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1. INTRODUCTION

In [62] defined the notion of fuzzy set (FS), which is based on a characteristic map-
ping having the grade membership for the element belonging to[0, 1]. In FS the grade of
non-membership can also be calculated by the subtracting the membership grade from 1.
To extend the notion of FS, Atanassov [2] gave the idea of the intuitionistic FS (IFS) by
adding an additional grade of non-membership for an object with the condition that the sum
of both grades should be from the interval[0, 1]. In the FS and IFS there are only single
values for both grades and consequently the researchers extended the framework of the IFS
to the interval-valued IFS (IvIFS). In mathematics the FS theory has great importance and
attracted researchers to itself. Hence there are many developments of FS and IFS that have
been introduced by them. Gorzal czany [11] introduced the idea of the IvFS and devel-
oped some operation for the numbers belonging to the IvFS. The element of IvFS has the
characteristic mapping having grade in the form of interval from 0 to 1. In 1989, Atanassov
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and Gargov developed the concept of IvIFS [3] and also described some basic operations
and their properties of IvIFS. Which has two functions, grade of membership and grade of
non-membership whose values are intervals and it must be contained on the interval from 0
to 1. Further the sum of grade of membership and grade of non-membership must be con-
tained on the interval from 0 to 1. Therefore, IvFS and IvIFS are the generalization of the
notion of FS and IFS. Moreover, some novel interactive hybrid weighted was introduced by
Li et al. [22] by discussing its application in the decision making. In [8] Garg introduced
some aggregation operators by using trigonometric operation for q-rung orthopair fuzzy
set. While an algorithm for selecting the anti virus mask for COVID-19 was developed by
Yang et al. [60] by using the Spherical fuzzy set. Some interesting literature can be found
in the [21, 9, 16, 10, 17, 59, 54, 14]. Because of some restrictions on the notion of FS and
IFS, Cuong introduced the concept of PFS [5] such as in the human opinions where as an
IFS can be only phenomena of yes or no types. But on the other hand PFS can describe the
phenomena having four types, i.e., right, wrong, abstinence and refusal. There are three
types of the mappings in PFS for an object to show its membership, abstinence and the
non-membership to the set belonging from the interval from 0 to 1. In case of PFS the
sum of grade of membership, grade of neutral membership and grade of non-membership
must belong on the interval from 0 to 1. Thus PFS is the direct generalization in Refer-
ences [1,2]. Further we know that in case of PFS all functions are as single values. So
due to these limitations Cuong defined the concept of IvPFS [6] and also introduced some
basic operations of IvPFS. Similarly IvPFS has also three types functions, such as grade
of membership, grade of neutral membership and grade of non-membership whose values
are intervals and it must be contained on the interval from 0 to 1. Moreover, the sum of
grade of membership, grade of neutral membership and grade of non-membership must be
contained on the interval from 0 to 1. Therefore, IvPFS is the extension of the idea of PFS.
The related literature can be found in [52] to [23]. The notion of the hesitant fuzzy set
(HFS) was developed by the Torra and Narukawa [25] in 2009. In the HFS the membership
mapping gives us a subset having elements from 0 to 1 when it is applied to the element of
the universal set. Hence we may say that the HFS is the generalized form of the FS. Due to
this characteristics the HFS has been widely used by researchers. For example in [26] Ullah
et al. developed bipolar HFS and then Mahmood et al. [27] some aggregation operators
by using cubic HFS with its application in decision making. Similarly, the HFS has been
used by Alcantud et al. [1] and developed some theorems and extension peinciples. Further
the interval-valued neutrosophic HF Einstein Choquet integral operator was developed by
Kakati et al. [20]. Some interesting work on HFS can be found in the [28, 29, 30]. The
idea of interval-valued Pythagorean HFS has developed an applied to the decision making
by Zhang et al. in [63]. Some of the problems in the real world could not be specified
by on the fuzzy framework. The intuitionistic HFS (IHFS) and its application in decision
making have been discussed in [31]. Similarly, the idea of IvHFS has been proposed by
the Farhadinia in [32]. Further the interval-valued IHFS has been developed by Zhang in
[33] and then picture HFS has described and applied in the decision making by Wang and
Li in [34]. Some remarkable literature can be found from[35] to [38]. The interesting and
the important topic that describes the grades of thr similarity of the elements is SM. SM
has vast application in real life problems like diagnosis problems, recognition of patterns,
clustering etc. The concept of entropy and SM for the IvFS was developed by Zeng et al.
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in [39]. In [40] applied the concept of IvHFS to the decision making by using the concept
of the SM. The application of the SM in the pattern recognition for the framework of the
IvIFS has been discussed in [41]. Similarly, some application of SM in the decision making
problems for the framework of IvIFS by Liu et al. [42]. In addition, the SM for T-Spherical
FS and its application is the pattern recognition have been discussed in [43] and Chen et
al. [44] introduced distance and SM for IHFSs while Zhai et al. [45] proposed measures of
probabilistic IvIHFSs and their applications in reducing excessive medical examinations.
Recently, Ahmad et al. [46] developed the concept of SM for PHFSs and studied their ap-
plications in pattern recognition. Saikia et al. [51] investigated some intuitionistic hesitant
fuzzy distance measure for MADM. Krishankumar et al. [47] studied MADM problem
using double hierarchy in hesitant fuzzy linguistic environment while Garg and Arora [48]
developed some McLaurin symmetric mean operators in using dual hesitant fuzzy soft sets.
The interesting literature can be founf in [49, 50, 4, 56, 18, 61, 7, 53, 19, 15, 55]. In this
article, we observed that there are some restrictions on the SM developed for PFSs in [57]
and could not applicable to the information in the form of IvPHFSs. To deal with this lim-
itations, we introduced the concept of IvPHFS and proposed some new SM such as cosine
SM, grey SM and set-theoretic SM for IvPHFSs. Further some weighted SM are also in-
troduced where weight of the attributes are considered. The SM in [57] become the special
cases of the proposed SM. This manuscript has 8 different sections. In section first, we
discussed the existing concepts in details. In section two, we studied some basic defini-
tions of IvFS, IvIFS, IvPFS, IvHFS and IvIHFS. In section three, we proposed the concept
of IvPHFS along with some basic operations and remarks. In section four, we introduced
some new SM for IvPHFSs which are based on the existing SM of PFSs. Section five is
based on the applications of SM of IvPHFSs in a building material recognition problem.
In section six, the comparative study of the proposed work is established. In section seven,
some advantages of the new work are discussed. Finally, the article ends with some future
directions and conclusive remarks.

