On the partition dimension of circulant graph

$$
C_{n}(1,2,3,4)
$$

Asim Nadeem
Department of Mathematics, UMT Lahore, Pakistan
email: asim.samson@gmail.com

Kamran Azhar
Department of Mathematics, UMT Lahore, Pakistan
email: kamranazhar09@gmail.com

Sohail Zafar

Department of Mathematics, UMT Lahore, Pakistan email: sohailahmad04@gmail.com

Agha Kashif

Department of Mathematics,
UMT Lahore, Pakistan
email: kashif.khan@umt.edu.pk

Zohaib Zahid

Department of Mathematics, UMT Lahore, Pakistan
email: zohaib_zahid@hotmail.com

Received: 1 March,2022 / Accepted: 27 February, 2023 / Published online: 25 March, 2023

Abstract

Let $\Lambda=\left\{B_{1}, B_{2}, \ldots, B_{l}\right\}$ be an ordered l-partition of a connected graph $G(V(G), E(G))$. The partition representation of vertex x with respect to Λ is the l-vector, $r(x \mid \Lambda)=\left(d\left(x, B_{1}\right), d\left(x, B_{2}\right), \ldots, d\left(x, B_{l}\right)\right)$, where $d(x, B)=\min \{d(x, y) \mid y \in B\}$ is the distance between x and B. If the $l-$ vectors $r(x \mid \Lambda)$, for all $x \in V(G)$ are distinct then l - partition is called a resolving partition. The least value of l for which there is a resolving l-partition is known as the partition dimension of G symbolized as $p d(G)$. In this paper, the partition dimension of circulant graphs $C_{n}(1,2,3,4)$ is computed for $n \geq 8$ as,

$$
\begin{gathered}
\operatorname{pd}\left(C_{n}(1,2,3,4)\right)= \begin{cases}n, & \text { if } 8 \leq n \leq 9 \\
6, & \text { if } n=10 \\
5, & \text { if } n \geq 11\end{cases} \\
117
\end{gathered}
$$

AMS (MOS) Subject Classification Codes: 05C07
Corresponding Author: Agha Kashif
Key Words: Circulant graphs, metric dimension, partition dimension.

1. Introduction and Preliminaries

Slater et al. [20] and Melter et al. [8] independently introduced the concept of metric dimension of a graph in 1975 and 1976 which has many applications in robotics [12], chemistry [2] and optimization [19]. Later Chartrand et al. [3] presented the notion of partition dimension a modified form of metric dimension. The computing the metric dimension is NP-hard [4], the problems become even harder when it comes to partition dimension where we have to find a resolving partition which contains sets instead of vertices. Further details of metric and partition dimension can be seen in the articles $[1,9,15,16,17]$.
Let W be a connected graph with the vertex set $V(W)$ and edge set $E(W)$. For $u, v \in V(W), d(u, v)$ denotes the length of shortest path between u and v. The distance between a vertex t and a set P is given as $d(t, P)=\min \{d(t, x) \mid x \in P\}$. The diameter of W, symbolized by $\operatorname{diam}(W)$, is the greatest distance between any two vertices. Let $\Omega=\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$ be an ordered set of vertices, the representation of a vertex t with respect to Ω is the l - vector $r(t \mid \Omega)=\left(d\left(t, x_{1}\right), d\left(t, x_{2}\right), \ldots, d\left(t, x_{l}\right)\right)$. If the l - vectors $r(v \mid \Omega)$, for all $v \in V(W)$ are distinct then Ω is called a resolving set. The minimal value of l for which there is a resolving set is known as the metric dimension of G symbolized as $\operatorname{dim}(G)$.
Let $\Lambda=\left\{B_{1}, B_{2}, \ldots, B_{l}\right\}$ be an ordered l - partition of W. The partition representation of vertex v with respect to Λ is the l - vector $r(v \mid \Lambda)=\left(d\left(v, B_{1}\right), d\left(v, B_{2}\right), \ldots, d\left(v, B_{l}\right)\right)$. If the $l-$ vectors $r(v \mid \Lambda)$, for all $v \in V$ are distinct then l - partition is called a resolving partition. The minimum l for which there is a resolving l - partition is called the partition dimension of W. The study of metric and partition dimension of different graphs has been an active area of research for the last two decades. Chartrand et al. [3] gave the comparison between the metric dimension and partition dimension and they also categorized the graphs having partition dimension 2 or n. The subsequent results from [3] have significant importance in our work.

