Punjab University Journal of Mathematics (2023), 55(11-12), 451-462 https://doi.org/10.52280/pujm.2023.55(11-12)03

On a generalized lcm-sum function

M. Ganeshwar Rao Chaithanya Bharathi Institute of Technology, C.B.I.T, Hyderabad, Telangana-500027 e-mail: mganeshcbit@gmail.com

V. Siva Rama Prasad Professor(Retired), Department of Mathematics, Osmania University, Hyderabad, Telangana-500007 e-mail: vangalasrp@yahoo.co.in

> P. Anantha Reddy Govt. Polytechnic, Mahabubnagar, Telangana-509001, e-mail: ananth_palle@yahoo.co.in

Received: 05 October, 2023 / Accepted: 29 January, 2024 / Published online: 29 February, 2024

Abstract. Let \mathbb{N} be the set of all natural numbers. For $r \in \mathbb{N}$, Fogel first considered the greatest r^{th} power common divisor of m and n in \mathbb{N} . Denote it by $(m, n)_r$ and call the r - gcd of m and n. Using this notion we introduce the r - lcm of m and n, denoted by $[m, n]_r$. For $s \in \mathbb{R}$, define $L_{s,r}(n)$ to be the sum of $[j, n]_r^s$ for j = 1, 2, 3, ..., n. In this paper we obtain an asymptotic formula for the summatory function of $L_{s,r}(n)$. The case r = 1 was studied earlier by Alladi, Bordelles and more recently by Ikeda and Matsuoka.

AMS (MOS) Subject Classification Codes: 11A25; 11N37

Key Words: r - gcd and r - lcm of two numbers; r-ary divisor of a number.

1. INTRODUCTION

Let \mathbb{N} be the set of all natural numbers. For $j, n \in \mathbb{N}$, if [j, n] denotes their least common multiple then Alladi [1] defined the function

(1.1)
$$L_s(n) = \sum_{j=1}^{n} [j,n]^s \text{ for } s \in \mathbb{R}$$

and proved;

1.2 Lemma. For $x \ge 1$ and $s \ge 1$,

$$\sum_{n \le x} L_s(n) = \frac{\zeta(s+2)}{2(s+1)^2 \zeta(2)} \cdot x^{2s+2} + \Delta_s(x), \text{ as } x \to \infty$$

where $\zeta(s)$ is the Riemann-zeta function and

(1.3)
$$\Delta_s(x) = O(x^{2s+1+\varepsilon})$$
 for any $\varepsilon > 0$.

In [3], it has been proved that for x > e (the value of the exponential function e^x at x = 1),

(1.4) $\Delta_1(x) = O\left(x^3 \cdot (\log x)^{\frac{2}{3}} \cdot (\log \log x)^{\frac{4}{3}}\right),$ which is an improvement of (1.3) in case s = 1. Also in the same paper an asymptotic formula for $\sum L_{-1}(n)$ is obtained.

Recently Ikeda and Matsuoka [7] have proved the results given below **1.5 Lemma** ([7], Theorem 2). If $a \in \mathbb{N}$ and $a \ge 2$, then for x > e,

$$\sum_{n \le x} L_a(n) = \frac{\zeta(a+2)}{2(a+1)^2 \zeta(2)} \cdot x^{2a+2} + O(x^{2a+1} (\log x)^{\frac{2}{3}} \cdot (\log \log x)^{\frac{4}{3}}),$$

as $x \to \infty$ in which the implied constant depends on a. **1.6 Lemma** ([7], Theorem 3). If $a \in \mathbb{N}$ and $a \ge 2$, then

(1.7)
$$\sum_{n=1}^{\infty} L_{-a}(n) = \frac{\zeta(a)}{2} \left(1 + \frac{\zeta^2(a)}{\zeta(2a)} \right)$$

and that for $x \ge 1$,

(1.8)
$$\sum_{n \le x} L_{-a}(n) = \frac{\zeta(a)}{2} \left(1 + \frac{\zeta^2(a)}{\zeta(2a)} \right) - \frac{\zeta(a) \cdot x^{-a+1} \log x}{(a-1)\zeta(a+1)} + O\left(x^{-a+1}\right),$$

as $x \to \infty$, in which the implied constant depends on a.

Observe that Lemma 1.5 improves the order term of Lemma 1.2 in the case $s = a \in \mathbb{N}$ with $a \ge 2$.

