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Abstract. Some new generalized two-dimensional non-linear double in-
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cussed which are handy tools in the study of partial, integral, and integro-
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1. INTRODUCTION

The most desirable thing for researchers is to solve the problems explicitly. If it is not
possible then we try to reduce the complexity of the problem. The theory of inequalities
defines explicit bounds for some specific integral inequalities. Integral inequalities that
provide explicit bounds on unknown functions are very useful in the analysis of quantita-
tive as well as qualitative behavior of solutions of differential and integral equations. One
of the most popular inequalities in this direction is the Gronwall inequality [6]. Gronwall
inequality is an important tool for obtaining various estimates in the theory of ordinary
and stochastic differential equations. It also provides a comparison theorem that can be
used to prove the uniqueness of a solution to an initial value problem. The differential
form of this inequality was proven by Gronwall in 1919. The integral form was proven by
Richard Bellman in 1943 [2]. A nonlinear generalization of Gronwall-Bellman inequality
is known as Behari-Lasalle inequality. Other variants and generalizations can be found in
B. G. Pachpatte [10]. Gronwall-Bellman integral inequalities have a lot of contributions
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to analyzing the behavior of solutions of many differential and integral equations, for de-
tails see the papers [3, 4, 5, 8, 9, 11, 13, 17, 18, 19, 20]. Additionally, it can be used to
analyze the numerical modeling of biological systems like immune system and tumors, as
well as HIV infection of C D4 T cells [16] . In recent years, an increasing number of
Gronwall-Bellman type integral inequalities, and generalizations have been discovered to
address difficulties encountered in differential equations. A lot of work has been done in
this direction [1, 12, 14, 15]. To discuss the abstract analysis of the solutions of certain
types of differential equations, Grownwall-Bellman and Pachpatte-type inequalities can
play a significant role. Such inequalities are deficient in analyzing the abstract analysis of
the solutions of some more types of differential equations. This gives us the motivation in
this direction.

2. MAIN RESULTS:

In what follows, R represents the set of real numbers; R the set of all non negative
real numbers; My := [rg,7¢) and My := [to, tg) are the subsets of R; A := M; x My
. C(X,Y), the class of continuous functions defined on X to Y. D; A(y1,y2, * ,Yn)
= Ay, (Y1,y2, -+ ,Yn), where 1 < ¢ < n, is the partial derivative of A with respect to
1—th variable.

Theorem 2.1. Let a,b,l,¢e;, fi,9; € C(A,Ry) be such that a and b are non decreasing
functions in each variable; let v; € CY(M1,M;) and 6; € C*(Ma, My) be non de-
creasing functions such that v;(w) < w and 6;(¢) < ¥; let n,§ € C(R4,Ry) be non
decreasing functions such that n(w) > 0, f(w) > 0 for w > 0 and

n(l(w,v)) < a(w, ) + b(w, V) Z/ . /66(:))) (e, B)) { i(a 5)(5(1((1’5))
+/L o / . filp, )&(U(p, Q))dqdp) Jrgi(a,ﬂ)}dﬁda Q2. 1)

Jor (w, ) € A, then
(e, ) < 07" a(@, ) exp { I (J(k(wo, ) + (@ ) B,v)) }] - (2.2)

for (w, ) € [wo,@s) X [o,s) where J=L, n=1 are inverses of J, n respectively.
(ws,5) € A is chosen arbitrarily on the boundary of planar region A, provided that:

u
ds
Uug >0

wo €0 T(aexp()) " =
a(w, ¥)exp {7 (J(k(wo,w» + b(w,wB(w,w))} € Dom(n ™)

8: ()
k(@0,0) = / / 8)dsda
i (WO) 6 (wO)

n Yi(w)  p8i () o 5
= / / ei(, ) (1 + / / i(p, q)dqdp) dBda.
i=1 7 7i(=0) Jéi(%o) i(wo0) v 6i (o)

K2

J(k(z0,)) + b(@, ) B(w,v) € Dom(J™"); J(u) :=
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Proof. In the light of monotonicity of a and b, the inequality (2.1) can be written as

noo (@) pdi(y)
(oo, <a(@w b(@ 61 o (o,
n(l(@,¥)) < a(@,9) + ;/(wo)/ N (0,8) (<0160, 8)

for all (w, ) € [wo, @] X Mg, @ < ws. Right hand side of inequality (2.3) can be
denoted by z5(w, v). Then, obviously z5(w, ) > 0 and non decreasing function in each
variable such that z5(wg, ¥) = a(@, ). Then, (2.3) can be written as

(@, 9) <07 (25(@,9)). 2.4
z5(to, 1)) is non decreasing continuous function for all (w, ¢) € [wo, @] x My and
n. poi(e)

5 (@,0) = b(@,0) Y /5 1), ) { i (@), B) (£ (). B)

(%o)

vi(w) B ,
+/%_(WO) /M%) fi(p, )&(U(p, Q))dqdp) +gi(%(W),ﬁ)}dﬂ%(w).