2. PRELIMINARIES

In this section, we study some basic definitions and notions related to IvFS, IvIFS,
IvPFS, IvHFS and IvIHFS. The means ofX in this study is the universal set and ofπ, α
andη denote the membership degree, neutral degree and non-membership degree for each
element of the universal setX, whose values are intervals and it always contained on the
interval from 0 to 1. Further we denote thatπ−, α−, η− andπ+, α+, η+ the lower and
upper limit ofπ, α, η for each element of the universal set X respectively.

2.1. Definition[11]. An IvFS P on X is of the shapeP = {〈X, πP (e)〉 |e ∈ X} , where
πP (e) =

[
π−P (e) , π+

P (e)
] ⊂ [0, 1] provided that0 ≤ π+

P (e) ≤ 1 for all elementse ∈ X
and is called grade of membership of the elements ∈ X to P . Moreover,(π) is said to be
IvFN.

2.2. Definition [3]. An IvIFS P on X is of the formP = {〈X, πP (e) , ηP (e)〉 | sinX},
whereπP (e) =

[
π−P (e) , π+

P (e)
] ⊂ [0, 1] andηP (e) =

[
η−A (e) , η+

P (e)
] ⊂ [0, 1] pro-

vided that0 ≤ π+
P (e) + η+

P (e) ≤ 1 for all e ∈ X and are called grade of membership and
grade of non-membership ofe ∈ X to P . Moreover,(π, η) is said to be IvIFN.
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2.3. Definition[6]. An IvPFSP onX is of the formP = {< X,πP (e) , αP (e) , ηP (e) >
|e ∈ X}, whereπP (s) =

[
π−P (e) , π+

P (e)
] ⊂ [0, 1] , αP (e) =

[
α−P (e) , α+

P (e)
] ⊂ [0, 1]

andηP (e) =
[
η−P (e) , η+

P (e)
] ⊂ [0, 1] given0 ≤ π+

P (e) + α+
P (e) + η+

P (e) ≤ 1 for all
e ∈ X and are called grade of membership, degree of neutral membership and grade of
non-membership of the elemente ∈ X to P . Moreover,(π, α, η) is said to be IvPFN.

2.4. Definition [32]. An IvHFSP onX is of the formP = {〈X, hP (e)〉 |e ∈ X} , where
hP (e) is a set of some different interval values in[0, 1] , denoting the grade of member-
ship of the elemente ∈ X to P. Moreover,hP (e) is called interval-valued hesitant fuzzy
number (IvHFN).

2.5. Definition [33]. An IvIHFSP onX is of the formP = {〈X, hP (e)〉 |e ∈ X} , where
hP (e) is a set of IvIFNs of some different interval values in[0, 1] , denoting the grade of
membership and grade of non-membership of the elemente ∈ X to P . Moreover,hP (e)
is called interval-valued intuitionistic hesitant fuzzy number (IvIHFN).

2.6. Definition [16]. Let [sa, ta], [sb, tb] ∈ [0, 1]. Then we defined as:

a: [sa, ta] ≤ [sb, tb] , iff sa ≤ sb, ta ≤ tb
b: [sa, ta] ¹ [sb, tb] , iff sa ¹ tb, ta º tb
c: [sa, ta] = [sb, tb] , iff sa = sb, ta = tb

3. INTERVAL-VALUED PICTURE HESITANT FUZZY SETS

The aim of this section is to present the notion of IvPHFS as a generalization of IvIHFS.
Some basic operations on IvPHFSs are also described and their results are studied. An
IvPHFS has three types of functions, grade of membership denoted byπ, grade of neutral
membership denoted byα as well as grade of non-membershipη for each element of the
universal setX whose values are closed subintervals of [0, 1]. Further we establish that
π−, α−, η− denotes the lower limit ofπ, α, η andπ+, α+, η+ denotes the upper limit of
π, α, η for each element of the universal setX respectievly. Moreover, IvPHFS(X) denote
the set of all IvPHFSs of the universal setX respectively. The proposed concept of IvPHFS
and their basic operations are demonstrated with the help of some examples and with the
help of some remarks we prove that IvPHFS is the generalization of FS, IFS, PFS, IvHFS
and IvIHFS.

3.1. Definition. An IvPHFSP on X is of the formP = {〈X, hP (e)〉 |e ∈ X} , where
hP (e) is a set of IvPFNs of some different interval values in[0, 1], denoting the grade of
membership, grade of neutral and grade of non-membership of the elemente ∈ X to P.
Moreover,hP (e) is called interval-valued picture hesitant fuzzy number (IvPHFN).

3.2. Remark. In definition 3.1, when

(1) αP (e) = [0, 0] for all e ∈ X. Then IvPHFS becomes to IvIHF
(2) αP (e) = ηP (e) = [0, 0] for all e ∈ X. Then IvPHFS becomes to IvHFS
(3) π−P (e) = π+

P (e) , α−P (e) = α+
P (e) , η−P (e) = η+

P (e) for all s ∈ X. Then IvPHFS
becomes to PFS

(4) π−P (e) = π+
P (e) andη−P (e) = η+

P (e) andαP (e) = [0, 0] for all e ∈ X. Then
IvPHFS becomes to IFS
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(5) π−P (e) = π+
P (e) andαP (e) = ηP (e) = [0, 0] for all e ∈ X. Then IvPHFS

becomes to FS

This remark clarifies that IvIHFS, IvHFS, PFS, IFS and FS are the special cases of
IvPHFS. Another useful generalization in the literature is interval valued neutrosophic hes-
itant fuzzy set (IvNHFS) [20, 28] which also has grade of membership, grade of neutral
membership and grade of non-membership. The main difference these two concepts is that
in case of IvPHFS, we do have a refusal degree while in case of IvNHFS there is no con-
cept of refusal degree. This addition of refusal degree drastically affects the results which
explained in detail in the PhD thesis of Ullah [54].