Proposition 1.1. If W is a connected graph of order $n \geq 2$ then
(1) $p d(W) \leq \operatorname{dim}(W)+1$;
(2) W is path if and only if $p d(W)=2$;
(3) W is the complete graph if and only if $\operatorname{pd}(W)=n$.

2. Circulant graphs

In the current section, we are interested in the special class of circulant graph $C_{n}(1,2, \ldots, t)$ containing vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ with connection set $\{1,2, \ldots, \mathrm{t}\}$ for $1 \leq t \leq\lfloor n / 2\rfloor$. The distance between two vertices v_{i} and v_{j} in $C_{n}(1,2, \ldots, t)$, where $0 \leq i<j<n$, is defined in [13] as follows:

$$
d\left(v_{i}, v_{j}\right)= \begin{cases}\left\lceil\frac{j-i}{t}\right\rceil, & \text { if } 0 \leq j-i \leq \frac{n}{2} \\ \left\lceil\frac{n-(j-i)}{t}\right\rceil, & \text { if } \frac{n}{2}<j-i<n\end{cases}
$$

Many authors have computed the metric and partition dimension of different classes of circulant graphs $[5,6,7,10,11,13,14,18]$. Imran et al. [10] discussed the metric dimension of circulant graphs $C_{n}(1,2,5)$. Salman et al. [18] discussed the metric and partition dimension of circulant graphs $C_{n}(1,2)$ and proved that partition dimension of circulant graph is 4 for $n \geq 6$ which was disproved by Grigorious et. al in [7]. Later in [14] Nadeem et al. corrected the partition dimension of $C_{n}(1,2)$ for $n \equiv 2(\bmod 4), n \geq 18$. Javaid et al. [11] studied the partition of circulant graphs $C_{n}(1,3)$ and $C_{n}(1,4)$. The subsequent proposition is given in [6].

Proposition 2.1. [6]

Consider the circulant graphs $C_{n}(1,2, \ldots, t)$ with $1<t<\left\lfloor\frac{n}{2}\right\rfloor, n \geq$ $(t+k)(t+1)$ and $n \equiv k \bmod 2 t$, then
(1) $p d\left(C_{n}(1,2, \ldots, t)\right)=t+1$, when t is even and $\operatorname{gcd}(k, 2 t)=1$;
(2) $p d\left(C_{n}(1,2, \ldots, t)\right)=t+1$, when t is odd and $k=2 m, 1 \leq m \leq$ $t-1$.

Elizabeth et al. [13] disproved the claims in Proposition 2.1 with counterexamples and also gave the exact values of $p d\left(C_{n}(1,2,3)\right)$. We summarize their results in Proposition 2.2 and 2.3.
Proposition 2.2. [13]
$p d\left(C_{n}(1,2, \ldots, t)\right) \leq \frac{t}{2}+4$, whenever $n=2 l t$ for even $t \geq 4$ and $l \geq 2$.

Proposition 2.3. [13]

$$
\operatorname{pd}\left(C_{n}(1,2,3)\right)= \begin{cases}n, & \text { if } 6 \leq n \leq 7 ; \\ 5, & \text { if } 8 \leq n \leq 9 \\ 4, & \text { if } n \geq 10\end{cases}
$$

The subsequent corollary is an easy consequence of Proposition 2.2. Corollary 2.1. For $l \geq 2$, $p d\left(C_{n}(1,2,3,4)\right) \leq 6$ for $n=8 l$.

In this paper, we generalize Corollary 2.1 and obtain the precise value of the partition dimension of $C_{n}(1,2,3,4)$.