Monotonicity of 7, [, v;(w) < w and inequality (2.4), yield

3 ()

W 7/17Z) Sb_7w 7/1/}
25, ) < b(, )25 (w );/@wo)

vi(w) /
o) e ot ) dadb) + (). )} i)

i(w@o)

{eitu(@). 8) (¢ (x5 (=), 8)))

n

250 (0, ~ 3i(¢) B
= <im0y [ {atu@)m(eo ). )

e o)
vi (@) B
i\ -1 5\D, d d i(vilo), d ; w). 2 5
+/%(wo)/5(%)f(p & N (z5(p,9)))dg P)+g(7( ) 5)} Bri(@). (2.5)

Taking ¢ as fixed in (2.5) for all (w, 1) € [wo, @] X May, replace w by s then integrating
from wy to o with respect to s and making change of variable techniques, we have

vi (@)
log(zs () < log(a(, 1)) +b(,) > / /5 . 8) (e (zs(0 9))

=17 (=o)

+ / am) /5 o 07 00 )dadp) + 0:(01 B) Ydpdar

s s@mwa@ e bEnd [ [ fae s (g e o)

i=1 “vi(@o) J3i(¢o)

+/a(wo)/;(w0) fi(p, @&~ (25 (p, q)))dqdp) +gi(a,[3)}d5da] 2. 6)
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Consider

vi(&®) 5(¢) nopvi(@) poi(y)
) = b)) / J o atessdasi@ny [ [ es)

i(w0) (1/10) i—17 vi(wo) J 0 (o)
x (E(n’l(%(a,ﬁ))) of /6 o .00 ol ) adp)

Then, obviously k(w, ) is continuous and non decreasing for all (cw,?) € [wo, @] X

[tbo, ¥s),
= z5(w, ) < a(@, ) exp(k(w, ¥)), 2.7

n 3 ()
SCCRERCT) /5 es(1(), ) (€07 (5(04(=). )

i(Y0)

Yi (w) ’
/ filp, )¢~ (25(p, q)))dqdp) dpv; ().
3: (o)

(o)

Monotonicity of &, ™1, 25; vi(w) < w and §;(¢) < 1, yield

no o)
etmy) < WY [ @), Bl i) )

X (1 + L B /5 iwo) fi(p, q)dqdp) dBr; (w).

i (w0)
Equivalently,
ke (@, 9)
€Tl vy e R 1) wz/ gy )
~i (@) ,
H/ (o) /5.%&‘(?7 a)dgdp)dpv (). 2. 8)

Keeping 1 fixed in (2.8), setting o — s and integrating with respect to s over [wy, w],
making change of variable technique and by using the definition of .J, we have

vi(@) b (w)
J(k(w,v)) < J(k(wo,))+ b, ) Z/ /5

i(wo) 7 6i(vo)

X (1 + / / fi(p, q)dqdp) dBde.
i(wo) Jdi (o)

" opvi(@) pai(¥)
M) < 0 Ik @Y [ [ s

—1 Y vi(wo) v 3i(vo)

e B8
x (1 T / / £i(p, q)dqdp) dﬂda}. 2. 9)
i(ww0) v 6; (o)
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A combination of inequalities (2.4), (2.7) and (2.9), yields

’Yz(w
)< ol e {1 (k) 0w Y [ [
i=1 vi(wo) Jd; (¢0)
1 + / / q)dqdp ) dfda (2. 10)
- Jdsda) } ]
Since @ is arbitrary therefore this completes the proof. 0

Theorem 2.2. Let a,b,l,e;, fi, g:,7i,0i,n and & be as defined in Theorem 2.1; let 0 €
CR4,R1), 1 <\ <2, be non decreasing functions with 05(s) > 0 for s > 0 and

vi(w) oi(¥)
nl(@w) < a(@,v) +b(w, b) Z/ /5 n(i(a. ) {ei(a, B)611(a, 5)

i(wo) (%0)
- I\ ! 3 dqd,
/mm) /51'(1lfo) fi(p, 9)&(U(p, q))dg p)
+gi(a,5)92(log(l(a,5)))}d,@da7 V(@) € A, -

o If01(u) > 05(log(u)), then

(e, 0) < o a(w, 0y exp{ I (67 (Gr(a (o, ) + (e, ) B, ) ) )|
2. 12)

Sor (w, ) € [wo, w1) X [0, ¥1).
o [f01(u) < O2(log(u)), then

(e, v) < 0 Ya(w, ) exp{ I (G5 (GalTa ka0, ) + b, ) B(w, 4) )|
2. 13)
Sor (w, ) € [wo,w2) X [thg, 12), provided that J;l, G;l and n~ are the inverses of J,

G and ) respectively; (wy, %)) € A are chosen arbitrarily on the boundary of planar
region A, provided that:

GA(Ja(kx(wo,))) + b(w, ) B(w,¥) € Dom(Gy ")

G (G (w0,1))) + b(ez, ¥) B(ez, v) ) € Dom(J5")

a(e, ¥) exp { I (63 (G a0, ) + (e, ) B, v)) ) } € Dom(n™).
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N vi(w) o)
b w) = b)Y [ 6 (™" a(a B)
vi(a)  i(B)
+b(a,6) / /6 n(l(p, Q)){ez(p 7)01(I(p, )

P
/ n))dndm)
i(ao) /0 (ﬁO)

+9i(p, q)02(log(I(p, q)))}dqdpD gi(a, B)dBdo.
“w ds “w ds
I = / o) T L e ety @) 0

Proof. In the light of monotonicity of « and b, the inequality (2.11) can be written as:

¥i(@)
w < a(w, b(@ eZ a, 8)01(l(«,
(e 8) < al@,v) + b wz/w/&(%) (0. )01 (U(cr, B))
i(p, l(p,q))dqd
+/%(w0)/6i(%)f(p 7)¢(U(p, q))dq p)
+gi(a. )9 (log(I( B))) pdBda . 14)

for all (w,®) € [wp, @] X Mz, @ < w;. Right hand side of inequality (2.14) can be
denoted by z1 (e, 1). Then, obviously z; (@, ) > 0 and non decreasing function in each
variable such that z1 (wg, ¥) = a(c, ¥). Then (2.14) can be written as

(@, %) <0~ (a1(@,9)). 2.15)
z1 (o, 1) is continuous non decreasing function V(w, ¢) € [wo, @] x Mg and
n 3i ()
Zm(@, ) = b(wﬂ/))Z/éw : 7](1(%‘(@)’5)){ei(%‘(w)»ﬁ)91(l(%(w)a5))

vi(w) 8
X / (@0) /(si(wo) filp, @)€(U(p, Q))dep)

+9:(36(), B)02 (108 (:(2), B))) } a7 (=):
Monotonicity of 7, I, v;(w) < w and inequality (2.15), yield

A (@, ¥) N A
() = ’WWZ /5 " {ei0i(=), B0 (™ (21 ((=), B)))

X(E(n "z (vi(w / . / " filp,q (Zl(p,q)))dqdp>

+9: (3:(2), B)62(log(n~ (zl(%(W)ﬁ))))}dB%(W)- . 16)

1) can be kept as fixed in (2.16) for all (w, ) € [wo, @] X My, replace w by s then
integrating from wy to w with respect to s and making change of variable techniques, we
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have

vi(w=)

n i ()
og(21(, ) < log(a(, )+ ) 3 / / [ {ate s o )

i(wo)

><( Hzi(a, 9))) /ww())/uwo P, )&~ (z1(p, q)))dqdp)
+9:(cx, B)62(10g(n " (1 (cx, )))) | Bl

n 5(1/))
= (@) < o@D | Z/ )/W) o, )01 (17 (21(cx, B))
“(sorte@on+ [ /5 S ) )
+gi(a, B)0a(log(n~" (21 (e B)))) fdBdal. . 17)

When 61 (u) > 03(log(w)), inequality (2.17) takes the form

n

vi(@)  roi(9)
@) = @0y [ [ am e )al.s)

i—1 “vi(@o) J3i(vo)

a B
x(f(n-1<z1<a | /5 . )fi<p, D€ (2 (p.0)))dadlp) d e

vi(@) o (w)
/ [ 8)))gi(ex B)dBdo.
vi(wo) di(vo)
Obviously k1 (w, 1) is continuous and non decreasing for all (w, ¢) € [wq, @] X [0, ¥1),
= 21(w, ¥) < a(@,¥) exp (ki (@, ¥)). (2.19)
Fie(@, ) = b( Z/W (@), 8))eiCri(®), )
w - % €i\vilw),
= 6: (o) Zl L )
¥i (@) ,
X(é(n (z1(vi(@ / - / - filp, )& (=1 (p, )))dqdya)dﬁ%(W)
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Monotonicity of 61, 7%, z; and ~;(w) < w yield

klw(w, w) < b( B 7,(/J) i: /51‘(111)

01(n (21 (@, 7)) — w 2 Jsio0) ei(vi(@), B)§(n™ " (21 (vi(w), B)))
vi(w) B ,
+(p, q)dqdp ) dpy; (w).
><<1+/i(w0) /Mwo)f(p q)dq p) B (@)
Equivalently,
klw(w71/})

Or(n~(a(@, ¥) exp kr (@, )

n 8 (v)
<o@0) /5 o @) B (3 0u(),B)

vi(®@) B ,
(e [ [ g dadp)ds (). @.20)
vi(@o) J8i(ho)

Keeping 1 fixed in (2.20) , setting co — s and integrating with respect to s over [y, @],
making change of variable technique and by using the definition of .J;, we have