3.3. Example. Let X = {e1, e2, e3, e4}. Then an IvPHFSP onX is defined as:

P =





(e1, [0.10, 0.15], [0.12, 0.20], [0.30, 0.50]),
(e2, [0.11, 0.13], [0.30, 0.37], [0.20, 0.50]),
(e3, [0.25, 0.30], [0.35, 0.50], [0.12, 0.20]),
(e4, [0.25, 0.35], [0.30, 0.45], [0.12, 0.15])





3.4. Definition. For two IvPHFNsP = (πP , αP , ηP ) andQ = (πQ, αQ, ηQ), we have
1. P ⊆ Q iff π−P (e) ≤ π−Q (e) , π+

P (e) ≤ π+
Q (e) , α−P (e) ≤ α−Q (e) , α+

P (e) ≤ α+
P (e) and

η−P (e) ≥ η−Q (e) , η+
P (e) ≥ η+

Q (e) , ∀e ∈ X,
2. P = Q iff P ⊆ Q andQ ⊆ P,

3. P∪Q =





〈 e,


 max

(
π−P (e) , π−Q (e)

)
,

max
(
π+

P (e) , π+
Q (e)

)

 ,


 min

(
α−P (e) , α−Q (e)

)
,

min
(
α+

P (e) , α+
Q (e)

)



,


 min

(
η−P (e) , η−Q (e)

)
,

min
(
η+

P (e) , η+
Q (e)

)



〉
|s ∈ X





,

4. P∩Q =





〈 e,


 min

(
π−P (e) , π−Q (e)

)
,

min
(
π+

P (e) , π+
Q (e)

)

 ,


 min

(
α−P (e) , α−Q (e)

)
,

min
(
α+

P (e) , α+
Q (e)

)



,


 max

(
η−P (e) , η−Q (e)

)
,

max
(
η+

P (e) , η+
Q (e)

)



〉
|e ∈ X





,

5. P c = {〈e, ηP (e) , αP (e) , πP (e)〉 |e ∈ X}

3.5. Example. LetP = {(e1, [0.10, 0.30], [0.30, 0.40], [0.10, 0.20]) , (e2, [0.13, 0.17], [0.22, 0.27], [0.30, 0.40])}
andQ = {(e1, [0.00, 0.20], [0.10, 0.20], [0.30, 0.60]) , (e2, [0.20, 0.25], [0.12, 0.30], [0.35, 0.45])}
be the two IvPHFNs. Then
1. P c = {([0.10, 0.20], [0.30, 0.40], [0.10, 0.30]) , ([0.30, 0.40], [0.22, 0.27], [0.13, 0.17])}
2. P∪B = {([0.10, 0.30], [0.10, 0.20], [0.10, 0.20]) , ([0.20, 0.25], [0.12, 0.27], [0.30, 0.40])}
3. P∩Q = {([0.00, 0.20], [0.10, 0.20], [0.0.30, 0.60]) , ([0.13, 0.17], [0.12, 0.27], [0.35, 0.45])}

4. SIMILARITY MEASURES FORIVPHFSS

The aim of this section is to develop some SM for IvPHFSs as generalization of SM of
PFSs. In our study we denote the set of all IvPHFNs on the universal set X by IvPHFS(X).
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Further with the help of some remarks we developed the SM for IvIHFSs. Moreover, we
identify the concepts of SM for IvPHFS are demonstrated by the help of some examples.

4.1. Cosine Similarity Measures. In this portion, we shall propose some SM of IvPHFSs
which are generalizations of corresponding work on PFS [57].

4.1.1. Definition. ForP,Q ∈IvPHFS(X), we define the cosine SM as:
C1

IvPHFS (P, Q) = 1
n

∑n
i=1



π−P (ei) π−Q (ei) + π+
P (ei)π+

Q (ei) + α−P (ei)α−Q (ei) + α+
P (ei)α+

Q (ei)
+η−P (ei) η−Q (ei) + η+

P (ei) η+
Q (ei)

vuuuuuuut

(
π−P (ei)

)2
+

(
π+

P (ei)
)2

+(
α−P (ei)

)2
+

(
α+

P (ei)
)2

+(
η−P (ei)

)2
+

(
η+

P (ei)
)2

.

vuuuuuuuuuuut

(
π−Q (ei)

)2

+
(
π+

Q (ei)
)2

+
(
α−Q (ei)

)2

+
(
α+

Q (ei)
)2

+
(
η−Q (ei)

)2

+
(
η+

Q (ei)
)2




(1)

The cosine SM for IvPHFSs satisfies the following conditions of SM :

(1) 0 ≤ C1
IvPHFS (P, Q) ≤ 1

(2) C1
IvPHFS (P,Q) = C1

IvPHFS (Q,P )
(3) C1

IvPHFS (P,Q) = 1 iff P = Q, i = 1, 2, 3, ..., n
(4) P ⊆ Q ⊆ C, thenC1

IvPHFS (P,C) ≤ C1
IvPHFS (P, Q) andC1

IvPHFS (P, C)
≤ C1

IvPHFS (Q,C)

Proof. The proof of first two conditions is obvious. For condition no. (3), let A,B∈IvPHFS(X).
WhenP = Q that isπP (ei) = πQ (ei) , αP (ei) = αQ (ei) , ηP (ei) = ηQ (ei) this im-
plies thatπ−P (ei) = π−Q (ei) , π+

P (ei) = π+
Q (ei) , α−P (ei) = α−Q (ei) , α+

P (ei) = α+
Q (ei) , η−P (ei) =

η−Q (ei) , η+
P (ei) = η+

Q (ei) for i=1,2,3 . . . ,n. Hence from equation (1), we know that

C1
IvPHFS (P, Q)

=
1
n

n∑

i=1




π−P (ei)π−P (ei) + π+
P (ei)π+

P (ei) + α−P (ei)α−P (ei)+
α+

P (ei)α+
P (ei) + η−P (ei) η−P (ei) + η+

P (ei) η+
P (ei)√√√√√√

(
π−P (ei)

)2
+

(
π+

P (ei)
)2

+
(
α−P (ei)

)2
+

(
α+

P (ei)
)2

+
(
η−P (ei)

)2
+

(
η+

P (ei)
)2

.

√√√√√√

(
π−P (ei)

)2
+

(
π+

P (ei)
)2

+
(
α−P (ei)

)2
+

(
α+

P (ei)
)2

+
(
η−P (ei)

)2
+

(
η+

P (ei)
)2



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=
1
n

n∑

i=1




(
π−P (Ei)

)2
+

(
π+

P (ei)
)2

+
(
α−P (ei)

)2
+(

α+
P (ei)

)2
+

(
η−P (ei)

)2
+

(
η+

P (ei)
)2

√√√√√√

(
π−P (ei)

)2
+

(
π+

P (ei)
)2

+
(
α−P (ei)

)2
+

(
α+

P (ei)
)2

+
(
η−P (ei)

)2
+

(
η+

P (ei)
)2

.

√√√√√√

(
π−P (ei)

)2
+

(
π+

P (ei)
)2

+
(
α−P (ei)

)2
+

(
α+

P (ei)
)2

+
(
η−P (ei)

)2
+

(
η+

P (ei)
)2




= 1

The fourth condition is obvious as geometrically, the angle ofP, C is greater than that of
P, Q andQ,C. Hence therefore,C1

IvPHFS (P, C) ≤ C1
IvPHFS (P,Q) andC1

IvPHFS (P,C) ≤
C1

IvPHFS (Q,C) ¤

4.1.2. Definition. ForP,Q ∈IvPHFS(X), we define the weighted cosine SM as:

W 1
IvPHFS (P, Q)

=
n∑

i=1

wi




π−P (ei)π−Q (ei) + π+
P (ei)π+

Q (ei) + α−P (ei)α−Q (ei)+
α+

P (ei) α+
Q (ei) + η−P (ei) η−Q (si) + η+

P (si) η+
B (ei)

√√√√√√

(
π−P (ei)

)2
+

(
π+

P (ei)
)2

+
(
α−P (ei)

)2
+

(
α+

P (ei)
)2

+
(
η−P (ei)

)2
+

(
η+

P (ei)
)2

.