3. Main Results

Throughout in the remaining part of the paper, we will denote $C_{n}(1,2,3,4)$ by G_{n}. It is clear from Proposition 1.1 that $\operatorname{pd}\left(G_{n}\right)=n$ for $8 \leq n \leq 9$, because it is a complete graph. The diameter of G_{n} has been recently discussed in [5], we state this result in the following Proposition 3.1.
Proposition 3.1. [5] If we write the order of G_{n}, as $n=8 k+r$ where $r \in\{2,3, \ldots, 9\}$ then the diameter of G_{n} is $k+1$ and there are $r-1$ number of vertices at the diameter distance from any vertex v.

The upper bound on $p d\left(G_{n}\right)$ for $n \geq 11$ is given in the subsequent theorem.

Theorem 3.1. $\operatorname{pd}\left(G_{n}\right) \leq 5$, for $n \geq 11$.
Proof. The proof has eight subcases and a resolving partition, $\Lambda=$ $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ of $V\left(G_{n}\right)$ is given for each case. For our convenience we take $v_{0}=v_{n}$.

Case 1: Let $n=8 k+2$. If $k \geq 2$, then consider $A_{1}=\left\{v_{i} \mid 1 \leq\right.$ $i \leq 8 k-9\}$,
$A_{2}=\left\{v_{8 k-8}, v_{8 k-7}, v_{8 k}\right\}, A_{3}=\left\{v_{8 k-6}, v_{8 k-2}, v_{8 k-1}\right\}$,
$A_{4}=\left\{v_{8 k-5}, v_{8 k-4}, v_{8 k-3}, v_{8 k+2}\right\}$ and $A_{5}=\left\{v_{8 k+1}\right\}$. The Table 1 , shows that Λ is resolving partition.

Table 1. $r(v \mid \Lambda)$ for $n=8 k+2$

Distances of vertices from:	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
$v_{4 \delta+1}(0 \leq \delta \leq \alpha-2)$	0	$\delta+1$	$\delta+1$	$\delta+1$	$\delta+1$
$v_{4 \delta+2}(0 \leq \delta \leq \alpha-2)$	0	$\delta+1$	$\delta+2$	$\delta+1$	$\delta+1$
$v_{4 \delta+3}(0 \leq \delta \leq \alpha-2)$	0	$\delta+2$	$\delta+2$	$\delta+1$	$\delta+1$
$v_{4 \delta+4}(0 \leq \delta \leq \alpha-3)$	0	$\delta+2$	$\delta+2$	$\delta+1$	$\delta+2$
$v_{4 \alpha-4}$	0	$\alpha-1$	α	$\alpha-1$	α
$v_{4 \alpha-3}$	0	$\alpha-1$	α	α	α
$v_{4 \alpha-2}$	0	$\alpha-1$	$\alpha-1$	α	α
$v_{4 \alpha-1}$	0	$\alpha-1$	$\alpha-1$	$\alpha-1$	α
$v_{8 \alpha-4 \delta-3}(2 \leq \delta \leq \alpha-1)$	0	$\delta-1$	δ	δ	$\delta+1$
$v_{8 \alpha-4 \delta-2}(2 \leq \delta \leq \alpha-1)$	0	$\delta-1$	$\delta-1$	δ	$\delta+1$
$v_{8 \alpha-4 \delta-1}(2 \leq \delta \leq \alpha-1)$	0	$\delta-1$	$\delta-1$	$\delta-1$	$\delta+1$
$v_{8 \alpha-4 \delta}(3 \leq \delta \leq \alpha)$	0	$\delta-2$	$\delta-1$	$\delta-1$	$\delta+1$
$v_{8 \alpha-8}$	1	0	1	1	3
$v_{8 \alpha-7}$	1	0	1	1	2
$v_{8 \alpha}$	1	0	1	1	1
$v_{8 \alpha-6}$	1	1	0	1	2
$v_{8 \alpha-2}$	2	1	0	1	1
$v_{8 \alpha-1}$	1	1	0	1	1
$v_{8 \alpha-5}$	1	1	1	0	2
$v_{8 \alpha-4}$	2	1	1	0	2
$v_{8 \alpha-3}$	2	1	1	0	1
$v_{8 \alpha+2}$	1	1	1	0	1
$v_{8 \alpha+1}$	1	1	1	1	0

Case 2: Let $n=8 \alpha+3$. If $\alpha=1$, then consider $A_{1}=\left\{v_{1}, v_{2}\right\}$, $A_{2}=\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{9}\right\}, A_{3}=\left\{v_{8}\right\}, A_{4}=\left\{v_{10}\right\}$ and $A_{5}=$ $\left\{v_{11}\right\}$.