(@) )
Ji(k Ji(k b(& E: (o . 7
k(@ 9)) < Ji(ka (@0, ¥)) + b(@, ¥) = /i(ww /aiwo) ei(a, B)§(n~" (21, B)))
o 8
! «(p.q)dqdp) dBda. 5 o1

Denote the right hand side of inequality (2.21) by z2(ww, 1). Then, obviously zo(w,¢) > 0
and non decreasing function in each variable such that 2o (wo, ) = J1(k1(wo, ¥)). Then,
(2.21) is equivalent to

ki (w,v) < J; H(z2(, 9)). (2.22)
Since z2(w, 1) is continuous non decreasing function, so
no oY)
Zom (@, ) = b(ﬁ,w)Z/ ei(vi(@), B)E(n ™ (21(vi(w), B)))
i=1 7 9i (o)
Yi(w) B ,
i(p, ¢)dqdp ) dBv; (w).
><<1+/i(w0) Ai(wo)f(p q)dgq p) B (w)
Equivalently,
Zgw(w,w) < b(c n 0: (%) ‘ ‘
T e T < T g, S0)
vi(w) B ,
i(p, q)dqdp )dBv;(w).  (2.23
X(1+/7¢<m> /51(w0)f(p q)dg p) Bvi(w@).  (2.23)

Keeping ) fixed in (2.23) for all (ww, v)) € [wo, @] x Mg, replace w by s and integrating
with respect to s over [tg, w], making change of variable technique and using the definition
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of (G1, we have

n

3 ()
Gi(z2(w,¥)) < Gi(z2(wo, ) Z/ / ei(a, B)
i—1 7 7vi(w@o) J8:(vo)
><(1+ / / fi(p, q)dqdp)dﬁda
Yi(wo) /i (vo)
vi(@w)  roi()
< Gi(Ji(ki(wo, ) / /
i(wo) 1110)

1+/ / dqdp dﬂda
WO)

no (@) poi(d)
= a@0) < 6 {GUEE ) +@0Y [ [ s

i=1 vi(w@o) 7 8i(vo)

a B
x(1+ / / Ji(p. a)dadp ) dBda }. (2. 24)
¥i(w@o) J8; (o)
A combination of inequalities (2.15),(2.19),(2.22) and (2.24) yields:

(@, )

: n_l[a(@’lp) eXp{Jf1<G (Gl(‘]l(kl(wmb /7(1(:))/56(:?
X (1 + /7 iwo) /5 i%) filp, q)dqdp) dﬂda)) H : 2. 25)

Since @ is arbitrary, this completes the proof.
When 61 (u) < 63(log(u)), inequality (2.17) becomes

n (@) poi(y)
w a(@ ex w (log( 2 (a e;(o
21(@,9) < a(@,v) % wZ/méw a1~ (210 ) {es(, B)
< (e (z1(0,8))) Aww/%ﬁ@mwyume@@)
+gi(a, B)} dBda] . (2. 26)
Consider,
vi(w)  oi(3)
w ] 1 Zl a, e;l\a,
(@, ) AWOA%>ZQ (0, 8))))es(, B)
X Lz (p, e
(5( . /5 - filp,q (z1(p Q)))dqdp>dﬂd

3 (%)
o, B)f2(log(n~ (21(ax, B))))dBda

8
G
i =
\

g
\
5
VQ



300 S. Hussain, S. Shahadat and S. Rafeeq

Then,

n vi(@) 0i(¥)
ba(@o ) = @)Y / / gi(a, B)0(log(n~ (21 (o, B)))) B

vi(w@o) ¥ 8i(o)
Obviously k2 (o, ) is continuous and non decreasing for all (w, ¢) € [wq, @] X [to, ¥2),
= Zl(wﬂ/)) < a(ﬁaw) exp (k2(w)w)) (2 27)

no i)
has(@ ) = 0@ /5 . ol G0, ) (). )

X(E(n (z1(vi(w / e /6 " filp, )& (21 (p, )))dqdp)dﬁvi(W)-

(o)

Monotonicity of 6y, 77"

ko (@, 1)) Ly (i (o
O2(n=1(a(@, ) exp ka(w, v))) — o 9) Z/(wo) PR (a1 ((=). )

, z1 and 7;(w) < w, yield

vi(w) )
1 + / / fi(p, q)dqdp) dB;(w). (2.28)
3; (o)

(o)

Similarly to the above process from (2.21) to (2.25) V (e, %) € [wo, w2) X [t)o, P2) where
(w2,19) € A are chosen arbitrary, we get the required result (2.13). O

Theorem 2.3. Let a,b,l,e;, fi, i, Vi, 0;, 1 and € be defined as in Theorem 2.1; let L, M €
C(A x Ry, Ry ) and v > w be such that:

0< L(wﬂbav) - L(wawﬂﬂ) < M(w?l/]?w)(v - U})

vi(w)  poi(v)
Wi@y) < al@,y)+ b, v) Z / [, s feam

(w0)
/ . /5 . filp.q ))dqdp)
+gi(a. B)L(e, B,E(1a, )))}dﬁda 2.29)