√√√√√√√√√

(
π−Q (ei)

)2

+
(
π+

Q (ei)
)2

+
(
α−Q (ei)

)2

+
(
α+

Q (ei)
)2

+
(
η−Q (ei)

)2

+
(
η+

Q (ei)
)2




(2)

By takingwi = 1
n the equation (2) reduces to equation (1). The weighted cosine SM for

IvPHFSs satisfies the properties of SM as follows:

(1) 0 ≤ W 1
IvPHFS (P, Q) ≤ 1

(2) W 1
IvPHFS (P, Q) = W 1

IvPHFS (Q,P )
(3) W 1

IvPHFS (P, Q) = 1 iff P = Q, i = 1, 2, 3..., n

Proof. Proof is straightforward. ¤

4.1.3. Remark. The definition 4.1.1 reduces to cosine SM of IvIHFS, if we assume that
αP = αQ = [0, 0] and we write it as:
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C1
IvIHFS (P,Q)

=
1
n

n∑

i=1




π−P (ei) π−Q (ei) + π+
P (ei) π+

Q (ei)
+η−P (ei) η−Q (ei) + η+

P (ei) η+
Q (ei)

√ (
π−P (ei)

)2
+

(
π+

P (ei)
)2

+
(
η−P (ei)

)2
+

(
η+

P (ei)
)2 .

√√√√√
(
π−Q (si)

)2

+
(
π+

Q (ei)
)2

+
(
η−Q (ei)

)2

+
(
η+

Q (ei)
)2




(3)

4.1.4. Example. LetP = {(e1, [0.00, 0.10], [0.10, 0.20], [0.20, 0.30]) , (e2,[0.10, 0.20], [0.20, 0.40],
[0.30, 0.40]), (e3, [0.20, 0.50], [0.00, 0.10], [0.20, 0.40])} andQ = {(e1, [0.20, 0.25], [0.25, 0.30], [0.35, 0.45]),
(e2, [0.10, 0.20], [0.40, 0.60], [0.00, 0.20]), (e3, [0.12, 0.14], [0.30, 0.50], [0.20, 0.26])} be
the two IvPHFSs on the universal setX = {e1, e2, e3, e4}. Then by using Eq. (1), we get

C1
IvPHFS (P, Q) = 0.7841

4.2. Set – Theoretic SM.. In this section, we introduced another kind of SM and weighted
SM. The work developed in this section is a generalization of a similar research on PFS
proposed in [57].

4.2.1. Definition.
ForP, Q ∈IvPHFS(X), we define set-theoretic SM as:

C2
IvPHFS (A,B) = 1

n

∑n
i=1



π−P (ei)π−Q (ei) + π+
P (ei)π+

Q (ei)
+α−P (ei)α−Q (ei) + α+

P (ei)α+
Q (ei)

+η−P (ei) η−Q (ei) + η+
P (ei) η+

Q (ei)

max

8
>>>>>>>><
>>>>>>>>:

0
BBBB@

(
π−P (ei)

)2
+

(
π+

P (ei)
)2

+
(
α−P (ei)

)2
+

(
α+

P (ei)
)2

+
(
η−P (ei)

)2
+

(
η+

P (ei)
)2

1
CCCCA

,

0
BBBBBBBB@

(
π−Q (ei)

)2

+
(
π+

Q (ei)
)2

+
(
α−Q (ei)

)2

+
(
α+

Q (ei)
)2

+
(
η−Q (ei)

)2

+
(
η+

Q (ei)
)2

1
CCCCCCCCA

9
>>>>>>>>=
>>>>>>>>;




(4)

The set-theoretic SM for IvPHFSs satisfies the following properties of SM:

(1) 0 ≤ C2
IvPHFS (P, Q) ≤ 1

(2) C2
IvPHFS (P,Q) = C2

IvPHFS (Q,P )
(3) C2

IvPHFS (P,Q) = 1 iff P = Q, i = 1, 2, 3, ..., n
(4) P ⊆ Q ⊆ C, thenC2

IvPHFS (P, C) ≤ C2
IvPHFS (P, Q) andC2

IvPHFS (P, C)
≤ C2

IvPHFS (Q,C) .

Proof. Similar ¤
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4.2.2. Definition.
ForP, Q ∈IvPHFS(X), we define the weighted set-theoretic similarity measure as:
W 2

IvPHFS (P,Q) =
∑n

i=1 Wi


π−P (ei)π−Q (ei) + π+
P (ei) π+

Q (ei) + α−P (ei)α−Q (ei)+
α+

P (ei) α+
Q (ei) + η−P (ei) η−Q (ei) + η+

P (ei) η+
Q (ei)

max

8
>>>>>>>><
>>>>>>>>:

0
BBBBB@

(
π−P (ei)

)2
+

(
π+

P (ei)
)2

+
(
α−P (ei)

)2
+

(
α+

P (ei)
)2

+
(
η−Q (ei)

)2

+
(
η+

P (ei)
)2

1
CCCCCA

,

0
BBBBBBBB@

(
π−Q (ei)

)2

+
(
π+

Q (ei)
)2

+
(
α−Q (ei)

)2

+
(
α+

Q (ei)
)2

+
(
η−Q (ei)

)2

+
(
η+

Q (ei)
)2

1
CCCCCCCCA

9
>>>>>>>>=
>>>>>>>>;




(5)

By takingwi = 1
n the equation (5) reduces to equation (4). The weighted set-theoretic

SM for IvPHFSs satisfies the results of SM:

(1) 0 ≤ W 2
IvPHFS (P, Q) ≤ 1

(2) W 2
IvPHFS (P, Q) = W 2

IvPHFS (Q,P )
(3) W 2

IvPHFS (P, Q) = 1 iff P = Q, i = 1, 2, 3..., n

Proof. Proof is straightforward ¤

4.2.3. Remark.
The definition 4.2.1 reduces to cosine SM of IvIHFS, if we assume thatαP = αB = [0, 0]
and we write it as:

C2
IvIHFS (P, Q) = 1

n

∑n
i=1



π−P (ei)π−Q (ei) + π+
P (ei)π+

Q (ei)
+η−P (ei) η−Q (ei) + η+

P (ei) η+
Q (ei)

max

8
>>><
>>>:

0
B@

(
π−P (ei)

)2
+

(
π+

P (ei)
)2

+
(
η−P (ei)

)2
+

(
η+

P (ei)
)2

1
CA,

0
BBB@

(
π−Q (ei)

)2

+
(
π+

Q (ei)
)2

(
η−Q (ei)

)2

+
(
η+

Q (ei)
)2

1
CCCA

9
>>>=
>>>;




(6)

4.2.4. Example.
Let

A =





(
e1, [0.00, 0.10], [0.10, 0.20],

[0.20, 0.30]

)
,

(
e2, [0.10, 0.20], [0.20, 0.40],

[0.30, 0.40]

)
,

(
e3, [0.20, 0.50], [0.00, 0.10],

[0.20, 0.40]

)





and

Q =





(
e1, [0.20, 0.25], [0.25, 0.30],

[0.35, 0.45]

)
,

(
e2, [0.10, 0.20], [0.40, 0.60],

[0.00, 0.20]

)
,

(
e3, [0.12, 0.14], [0.30, 0.50],

[0.20, 0.26]

)







464 Z. Ahmad, T. Mahmood, K. Ullah and N. Janı

be the two IvPHFSs on the universal setX = {e1, e2, e3, e4}. Then by using Eq. (4), we
get

C2
IvPHFS (P, Q) = 0.6189

4.3. Grey SM..
The work develop in this section is a generalization of PFS which proposed in Reference
[57].

4.3.1. Definition.
For P,Q∈IvPHFS(X), we define the grey SM as:

C3
IvPHFS (P, Q) =

1
3n

n∑

i=1

(
∆πmin + ∆πmax

∆πi + ∆πmax
+

∆αmin + ∆αmax

∆αi + ∆αmax
+

∆ηmin + ∆ηmax

∆ηi + ∆ηmax

)
(7)

where

∆πi =




∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣


 ,∆πmin = min





∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣



 ,

∆πmax = max





∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣



 ,

∆αi =




∣∣∣α−P (ei)− α−Q (ei)
∣∣∣ +∣∣∣α+

P (ei)− α+
Q (ei)

∣∣∣


 , ∆αmin = min





∣∣∣α−P (ei)− α−Q (ei)
∣∣∣ +∣∣∣α+

P (ei)− α+
Q (ei)

∣∣∣



 ,

∆αmax = max





∣∣∣α−P (ei)− α−Q (ei)
∣∣∣ +∣∣∣α+

P (ei)− α+
Q (ei)

∣∣∣



 ,

∆ηi =




∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

P (ei)− η+
Q (ei)

∣∣∣


 , ∆ηmin = min





∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

P (ei)− η+
Q (ei)

∣∣∣



 ,

∆ηmax = max





∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

P (ei)− η+
Q (ei)

∣∣∣



 .

Obviously, the grey SM satisfy the following properties:

(1) 0 ≤ C3
IvPHFS (P, Q) ≤ 1

(2) C3
IvPHFS (P,Q) = C3

IvPHFS (Q,P )
(3) C3

IvPHFS (P,Q) = 1 iff P = Q, i = 1, 2, 3, ..., n
(4) P ⊆ Q ⊆ C, thenC3

IvPHFS (P, C) ≤ C3
IvPHFS (P, Q) andC3

IvPHFS (P, C)
≤ C3

IvPHFS (Q,C)

Proof. Similar. ¤
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4.3.2. Definition.
ForP, Q ∈IvPHFS(X), we define the weighted grey SM as:

W 3
IvPHFS (P,Q) =

1
3

n∑

i=1

wi

(
∆πmin + ∆πmax

∆πi + ∆πmax
+

∆αmin + ∆αmax

∆αi + ∆αmax
+

∆ηmin + ∆ηmax

∆ηi + ∆ηmax

)
(8)

where

∆πi =




∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣


 ,∆πmin = min





∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣



 ,

∆πmax = max





∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣



 ,

∆αi =




∣∣∣α−P (ei)− α−Q (ei)
∣∣∣ +∣∣∣α+

P (ei)− α+
Q (ei)

∣∣∣


 , ∆αmin = min





∣∣∣α−P (ei)− α−Q (ei)
∣∣∣ +∣∣∣α+

P (ei)− α+
Q (ei)

∣∣∣



 ,

∆αmax = max





∣∣∣α−P (ei)− α−Q (ei)
∣∣∣ +∣∣∣α+

P (ei)− α+
Q (ei)

∣∣∣



 ,

∆ηi =




∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

P (ei)− η+
Q (ei)

∣∣∣


 , ∆ηmin = min





∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

P (ei)− η+
Q (ei)

∣∣∣



 ,

∆ηmax = max





∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

P (ei)− η+
Q (ei)

∣∣∣



 .

wherew = (w1, w2, w3, ..., wn)T is the weighted vector ofei = (i = 1, 2, 3, ..., n), with∑n
i=1 wi = 1. In particular, if we takew =

(
1
n , 1

n , ..., 1
n

)T
. Then the weighted grey

SM reduces to grey SM. The weighted grey SM for IvPHFSs satisfies the results of SM as
follows:

(1) 0 ≤ W 3
IvPHFS (P, Q) ≤ 1

(2) W 3
IvPHFS (P, Q) = W 3

IvPHFS (Q,P )
(3) W 3

IvPHFS (P, Q) = 1 iff P = Q, i = 1, 2, 3..., n

Proof. Proof is straightforward. ¤

4.3.3. Remark.
The definition 4.3.1 reduces to grey SM of IvIHFS, if we assume thatαP = αQ = [0, 0]
and we write it as:

C3
IvIHFS (P,Q) =

1
3n

n∑

i=1

(
∆πmin + ∆πmax

∆πi + ∆πmax
+

∆ηmin + ∆ηmax

∆ηi + ∆ηmax

)
(9)
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where

∆πi =




∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣


 , ∆πmin = min





∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣



 ,

∆πmax = max





∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣



 ,

∆ηi =




∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

P (ei)− η+
Q (ei)

∣∣∣


 ,∆ηmin = min





∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

Q (ei)− η+
Q (ei)

∣∣∣



 ,

∆ηmax = max





∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

P (ei)− η+
Q (ei)

∣∣∣



 .