In this paper we define a generalized lcm-function, using the notion of the greatest r^{th} power common divisor of $m, n \in \mathbb{N}$, introduced by Fogel in 1900(see. [6], p.134).

Fix $r \in \mathbb{N}$. For $m, n \in \mathbb{N}$, let $(m, n)_r$ denote the greatest r^{th} power common divisor of m and n, which is called the r-gcd of m and n.

Clearly $(m, n)_1 = (m, n)$, the gcd of m and n.

If $m, n \in \mathbb{N}$ are such that $m = \prod_{i=1}^{t} p_i^{\alpha_i}$ and $n = \prod_{i=1}^{t} p_i^{\beta_i}$, where p_i are distinct primes and α_i, β_i are non-negative integers with $\alpha_i + \beta_i > 0$ for i = 1, 2, 3, ..., t then

$$(m,n)_r = \prod_{i=1}^{l} p_i^{\gamma_i}$$
 where $\gamma_i = r \cdot \min\left(\left[\frac{\alpha_i}{r}\right], \left[\frac{\beta_i}{r}\right]\right)$, and $[x]$ denotes the

greatest integer not exceeding the real number x.

Define the generalized least common multiple, $[m, n]_r$, by

$$[m,n]_r = \prod_{i=1}^{t} p_i^{\alpha_i + \beta_i - \gamma_i}$$
, which we call as the *r*-lcm of m and n.
Note that $[m,n]_1 = [m,n]$, the lcm of m and n and that

(1.9) $(m,n)_r \cdot [m,n]_r = mn$

As pointed out by one of the learned referees of this paper the concept of r - lcm of m and n has been mentioned in the article by Z. Bu and Z. Xu [4]. In fact they define $[m, n]_r$ by using (1.9).

Now, the generalized lcm-sum function, $L_{s,r}(n)$, is defined by

(1.10)
$$L_{s,r}(n) = \sum_{j=1}^{n} [j,n]_r^s \text{ for } s \in \mathbb{R}.$$

One can prove easily, by usual method, that

1.11. Lemma. For $r \in \mathbb{N}$, $s \ge 1$ and $x \ge 1$, we have

$$\sum_{n \le x} L_{s,r}(n) = \frac{\zeta(rs+2r)}{2(s+1)^2 \zeta(2r)} \cdot x^{2s+2} + O(x^{2s+1+\varepsilon}), \text{ as } x \to \infty, \text{ for any } \varepsilon > 0.$$

Since $L_{s,1}(n) = L_s(n)$, defined in (1.1), the case r = 1 of Lemma 1.11 gives Lemma 1.2. Also in this case of r = 1, if $a \in \mathbb{N}$ with $a \ge 2$, $\Delta_s(x)$ of Lemma 1.2 has been improved for s = a in [3] and the case s = -a is considered in [7], (as given in Lemma 1.5 and Lemma 1.6 above).

Therefore in this paper we consider r > 1 and prove the following:

Theorem A. For $a, r \in \mathbb{N}$ with r > 1, and $x \ge 1$, we have

$$\sum_{n \le x} L_{a,r}(n) = \frac{\zeta(ar+2r)}{2(a+1)^2 \zeta(2r)} \cdot x^{2a+2} + O_a(x^{2a+1}), \text{ as } x \to \infty,$$

where the implied constant depends on *a*.

1.12. Remark. It may be noted that Z. Bu and Z. Xu ([5], Theorem 4) have offered a more simple proof of an asymptotic formula for $\sum_{n \le x} L_{a,r}(n)$, with order term $O(x^{2a+1} \log x)$ by using elementary calculations. But

Theorem A, proved here, by a different method(expressing $L_{a,r}(n)$ as a Dirichlet product of two arithmetic functions as given in Lemma 2.14) improves their order term. **Theorem B.** For $a, r \in \mathbb{N}$ with $a \ge 2$ and r > 1, we have

$$\sum_{n \le x} L_{-a,r}(n) = \frac{\zeta(ar)}{2} \{1 + F_r(a)\} + O_{a,r}(x^{(-a+1)(2-r)})$$

where the implied constant depends on a and r; and

$$F_r(a) = \prod_p \left\{ \left(1 + \frac{2}{p^a} + \frac{3}{p^{2a}} + \dots + \frac{2r-1}{p^{(2r-2)a}}\right) + \frac{2r}{p^{(2r-1)a}(1-p^{-a})} \right\}.$$

