M, N) →
Γ0(π̄1M)× Γ0(π̄1N), given byR(f) = (X,Y ), if f# ◦X = Y ◦ f . Further, we have the
following results,
We can seeR({f}) = relΓ0(π̄1M)×Γ0(π̄1N)(f) and R−1((X,Y )) = relC(M,N)(X,Y ).
For a givenX ∈ Γ0(π̄1M) andY ∈ Γ0(π̄1N) the setrelC(M,N)(X, Y ) may sometimes
be empty, since the relation is not universal. HoweverrelΓ0(π̄1M)×Γ0(π̄1N)(f) is always
non-empty due tof# ◦ OM = ON ◦ f . Interestingly for a given continuous mapf , the
relΓ0(π̄1M)×Γ0(π̄1N)(f) is a subgroup ofΓ0(π̄1M) × Γ0(π̄1N), under coordinate-wise
operation by~.
The most useful notion off -related is whenf is a homeomorphism, which gives the idea of
invariant sections. Therefore, we have highlighted the same in the below Remark.
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Remark 5.3. Suppose the functionf in Definition 5.1 is a homeomorphism then we have
the following concepts and results. We define a relationQ : Homeo(M, N) → Γ0(π̄1M)×
Γ0(π̄1N), byQ(f) = (X, Y ), if f# ◦X = Y ◦ f .
i) For a given f ∈ Homeo(M, N) then set of all pairs of sections fromΓ0(π̄1M) ×
Γ0(π̄1N) for which f# ◦ X = Y ◦ f , is calledf -related pair of sections, is denoted by
relΓ0(π̄1M)×Γ0(π̄1N)(f). Moreover, we can seeQ({f}) = relΓ0(π̄1M)×Γ0(π̄1N)(f).
ii) For a given X ∈ Γ0(π̄1M) and Y ∈ Γ0(π̄1N) then set of all homeomorphismsf
from M to N for which f# ◦ X = Y ◦ f , is called pair (X,Y )-related homeomor-
phisms, is denoted byrelHomeo(M,N)(X, Y ). Moreover, we can seeQ−1((X, Y )) =
relHomeo(M,N)(X, Y ).
For a givenX ∈ Γ0(π̄1M) andY ∈ Γ0(π̄1N) the setrelHomeo(M,N)(X, Y ) may some-
times be empty, since the relation is not universal. HoweverrelΓ0(π̄1M)×Γ0(π̄1N)(f) is al-
ways non-empty. Interestingly, for a given homeomorphismf , therelΓ0(π̄1M)×Γ0(π̄1N)(f)
is a subgroup ofΓ0(π̄1M)× Γ0(π̄1N), under coordinate-wise operation by~.
Invariant of sections are only defined whenf is homeomorphism onM , because both
f# ◦X andX ◦f are sections of̄π1M , hence we can compare them for the same behavior.
Therefore, we have restricted it to homeomorphism for the notion of invariants of sections.

Remark 5.4. Suppose the functionf in Definition 5.1 is a homeomorphism between the
same space and a sectionX ∈ Γ0(π̄1M) satisfies the condition in Definition 5.1 thenX
is calledf -related orf -invariant section. With reference to this definition, we have the
following concepts and results.
We define a relationS : Homeo(M) → Γ0(π̄1M), byS(f) = X, if f# ◦X = X ◦ f .
i) For a givenf ∈ Homeo(M) then set of all sections of̄π1M for whichf# ◦X = X ◦ f ,
is calledf -related sections orf -invariant sections, is denoted byrelΓ0(π̄1M)(f) = {X ∈
Γ0(π̄1M) : f# ◦X = X ◦ f}. Moreover, we can seeS({f}) = relΓ0(π̄1M)(f).
ii) For a givenX ∈ Γ0(π̄1M) the set of all homeomorphismsf onM for whichf# ◦X =
X ◦ f , is calledX-related homeomorphisms, is denoted byrelHomeo(M)(X). Explicitly
relHomeo(M)(X) = {f ∈ Homeo(M) : f# ◦X = X ◦ f}, which is equal toS−1({X}).
For a givenX ∈ Γ0(π̄1M) the setrelHomeo(M)(X) is always non-empty, due toId# ◦
X = X ◦ Id for any section, therefore,Id ∈ relHomeo(M)(X). And also always set
relΓ0(π̄1M)(f) is non-empty due tof# ◦O = O ◦ f .

