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Abstract. Let N be the set of all natural numbers. For r ∈ N, Fogel first considered the
greatest rth power common divisor of m and n in N. Denote it by (m,n)r and call the
r − gcd of m and n . Using this notion we introduce the r − lcm of m and n , denoted by
[m,n]r. For s ∈ R, define Ls,r(n) to be the sum of [j, n]sr for j = 1, 2, 3, ..., n. In this paper
we obtain an asymptotic formula for the summatory function of Ls,r(n). The case r = 1
was studied earlier by Alladi, Bordelles and more recently by Ikeda and Matsuoka.
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1. INTRODUCTION

Let N be the set of all natural numbers. For j, n ∈ N, if [j, n] denotes their least common multiple then
Alladi [1] defined the function

(1.1) Ls(n) =
n∑

j=1

[j, n]s for s ∈ R

and proved;
1.2 Lemma. For x ≥ 1 and s ≥ 1,

∑
n≤x

Ls(n) =
ζ(s+ 2)

2(s+ 1)2ζ(2)
· x2s+2 +∆s(x), as x→ ∞

where ζ(s) is the Riemann-zeta function and
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(1.3) ∆s(x) = O(x2s+1+ε) for any ε > 0.

In [3], it has been proved that for x > e (the value of the exponential function ex at x = 1),
(1.4) ∆1(x) = O

(
x3 · (log x) 2

3 · (log log x) 4
3

)
,

which is an improvement of (1.3) in case s = 1. Also in the same paper an asymptotic formula for∑
n≤x

L−1(n) is obtained.

Recently Ikeda and Matsuoka [7] have proved the results given below
1.5 Lemma ( [7], Theorem 2). If a ∈ N and a ≥ 2, then for x > e,

∑
n≤x

La(n) =
ζ(a+ 2)

2(a+ 1)2ζ(2)
· x2a+2 +O(x2a+1(log x)

2
3 · (log log x) 4

3 ),

as x→ ∞ in which the implied constant depends on a.
1.6 Lemma ( [7], Theorem 3). If a ∈ N and a ≥ 2, then

(1.7)
∞∑

n=1

L−a(n) =
ζ(a)

2

(
1 +

ζ2(a)

ζ(2a)

)
,

and that for x ≥ 1,

(1.8)
∑
n≤x

L−a(n) =
ζ(a)

2

(
1 +

ζ2(a)

ζ(2a)

)
− ζ(a) · x−a+1 log x

(a− 1)ζ(a+ 1)
+O

(
x−a+1

)
,

as x→ ∞, in which the implied constant depends on a.

Observe that Lemma 1.5 improves the order term of Lemma 1.2 in the case s = a ∈ N with a ≥ 2.

In this paper we define a generalized lcm-function, using the notion of the greatest rth power common
divisor of m,n ∈ N, introduced by Fogel in 1900(see. [6], p.134).

Fix r ∈ N. For m,n ∈ N, let (m,n)r denote the greatest rth power common divisor of m and n, which is
called the r-gcd of m and n.

Clearly (m,n)1 = (m,n), the gcd of m and n.

If m,n ∈ N are such that m =

t∏
i=1

pαi
i and n =

t∏
i=1

pβi

i , where pi are distinct primes and αi, βi are

non-negative integers with αi + βi > 0 for i = 1, 2, 3, ..., t then

(m,n)r =
t∏

i=1

pγi

i where γi = r ·min
(
[αi

r ], [βi

r ]
)

, and [x] denotes the

greatest integer not exceeding the real number x.
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Define the generalized least common multiple, [m,n]r, by

[m,n]r =
t∏

i=1

pαi+βi−γi

i , which we call as the r-lcm of m and n.

Note that [m,n]1 = [m,n], the lcm of m and n and that
(1.9) (m,n)r · [m,n]r = mn

As pointed out by one of the learned referees of this paper the concept of r − lcm of m and n has been
mentioned in the article by Z. Bu and Z. Xu [4]. In fact they define [m,n]r by using (1.9).

Now, the generalized lcm-sum function, Ls,r(n), is defined by

(1.10) Ls,r(n) =
n∑

j=1

[j, n]sr for s ∈ R.

One can prove easily, by usual method, that

1.11. Lemma. For r ∈ N, s ≥ 1 and x ≥ 1, we have∑
n≤x

Ls,r(n) =
ζ(rs+ 2r)

2(s+ 1)2ζ(2r)
· x2s+2 +O(x2s+1+ε), as x→ ∞, for any ε > 0.