2. LEMMAS AND THE PROOF OF THEOREM A.

If $\mu(n)$ is the Mobius function, it well-known that

(2.1)
$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)} \text{ for } s > 1;$$

and that

(2.2)
$$\sum_{n \le x} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)} + O\left(\frac{1}{x^{s-1}}\right) \text{ for } s > 1.$$

Also if $\chi_r(m)=1$ or 0 according as m is the r^{th} power of a positive integer or not, then $\chi_r(m)$ is a multiplicative function and that its Dirichlet series $\sum_{m=1}^{\infty} \frac{\chi_r(m)}{m^s}$ converges absolutely for s > 1. Further its Euler product representation ([2], Theorem 11.6) is given by

(2.3)
$$\sum_{m=1}^{\infty} \frac{\chi_r(m)}{m^s} = \zeta(rs) \text{ for } s > 1;$$

(2.4)
$$\sum_{m \le x} \frac{\chi_r(m)}{m^s} = \zeta(rs) + O\left(\frac{1}{x^{s-\frac{1}{r}}}\right) \text{ for } s > 1$$

We need the lemma proved in [7].

2.5. Lemma([7], Lemma 4). If $m, a \in \mathbb{N}$ and $S_a(m) = \sum_{k=1}^m k^a$, then $S_a(m) = \frac{m^{a+1}}{a+1} + \frac{m^a}{2} + \frac{1}{a+1} \sum_{k=1}^{a-1} {a+1 \choose k+1} B_{k+1} \cdot m^{a-k}$, in which $\{B_k\}_{k=0}^{\infty}$ are Bernoulli numbers defined by $z/(e^z - 1) = \sum_{k=0}^{\infty} B_k(z^k/k!)$

2.6. Lemma. For $m, a \in \mathbb{N}$ if $t_{a,r}(m) = \sum_{\substack{k=1\\(k,m)_r=1}}^m k^a$, then

(2.7)
$$t_{a,r}(m) = m^a \left\{ \frac{\phi_r(m)}{a+1} + \frac{1}{2} \varepsilon_r(m) + \frac{1}{a+1} \sum_{k=1}^{a-1} \binom{a+1}{k+1} B_{k+1} \cdot \psi_{k,r}(m) \right\},$$

where

(2.8)
$$\phi_r(m) = m \cdot \sum_{d^r \mid m} \frac{\mu(d)}{d^r},$$

(2.9)
$$\varepsilon_r(m) = \sum_{d^r \mid m} \mu(d)$$

and

(2.10)
$$\psi_{k,r}(m) = \sum_{d^r \mid m} \mu(d) \left(\frac{d^r}{m}\right)^k.$$

On a generalized lcm-sum function

 $\label{eq:proof.First note that} \sum_{d^r \mid (k,m)} \mu(d) = \begin{cases} 1 & \text{ if } (k,m)_r = 1 \\ 0 & \text{ if } (k,m)_r > 1 \end{cases}.$ Therefore

Therefore

(2.11)
$$t_{a,r}(m) = \sum_{0 < k \le m} k^a \left(\sum_{d^r \mid (k,m)} \mu(d) \right) = \sum_{d^r \mid m} \mu(d) d^{ar} \left(\sum_{0 < \delta \le \frac{m}{d^r}} \delta^a \right)$$
$$= \sum_{d^r \mid m} \mu(d) d^{ar} S_a \left(\frac{m}{d^r} \right).$$

Now using Lemma 2.5 in (2.11) we get

$$t_{a,r}(m) = \sum_{d^r \mid m} \mu(d) d^{ar} \left\{ \frac{(m/d^r)^{a+1}}{a+1} + \frac{(m/d^r)^a}{2} + \frac{1}{a+1} \sum_{k=1}^{a-1} \binom{a+1}{k+1} B_{k+1} \cdot \left(\frac{m}{d^r}\right)^{a-k} \right\}$$
$$= m^a \left\{ \frac{\phi_r(m)}{a+1} + \frac{1}{2} \varepsilon_r(m) + \frac{1}{a+1} \sum_{k=1}^{a-1} \binom{a+1}{k+1} B_{k+1} \cdot \psi_{k,r}(m) \right\},$$

proving the lemma.

2.12. Remark. Observe that $\phi_1(m) = \phi(m)$, the Euler totient function and that $\varepsilon_1(m) = 1$ or 0 according as m = 1 or m > 1. m:a

2.13. Lemma. If
$$T_{a,r}(m) = \sum_{j=1}^{j} \frac{j^a}{(j,m)_r^a}$$
 then $T_{a,r}(m) = \sum_{d^r \mid m} t_{a,r}\left(\frac{m}{d^r}\right)$.