It can be verified easily that Λ is a resolving partition.
If $\alpha \geq 2$, then consider $A_{1}=\left\{v_{i} \mid 1 \leq i \leq 8 \alpha-7\right\} \cup$ $\left\{v_{8 \alpha-5}, v_{8 \alpha-3}, v_{8 \alpha-1}\right\}$,
$A_{2}=\left\{v_{8 \alpha-6}, v_{8 \alpha-2}, v_{8 \alpha}, v_{8 \alpha+2}\right\}, A_{3}=\left\{v_{8 \alpha-4}\right\}, A_{4}=\left\{v_{8 \alpha+1}\right\}$ and
$A_{5}=\left\{v_{8 \alpha+3}\right\}$. The Table 2, shows that Λ is resolving partition.

Table 2. $r(v \mid \Lambda)$ for $n=8 \alpha+3$

Distances of vertices from:	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
$v_{4 \delta+1}(0 \leq \delta \leq \alpha-2)$	0	$\delta+1$	$\delta+2$	$\delta+1$	$\delta+1$
$v_{4 \delta+2}(0 \leq \delta \leq \alpha-2)$	0	$\delta+1$	$\delta+3$	$\delta+1$	$\delta+1$
$v_{4 \delta+3}(0 \leq \delta \leq \alpha-2)$	0	$\delta+1$	$\delta+3$	$\delta+2$	$\delta+1$
$v_{4 \delta+4}(0 \leq \delta \leq \alpha-3)$	0	$\delta+2$	$\delta+3$	$\delta+2$	$\delta+1$
$v_{4 \alpha-4}$	0	α	α	α	$\alpha-1$
$v_{4 \alpha-3}$	0	α	α	α	α
$v_{4 \alpha-2}$	0	$\alpha-1$	α	α	α
$v_{4 \alpha-1}$	0	$\alpha-1$	α	$\alpha+1$	α
$v_{4 \alpha}$	0	$\alpha-1$	$\alpha-1$	$\alpha+1$	α
$v_{8 \alpha-4 \delta-3}(1 \leq \delta \leq \alpha-1)$	0	δ	δ	$\delta+1$	$\delta+2$
$v_{8 \alpha-4 \delta-2}(2 \leq \delta \leq \alpha-1)$	0	$\delta-1$	δ	$\delta+1$	$\delta+2$
$v_{8 \alpha-4 \delta-1}(2 \leq \delta \leq \alpha-1)$	0	$\delta-1$	δ	$\delta+1$	$\delta+1$
$v_{8 \alpha-4 \delta}(2 \leq \delta \leq \alpha-1)$	0	$\delta-1$	$\delta-1$	$\delta+1$	$\delta+1$
$v_{8 \alpha-5}$	0	1	1	2	2
$v_{8 \alpha-3}$	0	1	1	1	2
$v_{8 \alpha-1}$	0	1	1	1	1
$v_{8 \alpha-6}$	1	0	1	2	3
$v_{8 \alpha-2}$	1	0	1	1	2
$v_{8 \alpha}$	1	0	1	1	1
$v_{8 \alpha+2}$	1	0	2	1	1
$v_{8 \alpha-4}$	1	1	0	2	2
$v_{8 \alpha+1}$	1	1	2	0	1
$v_{8 \alpha+3}$	1	1	2	1	0

Case 3: Let $n=8 \alpha+4$. If $\alpha=1$, then consider $A_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right.$, $\left.v_{6}, v_{11}\right\}, A_{2}=\left\{v_{4}\right\}, A_{3}=\left\{v_{7}\right\}, A_{4}=\left\{v_{8}, v_{9}\right\}, A_{5}=\left\{v_{10}, v_{12}\right\}$. It can be verified easily that Λ is a resolving partition.