Since Ls,1(n) = Ls(n), defined in (1.1), the case r = 1 of Lemma 1.11 gives Lemma 1.2. Also in this
case of r = 1, if a ∈ N with a ≥ 2, ∆s(x) of Lemma 1.2 has been improved for s = a in [3] and the case
s = −a is considered in [7], (as given in Lemma 1.5 and Lemma 1.6 above).

Therefore in this paper we consider r > 1 and prove the following:
Theorem A. For a, r ∈ N with r > 1, and x ≥ 1, we have∑
n≤x

La,r(n) =
ζ(ar + 2r)

2(a+ 1)2ζ(2r)
· x2a+2 +Oa(x

2a+1), as x→ ∞,

where the implied constant depends on a.
1.12. Remark. It may be noted that Z. Bu and Z. Xu ( [5], Theorem 4) have offered a more simple proof of an
asymptotic formula for

∑
n≤x

La,r(n), with order term O(x2a+1 log x) by using elementary calculations. But

Theorem A, proved here, by a different method(expressing La,r(n) as a Dirichlet product of two arithmetic
functions as given in Lemma 2.14) improves their order term.
Theorem B. For a, r ∈ N with a ≥ 2 and r > 1, we have∑
n≤x

L−a,r(n) =
ζ(ar)

2
{1 + Fr(a)}+Oa,r(x

(−a+1)(2−r)),

where the implied constant depends on a and r; and

Fr(a) =
∏
p

{
(1 +

2

pa
+

3

p2a
+ ...+

2r − 1

p(2r−2)a
) +

2r

p(2r−1)a(1− p−a)

}
.
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2. LEMMAS AND THE PROOF OF THEOREM A.

If µ(n) is the Mobius function, it well-known that

(2.1)
∞∑

n=1

µ(n)

ns
=

1

ζ(s)
for s > 1;

and that

(2.2)
∑
n≤x

µ(n)

ns
=

1

ζ(s)
+O

(
1

xs−1

)
for s > 1.

Also if χr(m)=1 or 0 according as m is the rth power of a positive integer or not, then χr(m) is a multi-

plicative function and that its Dirichlet series
∞∑

m=1

χr(m)

ms
converges absolutely for s > 1. Further its Euler

product representation ( [2], Theorem 11.6) is given by

(2.3)
∞∑

m=1

χr(m)

ms
= ζ(rs) for s > 1;

and therefore

(2.4)
∑
m≤x

χr(m)

ms
= ζ(rs) +O

(
1

xs−
1
r

)
for s > 1.

We need the lemma proved in [7].
2.5. Lemma( [7], Lemma 4). If m, a ∈ N and Sa(m) =

∑m
k=1 k

a, then
Sa(m) = ma+1

a+1 + ma

2 + 1
a+1

∑a−1
k=1

(
a+1
k+1

)
Bk+1 ·ma−k, in which {Bk}∞k=0 are Bernoulli numbers defined

by z/(ez − 1) =
∞∑
k=0

Bk(z
k/k!)

2.6. Lemma. For m, a ∈ N if ta,r(m) =
m∑

k = 1
(k,m)r = 1

ka, then

(2.7) ta,r(m) = ma

{
ϕr(m)
a+1 + 1

2εr(m) + 1
a+1

a−1∑
k=1

(
a+ 1

k + 1

)
Bk+1 · ψk,r(m)

}
,

where

(2.8) ϕr(m) = m ·
∑
dr|m

µ(d)

dr
,

(2.9) εr(m) =
∑
dr|m

µ(d)

and

(2.10) ψk,r(m) =
∑
dr|m

µ(d)

(
dr

m

)k

.



On a generalized lcm-sum function 455

Proof. First note that
∑

dr|(k,m)

µ(d) =

{
1 if (k,m)r = 1

0 if (k,m)r > 1
.

Therefore

(2.11) ta,r(m) =
∑

0<k≤m

ka

 ∑
dr|(k,m)

µ(d)

 =
∑
dr|m

µ(d)dar

 ∑
0<δ≤ m

dr

δa


=
∑
dr|m

µ(d)darSa

(m
dr

)
.