Proof. If $(j,m)_r = d^r$ then, by definition,

$$\begin{split} T_{a,r}(m) &= \sum_{\substack{0 < j \le m, \\ (j,m)_r = d^r}} \frac{j^a}{d^{ar}} = \sum_{\substack{0 < d^r \delta \le m, \\ d^r \mid m \\ (\delta, \frac{m}{d^r})_r = 1}} \frac{(d^r \delta)^a}{d^{ar}} \\ &= \sum_{\substack{d^r \mid m \\ \delta, \frac{m}{d^r} \rangle_r = 1}} \delta^a = \sum_{\substack{d^r \mid m \\ d^r \mid m}} t_{a,r} \left(\frac{m}{d^r}\right), \end{split}$$

proving the lemma.

2.14. Lemma. For $a, m \in \mathbb{N}$

$$\begin{split} L_{a,r}(m) &= \sum_{\delta \mid m} \chi_r(\delta) \delta^a M_{a,r}\left(\frac{m}{\delta}\right), \end{split}$$
 where $M_{a,r}(m) &= m^a \cdot t_{a,r}(m). \end{split}$

Proof. In view of (1.9), Lemma 2.13 and (2.7)

$$L_{a,r}(m) = \sum_{j=1}^{m} \left(\frac{jm}{(j,m)_r}\right)^a = m^a \cdot T_{a,r}(m)$$
$$= m^a \sum_{d^r \mid m} t_{a,r} \left(\frac{m}{d^r}\right)$$
$$= \sum_{\delta \mid m} \chi_r(\delta) \delta^a M_{a,r} \left(\frac{m}{\delta}\right),$$

proving the lemma.

To prove Theorem A we have to estimate certain sums involving the functions given in (2.8), (2.9) and (2.10).

2.15. Lemma. If r > 1 and $x \ge 1$ then for any $\alpha > 0$

$$\sum_{m \le x} m^{\alpha} \phi_r(m) = \frac{x^{\alpha+2}}{(\alpha+2)\zeta(2r)} + O(x^{\alpha+1})$$

Proof. By (2.8) and (2.2), it follows that

$$\begin{split} \sum_{m \leq x} \phi_r(m) &= \sum_{d \leq x^{1/r}} \mu(d) \left(\sum_{\delta \leq \frac{x}{dr}} \delta \right) \\ &= \sum_{d \leq x^{1/r}} \mu(d) \left\{ \frac{(x/d^r)^2}{2} + O\left(\frac{x}{d^r}\right) \right\} \\ &= \frac{x^2}{2} \sum_{d \leq x^{1/r}} \frac{\mu(d)}{d^{2r}} + O\left(x \sum_{d \leq x^{1/r}} \frac{|\mu(d)|}{d^r}\right) \\ &= \frac{x^2}{2\zeta(2r)} + O(x^{1/r}) + O(x) = \frac{x^2}{2\zeta(2r)} + O(x). \end{split}$$

Using this formula and the Abel's identity ([2], Theorem 4.2) we get the lemma.

(i)
2.16. Lemma. If
$$r > 1$$
 then

$$\sum_{m \le x} m^{\alpha} \psi_{k,r}(m) = O(x^{\alpha + \frac{1}{r}}) \text{ for } \alpha > k$$
(ii)

$$\sum_{m \le x} m^{\alpha} \varepsilon_r(m) = O(x^{\alpha + 1}) \text{ for } \alpha > 0$$

456

Proof. By (2.10),

(i)
$$\sum_{m \le x} m^{\alpha} \psi_{k,r}(m) = \sum_{d^r \delta \le x} d^{r\alpha} \delta^{\alpha} \frac{\mu(d)}{\delta^k} = \sum_{d \le x^{1/r}} \mu(d) d^{r\alpha} \left(\sum_{\delta \le \frac{x}{d^r}} \delta^{\alpha-k} \right)$$
$$= O\left(\sum_{d \le x^{1/r}} |\mu(d)| d^{r\alpha} \left(\frac{x}{d^r} \right)^{\alpha-k+1} \right)$$
$$= O\left(x^{\alpha-k+1} \sum_{d \le x^{1/r}} \frac{|\mu(d)|}{d^{r(1-k)}} \right)$$
$$= O\left(x^{\alpha-k+1} x^{-(1-k)+\frac{1}{r}} \right) = O\left(x^{\alpha+\frac{1}{r}} \right),$$