Sor (w, ) € A, then
U, ) < a(w, v) exp{ (I ks (o, ) +b(w, ¥) (B(=, )+ D(z, 1) ) ) }]
(2. 30)

Sor all (w, ) € [w 3) X [0, 3) provided that J=1, n=1 are inverse of J, 1 respec-
tively. (ws,13) € A is chosen arbitrarily on the boundary of planar region A provided
that:

I (ks (0, 9)) + b(z, %) (B(w,9) + D(w.¥) ) € Dom(J ™)

alw, ) exp {171 (I (ks(@0, 9)) + blw, 0) (B(w,0) + D(w, 1)) ) } € Dom(y™").
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¥i (@)

i (%)
/ gi(a, B)L(a, B,0)dSBda.

k(o) = =Y [

vi(®o)

n Yi(w)  0i ()
D(w, ) ;:; / N /5 il )M (0, 0)ddo:

Proof. In the light of monotonicity of ¢ and b, the inequality (2.29) can be written as

1@, 0) < al@, )+ b0 Z/W)/ana,ﬁ n{ean)

i(w0)
/ / filp, 9)€(U(p 7q))dqdp)
i(wo0) /i (o)
+i(e. B)L (e B.E(1a, )))}dﬁda 2. 31)

for all (w,®) € [wo, @] X Mz, @ < ws. Right hand side of inequality (2.31) can be
denoted by z3(w, ). Then, obviously z3(w, ) > 0 and non decreasing function in each
variable such that z3(wo, ¥) = a(@, ). Then (2.31) can be written as

e, ) < ' (zs(w, 1)) (2.32)

z3(w, 1) is continuous non decreasing function ¥(w, ¢) € [wo, @] X Mj and

"o psi(¥)
el d) = W) ) /5 o, M=), 0) e, )

X(E( +/% ! /j (P, )& (Up, Q))dqdp)

i(w@o) Jdi(

+9i(36(=), BYL (), B, €U (), B) } dB, ().

Then, by monotonicity of 7 and /, and inequality (2.32)

s - n 0 ()
=) < ey / Aati=).9

Z3(waw)
x (g0 o /ﬁ Ji(p )€™ (z3(p, @))dadp)
n~ (z3(vi(w (o) S5 ) ilD,q)s\1 3\D, g qap
+0i(3(@), AYL((2). B €~ (25 (3:(), B))) B (=): 2.33)

1) can be kept as fixed in (2.33) for all (w, ) € [wo, @] X My, replace w by s then
integrating from wy to w with respect to s and making change of variable techniques, we
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have

vi(w)  oi(v)
log(zs(w,4)) < log(a(@, )+ Y [ [ e

“(eor @+ [ [
+gi(a, B)L(ev B, §(n " (5(, 8)))) pdBdar

Yi(w) o; (w>
= 25(w,¢) < alw, ) exp | / /
~i(w@o) J6i(¢o )

<(eor / o /5 o 0 D6 a0 )
+ai(a B Lo 8. € (zale ,m)))}dﬁda}.

Here &, 7 and z3 are non decreasing functions, also by using the condition of continuity of
L

n vi (@) 5(1/1)
25(,0) < af@, ) exp | )Y / /6

(wo) v di(tbo)
< (e / . / 0 ol )
i B) (M (o, B, 0)€ 01 (za(ex, B))) + Lav, B, >>}dﬂda] .34

Consider,

ba(w0) = W@ 0) /ji(w) [ fews)

(et Gemn+ [ [ g€ Gt a)adp)
+gi(ev, B)M (@, B,0)€(n~ (23(a,ﬁ)))}dﬂda

/7:) /(S w (av, 8, 0)dBdor.

Obviously ks3(w, ) is continuous and non decreasing for all (w,v) € [wo, @] X

[0, v3),
23(7-"_]’ 1/]) < a’(@a ¢) eXp (k3 (wv ¢)) (2. 35)
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3 (%)

bool@ ) < W@ )Y / {eitn(@),8)

i—1 v 0i(¥o)
<(sor i@ o+ [ " [ €l ol 0)dad)

+9:(3i(), B)M (7:(=), 8, 0)¢ 1<Z3(%<w> B))) i ().
Monotonicity of £, ™1, 23, inequality (2.35) and ;(w) < w, yield
k3w(w7¢) w
e Do ks )~ V) Z/ 1 tho) {eitu(=).0)

vi(@) rB /
1+ / /5 (%)fi(n q)dqdp) +gi(%(w),ﬁ)M(%(W),B,O)}dﬁ’yi(w). (2. 36)

i(@o)

Keeping 1) fixed in (2.36), setting w by s and integrating with respect to s over [wq, @],
making change of variable technique and by using the definition of J, we have