4.3.4. Example.
Let

A =





(
e1, [0.00, 0.10], [0.10, 0.20],

[0.20, 0.30]

)
,

(
e2, [0.10, 0.20], [0.20, 0.40],

[0.30, 0.40]

)
,

(
e3, [0.20, 0.50], [0.00, 0.10],

[0.20, 0.40]

)





and

Q =





(
e1, [0.20, 0.25], [0.25, 0.30],

[0.35, 0.45]

)
,

(
e2, [0.10, 0.20], [0.40, 0.60],

[0.00, 0.20]

)
,

(
e3, [0.12, 0.14], [0.30, 0.50],

[0.20, 0.26]

)





be the two IvPHFSs on the universal setX = {e1, s2, s3, s4}. Then by using Eq. (7), we
get

C3
IvPHFS (P, Q) = 0.7959

5. APPLICATIONS

Following, the established SM defined in section 4 are applied to building material
recognition is adopt in Reference [57].

5.1. Building material recognition.
We calculate the SM for unknown class of the building materials with the help of SM of
IvPHFS. In such process we calculate the weighted SM of all known with that of unknown
building material. After that we replace that building material with the building material
having the greater SM as following:

Algorithm:

(1) We consider the known and unknown building material as a class in the form of
IvPHFNs

(2) Calculate SM of each known and unknown material i.e.,Pi (1 ≤ i ≤ 4) andP
(3) Rank the SM of all known and unknown building material
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(4) Identify the unknown material based on ranking

5.2. Example.
Consider four building material stone, steel, brick and muddy, which are represented by the
IvPHFSsPi (1 ≤ i ≤ 4). LetX = {e1, e2, e3, e4, e5} be the space of attribute have weight
w = (0.17, 0.33, 0.12, 0.28, 0.10)T . Table 1 describes the class of unknown and known
materials.

We identified that unknown material as follows.
Step 1: Class about unknown and known building material.

P P1 P2 P3 P4

e1




[.00, .10],
[.10, .20],
[.00, .30]







[.45, .47],
[.15, .20],
[.25, .33]







[.01, .07],
[.10, .20],
[.13, .15]







[.09, .12],
[.00, .20],
[.30, .60]







[.13, .16],
[.20, .25],
[.30, .45]




e2




[.20, .30],
[.20, .40],
[.30, .40]







[.23, .28],
[.31, .40],
[.00, .20]







[.20, .25],
[.33, .36],
[.18, .22]







[.10, .50],
[.00, .40],
[.00, .10])







[.22, .30],
[.37, .40],
[.20, .25]




e3




[.10, .30],
[.30, .50],
[.10, .20]







[.00, .40],
[.20, .40],
[.00, .20]







[.13, .25],
[.16, .20],
[.25, .30]







[.22, .30],
[.25, .40],
[.00, .15]







[.33, .38],
[.40, .42],
[.00, .10]




e4




[.00, .20],
[.10, .40],
[.20, .40]







[.51, .55],
[.10, .20],
[.20, .25]







[.15, .30],
[.02, .07],
[.04, .08]







[.13, .18],
[.23, .30],
[.00, .40]







[.16, .20],
[.00, .50],
[.08, .16]




e5




[.30, .50],
[.20, .30],
[.00, .10])







[.40, .60],
[.00, .20],
[.10, .20]







[.33, .37],
[.48, .50],
[.00, .10]







[.00, .35],
.15, .20],
[.20, .40]







[.43, .50],
[.10, .15],
[.20, .30]




Table 1(SM ofPi with P )
Step 2: Comparison of SM.

SM (P, P1) (P, P2) (P, P3) (P, P4)
W 1

IvPHFS (P, Pi) 0.7773 0.8093 0.8232 0.8945
W 2

IvPHFS (P, Pi) 0.6157 0.6221 0.6846 0.7836
W 3

IvPHFS (P, Pi) 0.8539 0.8594 0.7998 0.8631
Table 2 (SM of Pi with P)

Step 3: Ranking of SM.

SM Ranking of(P, Pi)
W 1

IvPHFS (P, Pi) (P, P1) < (P, P2) < (P, P3) < (P, P4)
W 2

IvPHFS (P, Pi) (P, P1) < (P, P2) < (P, P3) < (P, P4)
W 3

IvPHFS (P, Pi) (P, P3) < (P, P1) < (P, P2) < (P, P4)
Table 3 (Ranking of SM ofPi with A)

Step 4: Upon ranking, it is noted that the SM of(P, P1) is smaller than all other SM by
using cosine SM and set-theoretic SM. However, if we apply grey SM, it seems that(P, P3)
has a smaller value among all other SM.
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6. COMPARATIVE STUDY

The proposed SM in this article is considered as generalization of SM for IvHFS, IvI-
HFS, PFSs and IFSs.

The following remarks show that the SM defined in Eq. (1) to Eq. (9) are generalization
of SM for IvIHFSs, IvHFSs, PFSs, IFSs and FSs.

6.1. Remark.
In definition 4.1.2, when
1. αP = αB = [0, 0]. Then Eq. (2) reduces to SM of IvIHFSs such as:

W 1
IvIHFS (P, Q)

=
n∑

i=1

wi




π−P (ei) π−Q (ei) + π+
P (ei)π+

Q (ei)
+η−P (ei) η−Q (ei) + η+

P (ei) η+
Q (ei)

√ (
π−P (ei)

)2
+

(
π+

P (ei)
)2

+
(
η−P (ei)

)2
+

(
η+

P (ei)
)2 .

√√√√√
(
π−Q (ei)

)2

+
(
π+

Q (ei)
)2

+
(
η−Q (ei)

)2

+
(
η+

Q (ei)
)2




(10)

2. If αP = αQ = ηA = ηQ = [0, 0]. Then Eq. (2) reduces to SM of IvHFSs such as:

W 1
IvHFS (P,Q) =

n∑

i=1

wi




π−P (ei)π−Q (ei) + π+
P (ei) π+

Q (ei)
√(

π−P (ei)
)2

+
(
π+

P (ei)
)2

.

√(
π−Q (ei)

)2

+
(
π+

Q (ei)
)2


 (11)

3. If π−P = π+
P , α−P = α+

P , η−P = η+
P andπ−Q = π+

Q, α−Q = α+
Q, η−Q = η+

Q. Then Eq. (2)
reduces to SM of PFSs such as:

W 1
PFS (P,Q) =

n∑

i=1

wi




πP (ei) πQ (ei) + αP (ei)αQ (ei)
+ηP (ei) ηQ (ei)√

(πP (ei))
2 + (αP (ei))

2

+(ηP (ei))
2 .