$$(ii) \qquad \sum_{m \le x} m^{\alpha} \varepsilon_r(m) = \sum_{d^r \delta \le x} d^{r\alpha} \delta^{\alpha} \mu(d) = \sum_{d \le x^{1/r}} \mu(d) d^{r\alpha} \left(\sum_{\delta \le \frac{x}{d^r}} \delta^{\alpha} \right) = O\left(\sum_{d \le x^{1/r}} |\mu(d)| d^{r\alpha} \frac{x^{\alpha+1}}{d^{r\alpha+r}} \right) = O\left(x^{\alpha+1} \sum_{d \le x^{1/r}} \frac{|\mu(d)|}{d^r} \right) = O\left(x^{\alpha+1} \right)$$

2.17. Lemma. If r > 1 and $a \in \mathbb{N}$,

$$\sum_{m \le x} M_{a,r}(m) = \frac{x^{2a+2}}{2(a+1)^2 \zeta(2r)} + O_a(x^{2a+1}),$$

where the implied constant depends on \boldsymbol{a}

Proof. Using Lemma 2.15 and Lemma 2.16, we get

$$\begin{split} \sum_{m \le x} M_{a,r}(m) &= \sum_{m \le x} m^{2a} \left\{ \frac{\phi_r(m)}{a+1} + \frac{1}{2} \varepsilon_r(m) + \frac{1}{a+1} \sum_{k=1}^{a-1} \binom{a+1}{k+1} B_{k+1}.\psi_{k,r}(m) \right\} \\ &= \frac{1}{a+1} \left\{ \frac{x^{2a+2}}{(2a+2)\zeta(2r)} + O_a(x^{2a+1}) \right\} + O(x^{2a+1}) \\ &+ O\left(\frac{1}{a+1} \sum_{k=1}^{a-1} \binom{a+1}{k+1} B_{k+1} x^{2a+\frac{1}{r}}\right) \\ &= \frac{x^{2a+2}}{2(a+1)^2 \zeta(2r)} + O_a(x^{2a+1}) + O\left(x^{2a+\frac{1}{r}}\right), \end{split}$$

proving the lemma since r > 1. Here the implied constant depends on a.

Proof of Theorem A.

In view of Lemma 2.14, Lemma 2.17 and (2.4)

$$\begin{split} \sum_{m \le x} L_{a,r}(m) &= \sum_{d \le x} \chi_r(d) d^a M_{a,r}(\delta) = \sum_{d \le x} \chi_r(d) d^a \left(\sum_{\delta \le \frac{x}{d}} M_{a,r}(\delta) \right) \\ &= \sum_{d \le x} \chi_r(d) d^a \left\{ \frac{(x/d)^{2a+2}}{2(a+1)^2 \zeta(2r)} + O_a \left(\left(\frac{x}{d} \right)^{2a+1} \right) \right\} \\ &= \frac{x^{2a+2}}{2(a+1)^2 \zeta(2r)} \sum_{d \le x} \frac{\chi_r(d)}{d^{a+2}} + O_a \left(x^{2a+1} \sum_{d \le x} \frac{\chi_r(d)}{d^{a+1}} \right) \\ &= \frac{x^{2a+2}}{2(a+1)^2 \zeta(2r)} \left\{ \zeta((a+2)r) + O\left(\frac{1}{x^{a+2-\frac{1}{r}}} \right) \right\} + O_a(x^{2a+1}) \\ &= \frac{x^{2a+2} \zeta((a+2)r)}{2(a+1)^2 \zeta(2r)} + O\left(x^{a+\frac{1}{r}} \right) + O_a(x^{2a+1}), \end{split}$$

proving the theorem.