Yi(w) o (d))
J(ks(m, 1)) < J(ks(w0, ) / [e(0.8)

i WO)

x(1+/iw0 /5(%) fi(p,Q)dqdp) +gi(a,ﬂ)M(a’5,0)}dﬂda.

n (@) o (w>
= ks(@ ) <07 [Hs@ow) +u@n Y [ )

i=1Y7i (=0) i(

/ / (P @)dadp) + gila, )M (e, 8.0) }dBdal.  2.37)
7¥i(wo)
A combination of inequalities (2.32),(2.35) and (2.37) yields:
i . - noopvi(@) poi(d)
tw.0) <17 fa(@, ) e {77 (Tt o) +o@0) Y [ [T et
i—1 7 7i(®@o) J8i(vo)
a B
([ [ Readad) + g HM(a,5,0) fdsda) f]. 239
vi(w@o) v i(vo)
Since @ is arbitrary therefore this completes the proof. 0

Corollary 2.4. Let a,b,l,e;, fi, gi, Vi, 0; and & be defined as in Theorem 2.1. Moreover, if
m is a positive constant such that:

(@, < a(@, ) +b(, ¥) an/%(w) [ s

—1 Y vi(wo) J6: (o)

+ / - /5 (wo)fi(pv 7)¢(1(p, q))dqdp) +gi(a,ﬁ)}dﬁda (2. 39)
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for (w, ) € A. Then,
(@,9) < a (@, 9)exp [ I a(ha(amo, ) + b, ) Bl ) )] 2. 40)
is the inverses of Jy. (wa,s) € A

[t0, 14) provided that J,

for (wv 1/)) € [w()a w4) X
is chosen arbitrarily on the boundary of planar region A such that
Jy(k4(w0o, ) + b(w, ) B(w, ) € Dom(J; ")
v d
1 > 1 , Uo >0.
o §(amexp(s;s))

3 ()

vi (@)
/ gi(
3 (o)

ke, )i=b(=, )3 [ _ B)didas Jufu) =
i=1"Yi{@o u
Proof. By inequality (2.39), we have
vi(@)  8i()
/ lm(aaﬁ){ei(aaﬁ)

3i(1o)

(@) < o@D @Y /
[ ] h..0)dad) + gi(a,8) Jdsda . 41)
i(@o) Yo

vi(wo)

+
( d: (o)
] x My, @ < wy. Right hand side of inequality (2.41) can be

X
for all (w,v) € [wo, @ v <
denoted by z4(w, ). Then, obviously z4(w, ) > 0 and non decreasing function in each
variable such that z4(wq, ¥) = a(@, ¥). Then (2.41) can be written as
1
(w,9) < z{" (@, ¢)). (2.42)
S [LUQ,@] x M and

z4(to, 1)) is a continuous non decreasing function V (o, 1))
B){ei(n(@). 8) (=), 7))

4 )
n 3i(¢¥)
2 (2, ) = b, ) Z/‘

71(w |
o / (0. )6 (U(p. 0)dadp) + g:(3(=). B) y a5 ()
i (1o)

Then, by monotonicity of [, condition v;(w) < w and inequality (2.42)
ei((@), B) (6T (1(@), B))

42T i,y Z/<w>
[ 500eGE .0)aib) +0.0u(),8) Jsri(). @4
i (Yo

(@, 1)
i (@)

/z(wo)
€ [wo, @
o, B)(§(:1 (@ 3)

| x M, replace w by s then integrating
from wwy to w with respect to s and making change of variable techmques we have

laklng ’(/J as fixed in (243) for all (’W ¢)
Yi w)
/ l
8i(tho)

log (24 (w, 1)) —log (24 (w0, ) < b(@, ) Z / (

B
[ 08 .0)dads) + g, ) o
3i (o)

_|_

vi(@o)
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n i(w)  poi(¥) 1
S G CUEUC0Y /J(WO) [ fetm(seie )
+[/Zwo)/5iwo) fi(p, q)&(f(p,Q))dqdp) +gi(a7ﬂ)}d6da] (2. 44)
Consider,
n o evi(@) p0i(Y) o rvi(w) poi(y)
ki 0) = b(@,w); /7 l(%) / . gle Aot b w%}/y . A(Wei(a,ﬁ)
(s [ /5 o 0 08 (0 dadp) 5

Obviously k4(wo, 1) is continuous and non decreasing function for all (¢, 1) € [wg, @] X
[t0, 14), inequality (2.44) can be written as

o (1) < a3 (@) exp (S ha(w, ). 2. 43)

Monotonicity of £ and z4 yield

1

5 () N
bio(@,9) < b® Z / @), B)E (T (14(w), B)

1+ / %(W) /5 i(wo)fi(p,q)dqdp)dﬂ’y;(W)'

i(@o)

Equivalently,

ke (@, 1) oS [T
@t @) oL ha(@0) ( ’w)Z/.wO) (=), f)

vi(w@)
(1+/ / p.0)dadp) d6 (). 2. 46)