Now using Lemma 2.5 in (2.11) we get

ta,r(m) =
∑
dr|m

µ(d)dar

{
(m/dr)a+1

a+ 1
+

(m/dr)a

2
+

1

a+ 1

a−1∑
k=1

(
a+ 1

k + 1

)
Bk+1 ·

(m
dr

)a−k
}

= ma

{
ϕr(m)

a+ 1
+

1

2
εr(m) +

1

a+ 1

a−1∑
k=1

(
a+ 1

k + 1

)
Bk+1 · ψk,r(m)

}
,

proving the lemma. �

2.12. Remark. Observe that ϕ1(m) = ϕ(m), the Euler totient function and that ε1(m) = 1 or 0 according
as m = 1 or m > 1.

2.13. Lemma. If Ta,r(m) =

m∑
j=1

ja

(j,m)ar
then Ta,r(m) =

∑
dr|m

ta,r

(m
dr

)
.

Proof. If (j,m)r = dr then, by definition,

Ta,r(m) =
∑

0 < j ≤ m,
(j,m)r = dr

ja

dar
=

∑
0 < drδ ≤ m,

dr|m
(δ, m

dr )r = 1

(drδ)a

dar

=
∑
dr|m

∑
0 < δ ≤ m

dr ,
(δ, m

dr )r = 1

δa =
∑
dr|m

ta,r

(m
dr

)
,

proving the lemma. �

2.14. Lemma. For a,m ∈ N

La,r(m) =
∑
δ|m

χr(δ)δ
aMa,r

(m
δ

)
,

where Ma,r(m) = ma · ta,r(m).
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Proof. In view of (1.9), Lemma 2.13 and (2.7)

La,r(m) =
m∑
j=1

(
jm

(j,m)r

)a

= ma · Ta,r(m)

= ma
∑
dr|m

ta,r

(m
dr

)
=
∑
δ|m

χr(δ)δ
aMa,r

(m
δ

)
,

proving the lemma. �

To prove Theorem A we have to estimate certain sums involving the functions given in (2.8), (2.9) and
(2.10).

2.15. Lemma. If r > 1 and x ≥ 1 then for any α > 0

∑
m≤x

mαϕr(m) =
xα+2

(α+ 2)ζ(2r)
+O(xα+1)

Proof. By (2.8) and (2.2), it follows that

∑
m≤x

ϕr(m) =
∑

d≤x1/r

µ(d)

∑
δ≤ x

dr

δ


=

∑
d≤x1/r

µ(d)

{
(x/dr)2

2
+O

( x
dr

)}

=
x2

2

∑
d≤x1/r

µ(d)

d2r
+O

x ∑
d≤x1/r

|µ(d)|
dr


=

x2

2ζ(2r)
+O(x1/r) +O(x) =

x2

2ζ(2r)
+O(x).

Using this formula and the Abel’s identity ( [2], Theorem 4.2) we get the lemma. �

2.16. Lemma. If r > 1 then
(i)

∑
m≤x

mαψk,r(m) = O(xα+
1
r ) for α > k

(ii)
∑
m≤x

mαεr(m) = O(xα+1) for α > 0
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Proof. By (2.10),

(i)
∑
m≤x

mαψk,r(m) =
∑

drδ≤x

drαδα
µ(d)

δk
=

∑
d≤x1/r

µ(d)drα

∑
δ≤ x

dr

δα−k


= O

 ∑
d≤x1/r

|µ(d)|drα
( x
dr

)α−k+1


= O

xα−k+1
∑

d≤x1/r

|µ(d)|
dr(1−k)


= O

(
xα−k+1x−(1−k)+ 1

r

)
= O

(
xα+

1
r

)
,

(ii)
∑
m≤x

mαεr(m) =
∑

drδ≤x

drαδαµ(d) =
∑

d≤x1/r

µ(d)drα

∑
δ≤ x

dr

δα


= O

 ∑
d≤x1/r

|µ(d)|drα x
α+1

drα+r

 = O

xα+1
∑

d≤x1/r

|µ(d)|
dr


= O

(
xα+1

)
�

2.17. Lemma. If r > 1 and a ∈ N,

∑
m≤x

Ma,r(m) =
x2a+2

2(a+ 1)2ζ(2r)
+Oa(x

2a+1),

where the implied constant depends on a

Proof. Using Lemma 2.15 and Lemma 2.16, we get∑
m≤x

Ma,r(m) =
∑
m≤x

m2a

{
ϕr(m)

a+ 1
+

1

2
εr(m) +

1

a+ 1

a−1∑
k=1

(
a+ 1

k + 1

)
Bk+1.ψk,r(m)

}

=
1

a+ 1

{
x2a+2

(2a+ 2)ζ(2r)
+Oa(x

2a+1)

}
+O(x2a+1)