3. Lemmas and the proof of Theorem B.

It is well known that a divisor d of $m \in \mathbb{N}$ is called a *unitary divisor* if $(d, \frac{m}{d}) = 1$. Generalizing this notion, D. Suryanarayana [8] has defined $r - ary \ divisors \ d \ of \ m \in \mathbb{N}$, as those for which $(d, \frac{m}{d})_r = 1$. Denoting the number of r- ary divisors of m by $\tau_r^*(m)$; it has been proved that $\tau_r^*(m)$ is a multiplicative arithmetic function and that ١

(3.1)
$$\tau_r^*(m) = \left(\sum_{d\delta = m, (d, \delta)_r = 1} 1\right) \text{ is such that}$$

 $\tau_r^*(p^{\alpha}) = \alpha + 1 \text{ or } 2r \text{ according as } \alpha < 2r \text{ or } \alpha \ge 2r \text{ for any prime } p.$

Clearly the Dirichlet series $\sum_{m=1}^{\infty} \frac{\tau_r^*(m)}{m^s} = F_r(s)$ converges absolute for s > 1 and therefore has Euler oduct representation ([2], Theorem 11.6). In view of (3.1), $F_r(s)$ is given by $\int \left(\frac{1}{2} - \frac{2}{3} - \frac{2}{3} - \frac{2}{3} - \frac{2}{3} - \frac{2}{3} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{2}{3} - \frac{2}{3} \right)$

product representation ([2], Theorem 11.6). In view of (3.1),
$$F_r(s)$$
 is given by

(3.2)
$$F_r(s) = \prod_p \left\{ \left(1 + \frac{2}{p^s} + \frac{3}{p^{2s}} + \dots + \frac{(2r-1)}{p^{(2r-2)s}} \right) + \frac{2r}{p^{(2r-1)s}(1-\frac{1}{p^s})} \right\}$$

`

We observe that

(3.3)
$$F_1(s) = \prod_p \left\{ 1 + \frac{2}{p^s (1 - \frac{1}{p^s})} \right\} = \frac{\zeta^2(s)}{\zeta(2s)}.$$

/

3.4. Lemma. For a, r and $n \in \mathbb{N}$ with $a \ge 2$,

$$\sum_{n=1}^{\infty} L_{-a,r}(n) = \frac{\zeta(ar)}{2} \{1 + F_r(a)\}, \text{ where } F_r(a) \text{ in as given in (3.2)}.$$

Proof. In view of (1.9),

(3.5)
$$L_{-a,r}(n) = \sum_{j=1}^{n} \left(\frac{(j,n)_r}{jn}\right)^a = \frac{1}{n^a} \sum_{\substack{0 < j \le n \\ (j,n)_r = d^r}} \frac{d^{ar}}{j^a} = \frac{1}{n^a} \sum_{\substack{dr \mid n \\ 0 < \delta \le \frac{n}{d^r}}} \sum_{\substack{0 < \delta \le \frac{n}{d^r}}} \frac{1}{\delta^a}$$

so that

$$(3.6) \qquad \sum_{n=1}^{\infty} L_{-a,r}(n) = \sum_{n=1}^{\infty} \frac{1}{n^a} \left\{ \sum_{d^r u = n} \left(\sum_{0 < \delta \le u, (\delta, u)_r = 1} \frac{1}{\delta^a} \right) \right\}$$
$$= \sum_{d=1}^{\infty} \sum_{u=1}^{\infty} \frac{1}{d^{ar} u^a} \left(\sum_{0 < \delta \le u, (\delta, u)_r = 1} \frac{1}{\delta^a} \right)$$
$$= \sum_{d=1}^{\infty} \frac{1}{d^{ar}} \left(\sum_{u=1}^{\infty} \frac{1}{u^a} \left\{ \sum_{0 < \delta \le u, (\delta, u)_r = 1} \frac{1}{\delta^a} \right\} \right)$$
$$= \zeta(ar) \sum_{m=1}^{\infty} \frac{1}{m^a} \left(\sum_{u\delta = m, 0 < \delta \le u, (\delta, u)_r = 1} 1 \right).$$

But, by (3.1) and (3.2), we have

(3.7)
$$\sum_{m=1}^{\infty} \frac{1}{m^{a}} \sum_{\substack{u\delta = m \\ 0 < \delta \le u \\ (\delta, u)_{r} = 1}} 1 = 1 + \frac{1}{2} \sum_{m=2}^{\infty} \frac{1}{m^{a}} \left(\sum_{\substack{u\delta = m, (\delta, u)_{r} = 1}} 1 \right)$$
$$= 1 + \frac{1}{2} \sum_{m=2}^{\infty} \frac{\tau_{r}^{*}(m)}{m^{a}}$$
$$= 1 + \frac{1}{2} \left\{ \sum_{m=1}^{\infty} \frac{\tau_{r}^{*}(m)}{m^{a}} - 1 \right\}$$

$$= 1 + \frac{1}{2} \{F_r(a) - 1\}$$
$$= \frac{1}{2} (1 + F_r(a)).$$

Now (3.7) and (3.6) imply Lemma 3.4.