L(WO)

Keeping 1 fixed in (2.46) , setting «o — s and integrating with respect to s over [, @],
making change of variable techniques and by using the definition of Jy (u), we have

i(w)
Ta(ka(w,9)) < J4<k4<woﬂ/’>>+bwz/ /5(w>

x (1 + / / fi(p, Q)dqdp> dBda.
i(wo) /i (o)
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no (@) o)
GO P DR CA0 Y B )

vi (o)

a B
x(1+ / / fi(p. a)dadp)dfda}. (2. 47)
(o) J/di(¢o)
A combination of inequalities (2.42), (2.45) and (2.47), yields:

N n l(w 61(’1’)
) < 0 (@ e[ LI ko )+ Y [ [ et
i=1

~i(wo) 7 :(%o)
e B
X (1 + / / fi(p, q)dqdp) dﬁdaH . (2. 48)
vi(w@o) ¥ 8i(vo)
Since @ is arbitrary therefore this completes the proof. O
Remark 2.5. o For f; =0,1 <1 <n, Theorem 2.1 reduces to [7, Theorem 2.3]

e For f; =0,1 <1 < n, Corollary 1 reduces to [7, Corollary 2.4]

3. APPLICATIONS

In this section, the boundedness of partial integro-differential equations would be achieved
by the help of achieved inequalities, with various retarded arguments, of the forms

%(zp-1<w7w>zw<w,w>>=F[w,w,z<w—a1( )= B1 (1)), o 25— (), =B (1),
/ i Qs 10, 0,7, (50— 1 (), = B () s #(9 — () 6 — B (1)) drd]
T (3. 49)
and

Dy (D (z(w,9))) = Flw, §, z(@—a1(@), = 1)), -, 2(@—an(@), = Fn (),

w
/ ” Q(wawa07772<w_al( ) ¢ Bl(w)) (w a?’b( )aw_ﬁn(w)))dadT]a
e (3. 50)
with the given initial boundary conditions

2(w, o) = a1(w), z(wo, ) = az(v¥), a1(wo) = az(ty) =0, (3.51)

where FF € C(A x R"™' R), Q € C(A x A x R, R), a; € CY(M,R), ay €
Cl1(M3,R) and o; € C*(My,R), B; € C'(M,,R) are nonincreasing such that @ —
ai(w) > 0, w — a;j(w) € CH(My, M), ¢ — Bi(¢) > 0,9 — Bi(y) € C'(My, My),
aol(w) < 1, Bi(v) < 1 and ay(wo) = Bi(ho) = 0,1 < i < n for (w,y) € A
let n € C'(R,R) be an increasing function suchlike n(|l|) < |n(1)|; let n(a(w,)) =
n(a1(w)) + nlaz(4)) and
1 1 .
Mizwné%iclm; N¢:£%i(2w, 1<i<n. (3.52)

The following theorem concerns with a boundedness of the solution of (3.50).
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Theorem 3.1. Suppose that F' : A x R"! — R is a continuous function for which there
exist nonnegative continuous functions e;(w, ), fi(w,v) and g;(w, ) for (w, ) € A
such that:
[F (@, 9, 11, s by )| b, ) 352 (] lei (@, )E(LD+ [ 5] +gi(w, )]
1Q(w@, ¥, v1,v2, 11, 12, .o, )| < fi(vr, v2)E([La]).-

If z(w, 1) with the conditions (3.51) is a solution of (3.50), then

(3.53)

_ " pvi(@) i(d)
st o)< Il ) explT [7<k<wo,w>>+b<w,w>z/ [, o

i (o)
/ / (m,n)dndm)dqdp]]], (3.54)
il

provided that:
@(u,v):MiNiei(u—i—ai( a),v + Bi(B)),
;fi(u,v) MQNQfZ(u-FC%( ), ’U;—BZ(T)), .7@:/ 3 >0
F(wo) =b(w, $)S 1y [ [0 5.0, q)dadp! ), e n@lexp@) 7
yi(uav) MNgz(u+az( ) U+ﬁz( ))

Proof. The solution z(w, 1)) of the problem (3.50) with (3.51) satisfies the following in-
tegral equation

n(=(w, )
w P
:n(a(w,¢))+/ / Fll, m, 2(1—0a (1), m— By (m)), o2l —ctn (1), m— B (1)),

l m
/ Q(l,m,o,7,z(l — a1(l),m — B1(m)), ...,
@o J o
z2(l — an (1), m — By (m)))dodr]dmdl. (3. 55)
By properties of modulus and condition (3.53), equation (3.55) takes the form

n(z(, ¥))|
@
Sln(a(w,¢))l+/ [E[lLm, z(I—ax (1), m=Br(m)), .., 2(I=an (1), m—=Bn(m)),

o 7 Yo
l m
/ g Q(l,m,o,7,2(l — a1 (1), m — B1(m)), ...,
z2(l — an(l),m — Bn(m )))dadT || dmdi