+O

(
1

a+ 1

a−1∑
k=1

(
a+ 1

k + 1

)
Bk+1x

2a+ 1
r

)

=
x2a+2

2(a+ 1)2ζ(2r)
+Oa(x

2a+1) +O
(
x2a+

1
r

)
,

proving the lemma since r > 1. Here the implied constant depends on a. �
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Proof of Theorem A.
In view of Lemma 2.14 , Lemma 2.17 and (2.4)

∑
m≤x

La,r(m) =
∑
dδ≤x

χr(d)d
aMa,r(δ) =

∑
d≤x

χr(d)d
a

∑
δ≤ x

d

Ma,r(δ)


=
∑
d≤x

χr(d)d
a

{
(x/d)2a+2

2(a+ 1)2ζ(2r)
+Oa

((x
d

)2a+1
)}

=
x2a+2

2(a+ 1)2ζ(2r)

∑
d≤x

χr(d)

da+2
+Oa

x2a+1
∑
d≤x

χr(d)

da+1


=

x2a+2

2(a+ 1)2ζ(2r)

{
ζ((a+ 2)r) +O

(
1

xa+2− 1
r

)}
+Oa(x

2a+1)

=
x2a+2ζ((a+ 2)r)

2(a+ 1)2ζ(2r)
+O

(
xa+

1
r

)
+Oa(x

2a+1),

proving the theorem.

3. LEMMAS AND THE PROOF OF THEOREM B.

It is well known that a divisor d of m ∈ N is called a unitary divisor if (d, md ) = 1. Generalizing this
notion, D. Suryanarayana [8] has defined r − ary divisors d of m ∈ N, as those for which (d, md )r = 1.
Denoting the number of r- ary divisors of m by τ∗r (m); it has been proved that τ∗r (m) is a multiplicative
arithmetic function and that

(3.1) τ∗r (m) =

 ∑
dδ = m, (d, δ)r = 1

1

 is such that

τ∗r (p
α) = α+ 1 or 2r according as α < 2r or α ≥ 2r for any prime p.

Clearly the Dirichlet series
∞∑

m=1

τ∗r (m)

ms
= Fr(s) converges absolutey for s > 1 and therefore has Euler

product representation ( [2], Theorem 11.6). In view of (3.1), Fr(s) is given by

(3.2) Fr(s) =
∏
p

{(
1 +

2

ps
+

3

p2s
+ ...+

(2r − 1)

p(2r−2)s

)
+

2r

p(2r−1)s(1− 1
ps )

}
.

We observe that

(3.3) F1(s) =
∏
p

{
1 +

2

ps(1− 1
ps )

}
=
ζ2(s)

ζ(2s)
.
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3.4. Lemma. For a, r and n ∈ N with a ≥ 2,

∞∑
n=1

L−a,r(n) =
ζ(ar)

2
{1 + Fr(a)}, where Fr(a) in as given in (3.2).

Proof. In view of (1.9),

(3.5) L−a,r(n) =
n∑

j=1

(
(j, n)r
jn

)a

=
1

na

∑
0 < j ≤ n
(j, n)r = dr

dar

ja
=

1

na

∑
dr|n

∑
0 < δ ≤ n

dr

(δ, n
dr )r = 1

1

δa

so that

(3.6)
∞∑

n=1

L−a,r(n) =
∞∑

n=1

1

na


∑

dru=n

 ∑
0 < δ ≤ u, (δ, u)r = 1

1

δa




=

∞∑
d=1

∞∑
u=1

1

darua

 ∑
0 < δ ≤ u, (δ, u)r = 1

1

δa



=

∞∑
d=1

1

dar

 ∞∑
u=1

1

ua


∑

0 < δ ≤ u, (δ, u)r = 1

1

δa




= ζ(ar)
∞∑

m=1

1

ma

 ∑
uδ = m, 0 < δ ≤ u, (δ, u)r = 1

1

 .

But, by (3.1) and (3.2), we have

(3.7)
∞∑

m=1

1

ma

∑
uδ = m
0 < δ ≤ u
(δ, u)r = 1

1 = 1 +
1

2

∞∑
m=2

1

ma

 ∑
uδ = m, (δ, u)r = 1

1



= 1 +
1

2

∞∑
m=2

τ∗r (m)

ma

= 1 +
1

2

{ ∞∑
m=1

τ∗r (m)

ma
− 1

}



460 M. Ganeshwar Rao, V. Siva Rama Prasad and P. Anantha Reddy

= 1 +
1

2
{Fr(a)− 1}

=
1

2
(1 + Fr(a)) .