Proof of Theorem B. Since

(3.8)
$$\sum_{\substack{n \le x \\ n < x}} L_{-a,r}(n) = \sum_{n=1}^{\infty} L_{-a,r}(n) - S(x), \text{ where } S(x) = \sum_{n > x} L_{-a,r}(n),$$
we estimate $S(x)$.

By (3.5), we have

(3.9)

$$\begin{split} S(x) &= \sum_{n>x} \frac{1}{n^a} \left(\sum_{d^r u=n} \left\{ \sum_{0 < \delta \le u, (\delta, u)_r = 1} \frac{1}{\delta^a} \right\} \right) \\ &= \sum_{d=1}^{\infty} \frac{1}{d^{ar}} \left\{ \sum_{u>\frac{x}{d^r}} \frac{1}{u^a} \left(\sum_{0 < \delta \le u, (\delta, u)_r = 1} \frac{1}{\delta^a} \right) \right\} \\ &= \sum_{d=1}^{\infty} \frac{1}{d^{ar}} \left\{ \sum_{u>\frac{x}{d^r}} \frac{1}{u^a} \left(\sum_{0 < \delta \le u} \frac{1}{\delta^a} \left(\sum_{t^r | (\delta, u)} \mu(t) \right) \right) \right\} \\ &= \sum_{d=1}^{\infty} \frac{1}{d^{ar}} \left\{ \sum_{u>\frac{x}{d^r}} \frac{1}{u^a} \left(\sum_{0 < t^r s \le u, t^r | u} \mu(t) \frac{1}{t^{ar} s^a} \right) \right\} \\ &= \sum_{d=1}^{\infty} \frac{1}{d^{ar}} \left\{ \sum_{u>\frac{x}{d^r}} \frac{1}{u^a} \left(\sum_{t^r | u} \frac{\mu(t)}{t^{ar}} \left\{ \sum_{s \le \frac{u}{t^r}} \frac{1}{s^a} \right\} \right) \right\} \\ &= \sum_{d=1}^{\infty} \frac{1}{d^{ar}} \left\{ \sum_{u>\frac{x}{d^r}} \frac{\mu(t)}{t^{2ar} v^a} \left(\sum_{s \le v} \frac{1}{s^a} \right) \right\} \\ &= \sum_{d=1}^{\infty} \frac{1}{d^{ar}} \left\{ \sum_{v>\frac{x}{(dt)^r}} \frac{\mu(t)}{t^{2ar} v^a} \left(\sum_{s \le v} \frac{1}{s^a} \right) \right\} \\ &= \sum_{q=1}^{\infty} \frac{1}{q^{2ar}} \left\{ \sum_{dt=q} \mu(t) d^{ar} \left(\sum_{v>\frac{x}{q^r}} \frac{1}{v^a} \left\{ \zeta(a) - \frac{v^{1-a}}{a-1} + O(v^{-a}) \right\} \right) \right\} \\ &= S_1(x) + S_2(x), \end{split}$$

where $S_1(x)$ and $S_2(x)$ are the sums extended over those q < x and $q \ge x$ respectively.

Now

$$(3.10) S_1(x) = \sum_{q < x} \frac{1}{q^{2ar}} \left\{ \sum_{dt=q} \mu(t) d^{ar} \zeta(a) \frac{(x/q^r)^{-a+1}}{a-1} + O\left(\frac{x}{q^r}\right)^{-a} - \frac{(x/q^r)^{-2a+2}}{(2a-2)(a-1)} + O\left(\frac{x}{q^r}\right)^{-2a+1} \right\} \\ = \frac{x^{-a+1}\zeta(a)}{a-1} \sum_{q < x} q^{-ar-r} \left(\sum_{dt=q} \mu(t) d^{ar}\right) + O\left(x^{-a} \sum_{q < x} q^{-ar} \left(\sum_{dt=q} \mu(t) d^{ar}\right)\right) \\ - \frac{x^{-2a+2}}{(2a-2)(a-1)} \sum_{q < x} q^{-2r} \left(\sum_{dt=q} \mu(t) d^{ar}\right) \\ + O\left(x^{-2a+1} \sum_{q < x} q^{-r} \left(\sum_{dt=q} \mu(t) d^{ar}\right)\right) \right)$$