Proposition 5.5. For a givenX ∈ Γ0(π̄1M) the setrelHomeo(M)(X) is a subgroup of
Homeo(M).

Proof. ObviouslyrelHomeo(M)(X) is non-empty subset of all homeomorphisms onM .
Take any twof, g ∈ relHomeo(M)(X), consider(f ◦ g)# ◦ X = f# ◦ g# ◦ X = f# ◦
X ◦ g = X ◦ (f ◦ g). Thereforef ◦ g ∈ relHomeo(M)(X). Associativity comes from
the common property of the composition. SinceId ∈ relHomeo(M)(X) and act as iden-
tity in relHomeo(M)(X). And also for anyf ∈ relHomeo(M)(X) one can seef−1 ∈
relHomeo(M)(X), because consider(f−1)# ◦ X = (f−1)# ◦ X ◦ f ◦ f−1 = (f−1)# ◦
f# ◦X ◦ f−1 = X ◦ f−1. HencerelHomeo(M)(X) is a subgroup. ¤

Remark 5.6. For O ∈ Γ0(π̄1M) thenrelHomeo(M)(O) = Homeo(M).
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Definition 5.7. For a givenB ⊂ Γ0(π̄1M) the set of all homeomorphismsf on M for
whichf# ◦ X = X ◦ f , for all X ∈ B is calledB-related homeomorphisms, denoted by
relHomeo(M)(B). Thus i.e.relHomeo(M)(B) = {f ∈ Homeo(M) : f# ◦X = X ◦ f , for
all X ∈ B}.
Proposition 5.8. For a given subset of sectionsB ⊂ Γ0(π̄1M) then setrelHomeo(M)(B)
is a subgroup ofHomeo(M).

Proof. Similar to Proposition 5.5. and indeed, it is an intersection ofrelHomeo(M)(X)
groups for allX ∈ B. ¤

Remark 5.9. relHomeo(M)(Γ0(π̄1M)) = {Id}
The groups given by Propositions 5.5 and 5.8 can be seen as the isotropic subgroup of

the point inΓ0(π̄1M) or stabilizer of a section or intersection of the stabilizer of more
points under a crucial group action onΓ0(π̄1M) by Homeo(M).

Proposition 5.10. Let M be a topological space and letµ : Homeo(M) × Γ0(π̄1M) →
Γ0(π̄1M) given byµ(f,X) = f# ◦X ◦ f−1, then
i) is non-transitive (IfM is non-simply connected and for simply connected space it is
transitive) group action (one can also define right group action).
ii) Isotropy(X) = stabHomeo(M)(X) = relHomeo(M)(X) for everyX ∈ Γ0(π̄1M).
iii)For a given subset of sectionsB ⊂ Γ0(π̄1M), then the
relHomeo(M)(B) =

⋂
X∈B stabHomeo(M)(X).

iv) Fixed point setΓ0(π̄1M)Homeo(M) = {O}.
Proof. i) For a topological spaceM , theHomeo(M) group acts byµ(f, X) = f# ◦X ◦
f−1. It is clear thatId# ◦X ◦ Id−1 = X for all sections, and also thatµ(f, µ(g, X)) =
µ(f, g# ◦X ◦ g−1) = (f ◦ g)# ◦X ◦ (f ◦ g)−1 = µ(f ◦ g,X).
The orbit of zero section under this group action then it is a singleton trivial section, that
is orbµ(O) = {µ(f,O) : for all f ∈ Homeo(M)} = {O}, hence the group action is
non-transitive for non-simply connected space.
ii) For all X ∈ Γ0(π̄1M) we computeIsotropy(X) = StabHomeo(M)(X),

StabHomeo(M)(X) = {f ∈ Homeo(M) : µ(f,X) = f# ◦X ◦ f−1 = X}
= {f ∈ Homeo(M) : f# ◦X = X ◦ f}
= relHomeo(M)(X).

It is well-known that isotropy(X) is a subgroup ofHomeo(M), so isrelHomeo(M)(X).
Hence it is a subgroup.
iii) For a given set of sectionsB ⊂ Γ0(π̄1M), we compute,

relHomeo(M)(B) = {f ∈ Homeo(M) : µ(f, X) = f# ◦X ◦ f−1 = X, ∀X ∈ B}
= {f ∈ Homeo(M) : f# ◦X = X ◦ f,∀X ∈ B}
=

⋂

X∈B
stabHomeo(M)(X)
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iv) The setΓ0(π̄1M)Homeo(M) = {X ∈ Γ0(π̄1M) : µ(f, X) = f# ◦X ◦f−1 = X, for
everyf ∈ Homeo(M)}. Pushforward of the section under all homeomorphisms is only
the zero section. Therefore the fixed point set is{O}. ¤
Proposition 5.11. For a givenf ∈ Homeo(M) the setrelΓ0(π̄1M)(f) is a subgroup of
Γ0(π̄1M).