√
(πQ (ei))

2 + (αQ (ei))
2

+(ηQ (ei))
2




(12)

4. If π−P = π+
P , η−P = η+

P andπ−Q = π+
Q, η−Q = η+

Q andαP = αQ = [0, 0]. Then Eq. (2)
reduces to SM of IFSs such as:

W 1
IFS (P, Q) =

n∑

i=1

wi


 πP (ei)πQ (ei) + ηP (ei) ηQ (ei)√

(πP (ei))
2 + (ηP (ei))

2
.
√

(πQ (ei))
2 + (ηQ (ei))

2


 (13)

5. If π−P = π+
P andπ−Q = π+

Q andαP = αQ = ηP = ηQ = [0, 0]. Then Eq. (2) reduces to
SM of FSs such as:

W 1
FS (P, Q) =

n∑

i=1

wi


 πP (ei)πQ (ei)√

(πP (ei))
2
.
√

(πQ (ei))
2


 (14)
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6.2. Remark.
In definition 4.2.2, when
1. αP = αQ = [0, 0]. Then Eq. (5) reduces to SM of IvIHFSs such as:

W 2
IvIHFS (P, Q)

=
n∑

i=1

wi




π−P (ei)π−Q (ei) + π+
P (ei)π+

Q (ei)
+η−P (ei) η−Q (ei) + η+

P (ei) η+
Q (ei)

max





( (
π−P (ei)

)2
+

(
π+

P (ei)
)2

+
(
η−P (ei)

)2
+

(
η+

P (ei)
)2

)
,




(
π−Q (ei)

)2

+
(
π+

Q (ei)
)2

+
(
η−Q (ei)

)2

+
(
η+

Q (ei)
)2











(15)

2. If αP = αQ = ηP = ηQ = [0, 0]. Then Eq. (5) reduces to SM of IvHFSs such as:

W 2
IvHFS (P,Q) =

n∑

i=1

wi




π−P (ei) π−Q (ei) + π+
P (ei) π+

Q (ei)

max
{((

π−P (ei)
)2

+
(
π+

P (ei)
)2

)
,

((
π−Q (ei)

)2

+
(
π+

Q (ei)
)2

)}


 (16)

3. If π−P = π+
P , α−P = α+

P , η−P = η+
P andπ−Q = π+

Q, α−Q = α+
Q, η−Q = η+

Q. Then Eq. (5)
reduces to SM of PFSs such as:

W 2
PFS (P, Q)

=
n∑

i=1

wi




πP (ei) πQ (ei) + αP (ei)αQ (ei)
+ηP (ei) ηQ (ei)

max
{(

(πP (ei))
2 + (αP (ei))

2

+(ηP (ei))
2

)
,

(
(πQ (ei))

2 + (αQ (ei))
2

+(ηQ (ei))
2

)}


 (17)

4. If π−P = π+
P , η−P = η+

P andπ−Q = π+
Q, η−Q = η+

Q andαP = αQ = [0, 0]. Then Eq. (5)
reduces to SM of IFSs such as:

W 2
IFS (P, Q) =

n∑

i=1

wi


 πP (ei)πQ (ei) + ηP (ei) ηQ (ei)

max
{(

(πP (ei))
2 + (ηP (ei))

2
)

,
(
(πQ (ei))

2 + (ηQ (ei))
2
)}


 (18)

5. If π−P = π+
P andπ−Q = π+

Q andαP = αB = ηP = ηQ = [0, 0]. Then Eq. (5) reduces to
SM of FSs such as:

(1) W 2
FS (P,Q) =

∑n
i=1 wi

(
πP (ei)πQ(ei)

max{((πP (ei))
2),((πB(ei))

2)}
)

(19)

6.3. Remark.
In definition 4.3.2, when
1. αP = αQ = [0, 0]. Then Eq. (8) reduces to SM of IvIHFSs such as:

W 3
IvIHFS (P,Q) =

1
3

n∑

i=1

wi

(
∆πmin + ∆πmax

∆πi + ∆πmax
+

∆ηmin + ∆ηmax

∆ηi + ∆ηmax

)
(20)
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where

∆πi =




∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣


 , ∆πmin = min





∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣



 ,

∆πmax = max





∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣



 , ∆ηi =




∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

P (ei)− η+
Q (ei)

∣∣∣


 ,

∆ηmin = min





∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

P (ei)− η+
Q (ei)

∣∣∣



 , ∆ηmax = max





∣∣∣η−P (ei)− η−Q (ei)
∣∣∣ +∣∣∣η+

A (ei)− η+
Q (ei)

∣∣∣





2. If αP = αQ = ηP = ηQ = [0, 0]. Then Eq. (8) reduces to SM of IvHFSs such as:

W 3
IvHFS (P,Q) =

1
3

n∑

i=1

wi

(
∆πmin + ∆πmax

∆πi + ∆πmax

)
(21)

where

∆πi =




∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣


 , ∆πmin = min





∣∣∣π−P (ei)− π−Q (ei)
∣∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣



 ,

∆πmax = max

{ ∣∣π−P (ei)− π−P (ei)
∣∣ +∣∣∣π+

P (ei)− π+
Q (ei)

∣∣∣

}

3. If π−P = π+
P , α−P = α+

P , η−P = η+
P andπ−Q = π+

Q, α−Q = α+
Q, η−Q = η+

Q. Then Eq. (8)
reduces to SM of PFSs such as:

W 3
PFS (P,Q) =

1
3

n∑

i=1

wi

(
∆πmin + ∆πmax

∆πi + ∆πmax
+

∆αmin + ∆αmax

∆αi + ∆αmax
+

∆ηmin + ∆ηmax

∆ηi + ∆ηmax

)
(22)

where

∆πi = (|πP (si)− πQ (si)|) , ∆πmin = min {|πP (si)− πQ (ei)|} ,

∆πmax = max {|πP (ei)− πQ (ei)|} ,∆αi = (|αP (ei)− αQ (ei)|) ,

∆αmin = min {|αP (ei)− αQ (ei)|} , ∆αmax = max {|αP (ei)− αQ (ei)|} ,

∆ηi = (|ηP (ei)− ηQ (ei)|) , ∆ηmin = min {|ηP (ei)− ηQ (ei)|} ,

∆ηmax = max {|ηP (ei)− ηQ (ei)|}

4. If π−P = π+
P , η−P = η+

P andπ−Q = π+
Q, η−Q = η+

Q andαP = αQ = [0, 0]. Then Eq. (8)
reduces to SM of IFSs such as:

W 3
IFS (P, Q) =

1
3

n∑

i=1

wi

(
∆πmin + ∆πmax

∆πi + ∆πmax
+

∆ηmin + ∆ηmax

∆ηi + ∆ηmax

)
(23)