Now (3.7) and (3.6) imply Lemma 3.4. �

Proof of Theorem B.
Since

(3.8)
∑
n≤x

L−a,r(n) =
∞∑

n=1

L−a,r(n)− S(x), where S(x) =
∑
n>x

L−a,r(n) ,

we estimate S(x).
By (3.5), we have

(3.9) S(x) =
∑
n>x

1

na

 ∑
dru=n


∑

0 < δ ≤ u, (δ, u)r = 1

1

δa




=
∞∑
d=1

1

dar


∑
u> x

dr

1

ua

 ∑
0 < δ ≤ u, (δ, u)r = 1

1

δa




=
∞∑
d=1

1

dar

∑
u> x

dr

1

ua

 ∑
0<δ≤u

1

δa

 ∑
tr|(δ,u)

µ(t)


=

∞∑
d=1

1

dar


∑
u> x

dr

1

ua

 ∑
0 < trs ≤ u, tr|u

µ(t)
1

tarsa




=
∞∑
d=1

1

dar

∑
u> x

dr

1

ua

∑
tr|u

µ(t)

tar

∑
s≤ u

tr

1

sa




=
∞∑
d=1

1

dar

 ∑
v> x

(dt)r

µ(t)

t2arva

∑
s≤v

1

sa


=

∞∑
q=1

1

q2ar

∑
dt=q

µ(t)dar

∑
v> x

qr

1

va

∑
s≤v

1

sa




=
∞∑
q=1

1

q2ar

∑
dt=q

µ(t)dar

∑
v> x

qr

1

va

{
ζ(a)− v1−a

a− 1
+O(v−a)

}
= S1(x) + S2(x),

where S1(x) and S2(x) are the sums extended over those q < x and q ≥ x respectively.
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Now

(3.10) S1(x) =
∑
q<x

1

q2ar

∑
dt=q

µ(t)darζ(a)
(x/qr)−a+1

a− 1
+O

(
x

qr

)−a

− (x/qr)−2a+2

(2a− 2)(a− 1)
+ O

(
x

qr

)−2a+1
}

=
x−a+1ζ(a)

a− 1

∑
q<x

q−ar−r

∑
dt=q

µ(t)dar

+O

x−a
∑
q<x

q−ar

∑
dt=q

µ(t)dar


− x−2a+2

(2a− 2)(a− 1)

∑
q<x

q−2r

∑
dt=q

µ(t)dar


+O

x−2a+1
∑
q<x

q−r

∑
dt=q

µ(t)dar


But for any β > 1, we find, in view of (2.2), that

(3.11)
∑
q<x

q−β
∑
dt=q

µ(t)dar =
∑
d<x

dar−β

∑
t< x

d

µ(t)

tβ

 =
∑
d<x

dar−β

{
1

ζ(β)
+O

(
d

x

)β−1
}

=
1

ζ(β)

∑
d<x

dar−β +O

(
x1−β

∑
d<x

dar−1

)
= Oβ

(
xar−β+1

)
+O

(
xar−β+1

)
= Oβ

(
xar−β+1

)
,

where the implied constant depends on β.
Taking β = ar + r, ar, 2r and r in (3.11) and using them in (3.10) we get

(3.12) S1(x) = Oa,r

(
x−a−r+2

)
+Oa,r

(
x−a+1

)
+Oa,r

(
x−2a−2r+3+ar

)
+Oa,r

(
x−2a+ar−r+2

)
= Oa,r

(
x−2a+ar−r+2

)
Also

(3.13) S2(x) = O

∑
q≥x

1

q2ar

∑
dt=q

|µ(t)|dar
( ∞∑

v=1

1

va

{
ζ(a)− v1−a

a− 1
+O(v−a)

})


= O

∑
q≥x

q−ar

∑
t|q

|µ(t)|
tar

 = O
(
x−ar+1

)
By (3.12) and (3.13) we get

(3.14) S(x) = Oa,r

(
x−2a+ar−r+2

)
+O

(
x−ar+1

)
= Oa,r

(
x−2a+ar−r+2

)
= Oa,r

(
x(−a+1)(2−r)

)
.
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Now Theorem B follows in view of Lemma 3.4, (3.8) and (3.14).

3.15. Remark. Although the main theorems are valid for r > 1 only, Lemmas 2.6, 2.13, 2.14 and Lemma
3.4 hold for r ≥ 1. In fact, taking r = 1 in Lemma 3.4, we get (1.7) in view of (3.3).
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