<fn(a(e, ) |+bww/ i sza—az B = Bi(BN)-les @, B)

§(|z(a—ai(a), B=Bi(B)) + / g fz(U,T) (lz2(0 = ai(0), 7 = fi(7)))drdo

+gi(a7 5)]d5d0{
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P
/ (lz(a — ai(a), B — Bi(B))).(ei(as B) x

a B
§(|Z(a—ai(a),ﬁ—ﬁi(5))|)+/ filo,7)E(|2(0 — ailo), 7 = Bi(7))|)drdo)

i(w)  poi(¥)
/ (=), :(8))
i(w@o) Jdi(o)

<(esr@) + (), 8.5) + ANE=Cr(a) 8 AN

/ e )M N fi(1(0)+04(0), 8:(7) + Bi()E(2(:(0) 61 (7)) b (r) i (o))

+9i(vi(e ) + ai(a),0i(8) + Bi(B))n(lz(vi(a), 6:(8)))]do:(B)dvi(e)

=n(z(@, )l

no (@)l (w>
<In(a(w, ¥))| +b(w, ) Z/ / n(2(p, q)))-(@:(p, q)

i—1 Y vi(wo) J3:(bo)

q

(=, / / (2(m, n)])dndm)
wg)

+9:(p, O)n(lz(p, q)l)]dqdp. (3. 56)
Now an expeditious application of the inequality given in Theorem 2.1 to (3.56) provide
the desired result (3.54). O

Theorem 3.2. Suppose that F' : A x R"! — R is a continuous function for which there
exist non-negative continuous functions e;(w, V), fi(w,v) and g;(ww, V) for (w,) € A
such that:
|F(wa Yoly, s ln7])|§ Z?:l |ll|p [ei(w7 w)§(|ll|)+ ‘]l +gl(w’w)}
1Q(, ¥, v1,v2, 11,12, s 1| fi(vr, v2)E([li])- (3.57)
|al (@) + db(¢) |< w.

If z(wo, ) with the condition (3.51) is a solution of (3.49), then

Yi(w@) i (w>
2(@, ) < w? exp l gt [J4(k4(w07 —|—pZ/ /5

i—1 Y vi(®o) (%0)

s q B
x (1 _|_/ / fi(m,n)dndm> dquH , (3. 58)
vi(@0) /8: (o)

provided that:
éj(u, v) = M;Nie;(u + a;(a),v + B;(B
filu,v) = M2N2f1(u +a;(0),v+ Bi(T

(WOa'l/])*b w 1/1 i= 1f’y(w0 f(; wo))ﬁz
Gi(u,v) = M;N;gi(u + (), v + Bi(B)).

)
)) - Y ds
sa(u)= | —F———uo=>0.
Q)dgds 1) /uDg(mexp(;,s» ’
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Proof. Ttis easy to see that the solution z(t, ) of the problem (3.49) with (3.51) satisfies
the following integral equation:

@ v
(@) =ai(@) +a (¢)+p/ Fll,m, z(l = ar(l),m = pr(m)), ...,

z(l — ap(l),m — Bn(m / lemUTz(l—al()m B1(m)), ..
o z2(I — an(l),m — Bp(m)))dodr]dmdl. (3. 59)

By modulus properties and condition (3.57), equation (3.59) has the form

2" (@, ¥)

|
w Y
<wip [ [ APLm = ar0m = falm))s e 2 - anl)m - B(m),
l m
/ g Q(lym,o,7,z(l—ay(l),m—p1(m)), ..., z2(l—an (1), m— B, (m)) dodr]| dmdl

<W+p/ Z 2(l=ai(l), m—pi(m))[" .[e:(l, m)&(|z(I— v (1), m—Bi(m))])

Yo j—1

+/ g fi(UaT) (lz(0 = ai(o), 7 = Bi(7))l)drdo]
+g:(l,m) [z(l = a;(1),m — B;(m))|P]dmdl

vi(w) o (w
< w3 M, / /5 SN lei (i) + @), Bi(B) + 6:(8))

i=1 (o) (%0)

Yi(a) 0 (B)
€12 (vi(0). bi( / /5 MN, fi(ai(0) + (o), Bi(r) + 6:(7)

i(@0) /8 (o)

£(|2(vi(0), 6:(r)))ddi()dvi(0)] + gi(vi(@) + cia), Bi(B) + 6:(8))
IZ(%(a)75z(B))Ip]d5 (B)dri(a)

vi(@) di W) "
<wtpy / | P [ei(s. @) €. 0))
i= i(wo) 7 0i(1ho)
a ~
[ | / Fm. m)&(|=(m, ) ydndm) + Gi(s, @)]dads. 3. 60)
i(wo Yo
Now an immediate application of the inequality given in Corollary 2.4 to (3.60) yields the
desired result (3.58). O
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