Some Similarity Measures of Interval-Valued Picture Hesitant Fuzzy Sets and Their Applications in Pattern Recognition 471

where

∆πi = (|πP (ei)− πq (ei)|) , ∆πmin = min {|πP (ei)− πQ (ei)|} ,

∆πmax = max {|πP (ei)− πQ (ei)|} ,∆ηi = (|ηP (ei)− ηQ (ei)|) ,

∆ηmin = min {|ηP (ei)− ηQ (ei)|} ,∆ηmax = max {|ηP (ei)− ηQ (ei)|}

5. If π−P = π+
P andπ−Q = π+

Q andαP = αQ = ηP = ηB = [0, 0]. Then Eq. (8) reduces to
SM of FSs such as:

W 3
IFS (P, Q) =

1
3

n∑

i=1

wi

(
∆πmin + ∆πmax

∆πi + ∆πmax

)
(24)

where

∆πi = (|πA (ei)− πQ (ei)|) , ∆πmin = min {|πP (ei)− πQ (ei)|} ,

∆πmax = max {|πp (ei)− πQ (ei)|}

7. ADVANTAGES OF PROPOSEDSTUDY

Due some limitations of the existing SM proposed in Reference [57]. The main ad-
vantage of the proposed new similarity measures is that these SMs allow us to solve the
problems that lie in the environment of IvPHFSs and PFS, HFS, IFS etc. On the other hand
the existing SM which proposed in Reference [57] could not handle the problems that lie
in the environment of IvPHFSs. If we take Example 5.2, the data is presented in the shape
of IvPHFNs which cannot be processed by some existing SM.

Now, if we take the example from Reference [57]. It can be seen that proposed SM
successfully solved this problem.

7.1. Example.
The data about unknown and known building material in table (4).

P1 P2 P3 P4 P
e1 (.17, .53, .13) (.51, .24, .21) (.31, .39, .25) (1, 0, 0) (.91, .03, .05)
e2 (.1, .81, .05) (.62, .12, .07) (.60, .26, .11) (1, 0, 0) (.78, .12, .07)
e3 (.53, .33, .09) (1, 0, 0) (.91, .03, .02) (.85, .09, .05) (.90, .05, .02)
e4 (.89, .08, .03) (.13, .64, .21) (.07, .09, .07) (.74, .16, .10) (.68, .08, .21)
e5 (.42, .35, .18) (.03, .82, .13) (.04, .85, .10) (.02, .89, .05) (.05, .87, .06)
e6 (.08, .89, .02) (.73, .15, .08) (.68, .26, .06) (.08, .84, .06) (.13, .75, .09)
e7 (.33, .51, .12) (.52, .31, .16) (.15, .76, .07) (.16, .71, .05) (.15, .73, .08)

Table 4 (Data of Patterns[61])
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The above data in table (4) can be easily changed to the environment of IvPHFSs which is
given in table (5).

P1 P2 P3 P4 P

e1




[.17, .17] ,
[.53, .53] ,
[.13, .13]







[.51, .51] ,
[.24, .24] ,
[.21, .21]







[.31, .31] ,
[.39, .39] ,
[.25, .25]







[1, 1] ,
[0, 0] ,
[0, 0]







[.91, .91] ,
[.03, .03] ,
[.05, .05]




e2




[.10, .10] ,
[.81, .81] ,
[.05, .05]







[.62, .62] ,
[.12, .12] ,
[.07, .07]







[.60, .60] ,
[.26, .26] ,
[.11, .11]







[1, 1] ,
[0, 0] ,
[0, 0]







[.78, .78] ,
[.12, .12] ,
[.07, .07]




e3




[.53, .53]
[.33, .33]
[.09, .09]







[1, 1] ,
[0, 0] ,
[0, 0]







[.91, .91] ,
[.03, .03] ,
[.02, .02]







[.85, .85] ,
[.09, .09] ,
[.05, .05]







[.90, .90] ,
[.05, .05] ,
[.02, .02]




e4




[.89, .89] ,
[.08, .08] ,
[.03, .03]







[.13, .13] ,
[.64, .64] ,
[.21, .21]







[.07, .07] ,
[.09, .09] ,
[.07, .07]







[.74, .74] ,
[.16, .16] ,
[.10, .10]







[.68, .68] ,
[.08, .08] ,
[.21, .21]




e5




[.42, .42] ,
[.35, .35] ,
[.18, .18]







[.03, .03] ,
[.82, .82] ,
[.13, .13]







[.04, .04] ,
[.85, .85] ,
[.10, .10]







[.02, .02] ,
[.89, .89] ,
[.05, .05]







[.05, .05] ,
[.87, .87] ,
[.06, .06]




e6




[.08, .08] ,
[.89, .89] ,
[.02, .02]







[.73, .73] ,
[.15, .15] ,
[.08, .08]







[.68, .68] ,
[.26, .26] ,
[.06, .06]







[.08, .08] ,
[.84, .84] ,
[.06, .06]







[.13, .13] ,
[.75, .75] ,
[.09, .09]




e7




[.33, .33] ,
[.51, .51] ,
[.12, .12]







[.52, .52] ,
[.31, .31] ,
[.16, .16]







[.15, .15] ,
[.76, .76] ,
[.07, .07]







[.16, .16] ,
[.71, .71] ,
[.05, .05]







[.15, .15] ,
[.73, .73] ,
[.08, .08]




Table 5(Data of Patterns[61])
Then by using the proposed new SM and the results are showed in table (6).

SM (P, P1) (P, P2) (P, P3) (P, P4)
W 1

IvPHFS (P, Pi) 0.716 0.763 0.858 0.994
W 2

IvPHFS (P, Pi) 0.556 0.657 0.693 0.920
W 3

IvPHFS (P, Pi) 0.660 0.762 0.830 0.901
Table 6 (SM ofPi with P )

We can compute the SM of building materials which are presented in table 5, and these
SM are same as [57]. In the same way we consider the information in the form of IvIHFS
which can be converted in the form of IvPHFS. Then with the help of proposed SM such
the information can be processed. Again, if the considered information is in the form of
the IvHFS, then this form of information can also be processed easily by changing its form
ton the PHFSs. Therefore our claim has proved.

8. CONCLUSION

In this manuscript, we defined the concept of IvPHFS demonstrated with the help of
some remarks and examples. Noticing the shortcomings of previous similarities measures
of PFSs, we generalized the concept of those SM to the environment of IvPHFSs. These
SM consisting set-theoretic SM, grey SM and cosine SM. The proposed SM are demon-
strated with the help of some examples. Moreover, some weighted SM are also described
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and applied to building material recognition problems and the results are discussed. The
proposed new SM are compared with the existing SM and it is stated that previously de-
fined SM become the special cases of proposed SM. The advantages of proposed work over
the existing work have also been studied. In near future, the authors aim to develop some
entropy measures, correlation coefficients, aggregation operators for the newly developed
concept with some operations based on some t-norm and t-conorm in [12, 13].
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