But for any $\beta > 1$ we find in view of (2.2) that

But for any $\beta > 1$, we find, in view of (2.2), that

$$(3.11) \qquad \sum_{q < x} q^{-\beta} \sum_{dt=q} \mu(t) d^{ar} = \sum_{d < x} d^{ar-\beta} \left(\sum_{t < \frac{x}{d}} \frac{\mu(t)}{t^{\beta}} \right) = \sum_{d < x} d^{ar-\beta} \left\{ \frac{1}{\zeta(\beta)} + O\left(\frac{d}{x}\right)^{\beta-1} \right\}$$
$$= \frac{1}{\zeta(\beta)} \sum_{d < x} d^{ar-\beta} + O\left(x^{1-\beta} \sum_{d < x} d^{ar-1}\right)$$
$$= O_{\beta} \left(x^{ar-\beta+1}\right) + O\left(x^{ar-\beta+1}\right) = O_{\beta} \left(x^{ar-\beta+1}\right),$$

where the implied constant depends on β .

Taking $\beta = ar + r$, ar, 2r and r in (3.11) and using them in (3.10) we get

(3.12)
$$S_{1}(x) = O_{a,r} \left(x^{-a-r+2} \right) + O_{a,r} \left(x^{-a+1} \right) + O_{a,r} \left(x^{-2a-2r+3+ar} \right) \\ + O_{a,r} \left(x^{-2a+ar-r+2} \right) \\ = O_{a,r} \left(x^{-2a+ar-r+2} \right)$$

Also

(3.13)
$$S_{2}(x) = O\left(\sum_{q \ge x} \frac{1}{q^{2ar}} \left\{ \sum_{dt=q} |\mu(t)| d^{ar} \left(\sum_{v=1}^{\infty} \frac{1}{v^{a}} \left\{ \zeta(a) - \frac{v^{1-a}}{a-1} + O(v^{-a}) \right\} \right) \right\} \right)$$
$$= O\left(\sum_{q \ge x} q^{-ar} \left(\sum_{t|q} \frac{|\mu(t)|}{t^{ar}} \right) \right) = O\left(x^{-ar+1}\right)$$
(3.12) and (3.13) we get

By (3.12) and (3.13) we get

(3.14)
$$S(x) = O_{a,r} \left(x^{-2a+ar-r+2} \right) + O \left(x^{-ar+1} \right) = O_{a,r} \left(x^{-2a+ar-r+2} \right)$$
$$= O_{a,r} \left(x^{(-a+1)(2-r)} \right).$$

Now Theorem B follows in view of Lemma 3.4, (3.8) and (3.14).

3.15. Remark. Although the main theorems are valid for r > 1 only, Lemmas 2.6, 2.13, 2.14 and Lemma 3.4 hold for $r \ge 1$. In fact, taking r = 1 in Lemma 3.4, we get (1.7) in view of (3.3).

4. ACKNOWLEDGEMENT

The authors would like to thank the reviewer of the paper for bringing the references [4] and [5] to our notice and for the suggestions to improve the quality of the presentation.

Conflict of Interest. No potential conflict of interest was reported by the authors.

Funding. The authors received no financial support for the research, authorship, and/or publication of this article

REFERENCES

- K. Alladi, On generalized Euler functions and related totients, in New concepts in Arithmetic Functions, Matscience Report 83, Madras, 1975
- [2] T. M. Apostol, Introduction to Analytic Number Theory, Springer International Student Edition, Narosa Publishing House, New Delhi, 1998.
- [3] O. Bordelles, Mean values of generalized gcd-sum and lcm-sum functions, J. Integer Sequences, 10(2007), Article 07.9.2.
- [4] Z. Bu and Z.Xu, Asymptotic formulas for generalized gcd-sum and lcm-sum functions over r-regular integers (mod n^r), AIMS Math., 2021, 6, 13157-13169.
- [5] Z. Bu and Z.Xu, Mean value of r- gcd-sum and r- lcm-sum functions, Symmetry, 2022, 14, 2080, 1-9.
- [6] L.E. Dickson, *History of Theory of numbers*, volume I, Carnegie Institution of Washington, 1919; reprinted by Chelsa publishing company, New York, 1952.
- [7] S.Ikeda and K. Matsuoka, On the Lcm-sum function, J. Integer Sequences, 17(2014), Article 14.1.7.
- [8] D. Suryanarayana, The numbers of k-ary divisors of an integer, Monatshefte fur Mathematik, 72(1968), 445-450.