Proof. ObviouslyrelΓ0(π̄1M)(f) is a non-empty subset of set of all sections ofπ̄1M . Take
any twoX, Y ∈ relΓ0(π̄1M)(f), considerf#◦(X~Y ) = f#◦X~f#◦Y = X◦f~Y ◦f =
(X ~ Y ) ◦ F . Where it is clear thatf# ◦ (X ~ Y ) = f# ◦X ~ f# ◦ Y , because, for all
x ∈ M the

f# ◦ (X ~ Y )(x) = f#x(X(x) ∗ Y (x))
= f#x(X(x)) ∗ f#x(Y (x))
= f# ◦X(x) ∗ f# ◦ Y (x)
= (f# ◦X ~ f# ◦ Y )(x),

thereforeX ~ Y ∈ relΓ0(π̄1M)(f). Also for everyX ∈ relΓ0(π̄1M)(f) there is aY =
X−1 ∈ relΓ0(π̄1M)(f), defined byY (x) = ∗−1(X(x)) because for allx ∈ M the

f# ◦X−1(x) = f#x(X−1(x)) = (f#x(X(x)))−1

= (f#x ◦X(x))−1 = (X ◦ f(x))−1

= (X(f(x)))−1

= X−1(f(x))
= X−1 ◦ f(x),

this impliesf# ◦X−1 = X−1 ◦f . Thus setrelΓ0(π̄1M)(f) is a subgroup ofΓ0(π̄1M). ¤

Remark 5.12. For theId ∈ Homeo(M) thenrelΓ0(π̄1M)(Id) = Γ0(π̄1M).

Definition 5.13. LetH ⊂ Homeo(M) then the set of all sectionsX ∈ Γ0(π̄1M) such that
f#◦X = X◦f , for all f ∈ H, is calledH-related sections orH-invariant sections, denoted
by relΓ0(π̄1M)(H). Explicitly relΓ0(π̄1M)(H) = {X ∈ Γ0(π̄1M) : f# ◦X = X ◦ f , for
all f ∈ H}.

For a given non-empty subsetH of homeomorphism group onM the setrelΓ0(π̄1M)(H)
is always non-empty, due tof# ◦O = O ◦ f , for all f ∈ H, thereforeO ∈ relΓ0(π̄1M)(H).

Proposition 5.14. For a givenH ⊂ Homeo(M) the setrelΓ0(π̄1M)(H) is a subgroup of
Γ0(π̄1M).

Proof. This is similar to Proposition 5.11. (Indeed, it is an intersection of all subgroups
relΓ0(π̄1M)(f), wheref ∈ H). ¤
Remark 5.15. relΓ0(π̄1M)(Homeo(M)) = {O}.

Here there are some questions we will try to answer in future works,
i) For every non-trivial proper subgroupB of Γ0(π̄1M) is relHomeo(M)(B) always equal
to a non-trivial subgroup of homeomorphisms that yield by a group action?
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ii) For every non-trivial proper subgroupH of Homeo(M) for which relΓ0(π̄1M)(H) is it
always a group which is isomorphic to a subgroup of the fundamental group of a point in
M?
We are working onrel operations in both senses and formulating results by iteratively
operating fromrel. We will come up with results to the posed issues in a forthcoming
research paper.

6. CONCLUSION

The Core fudamental groupoid is an algebraic structure on topological spaces and it is
a sufficient topological invariant [2]. In general, the Core fundamental groupoid admits
bundle structures but not fibre bundles. If the fundamental group of a topological space is
isomorphic to any two points in the space, then its Core fundamental groupoid forms a fibre
bundle. This is an important result that helps to conclude whether a space is a topological
group or not. Further, the relatedness is a more general notion to the left-invariant vector
fields in differential geometry. The relatedness in both senses is interrelated, and they
absorb some special class (we will discuss them in a future paper) of continuous sections
of the Core fundamental groupoid bundle when a topological space admits a group action.
The Core fundamental groupoids of topological spaces are key to conclude the existence
of regular group action and the existence of topological group structure on them.
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