If $\alpha \geq 2$, then consider $A_{1}=\left\{v_{i} \mid 1 \leq i \leq 8 \alpha-6\right\} \cup$ $\left\{v_{8 \alpha-4}, v_{8 \alpha-1}, v_{8 \alpha}\right\}, A_{2}=\left\{v_{8 \alpha-5}, v_{8 \alpha-3}\right\}, A_{3}=\left\{v_{8 \alpha-2}\right\}, A_{4}=$ $\left\{v_{8 \alpha+1}, v_{8 \alpha+2}, v_{8 \alpha+3}\right\}$ and
$A_{5}=\left\{v_{8 \alpha+4}\right\}$. The Table 3, shows that Λ is resolving partition.

TABLE 3. $r(v \mid \Lambda)$ for $n=8 \alpha+4$

Distances of vertices from:	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
$v_{4 \delta+1}(0 \leq \delta \leq \alpha-2)$	0	$\delta+2$	$\delta+2$	$\delta+1$	$\delta+1$
$v_{4 \delta+2}(0 \leq \delta \leq \alpha-2)$	0	$\delta+3$	$\delta+2$	$\delta+1$	$\delta+1$
$v_{4 \delta+3}(0 \leq \delta \leq \alpha-3)$	0	$\delta+3$	$\delta+3$	$\delta+1$	$\delta+1$
$v_{4 \delta+4}(0 \leq \delta \leq \alpha-3)$	0	$\delta+3$	$\delta+3$	$\delta+2$	$\delta+1$
$v_{4 \alpha-5}$	0	α	$\alpha+1$	$\alpha-1$	$\alpha-1$
$v_{4 \alpha-4}$	0	α	$\alpha+1$	α	$\alpha-1$
$v_{4 \alpha-3}$	0	α	$\alpha+1$	α	α
$v_{4 \alpha-2}$	0	α	α	α	α
$v_{4 \alpha-1}$	0	$\alpha-1$	α	α	α
$v_{4 \alpha}$	0	$\alpha-1$	α	$\alpha+1$	α
$v_{8 \alpha-4 \delta-3}(1 \leq \delta \leq \alpha-1)$	0	δ	$\delta+1$	$\delta+1$	$\delta+2$
$v_{8 \alpha-4 \delta-2}(1 \leq \delta \leq \alpha-1)$	0	δ	δ	$\delta+1$	$\delta+2$
$v_{8 \alpha-4 \delta-1}(2 \leq \delta \leq \alpha-1)$	0	$\delta-1$	δ	$\delta+1$	$\delta+2$
$v_{8 \alpha-4 \delta}(2 \leq \delta \leq \alpha-1)$	0	$\delta-1$	δ	$\delta+1$	$\delta+1$
$v_{8 \alpha-4}$	0	1	1	2	2
$v_{8 \alpha-1}$	0	1	1	1	2
$v_{8 \alpha}$	0	1	1	1	1
$v_{8 \alpha-5}$	1	0	1	2	3
$v_{8 \alpha-3}$	1	0	1	1	2
$v_{8 \alpha-2}$	1	1	0	1	2
$v_{8 \alpha+1}$	1	1	1	0	1
$v_{8 \alpha+2}$	1	2	1	0	1
$v_{8 \alpha+3}$	1	2	2	0	1
$v_{8 \alpha+4}$	1	2	2	1	0

Case 4: Let $n=8 \alpha+5$. If $\alpha=1$, then consider $A_{1}=\left\{v_{1}\right\}$, $A_{2}=\left\{v_{2}, v_{3}\right\}$,
$A_{3}=\left\{v_{4}, v_{9}, v_{10}, v_{13}\right\}, A_{4}=\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{12}\right\}$ and $A_{5}=$ $\left\{v_{11}\right\}$. It can be verified easily that Λ is a resolving partition.
If $\alpha \geq 2$, then consider $A_{1}=\left\{v_{i} \mid 1 \leq i \leq 8 \alpha-5\right\} \cup$ $\left\{v_{8 \alpha}, v_{8 \alpha+2}\right\}$,
$A_{2}=\left\{v_{8 \alpha-4}, v_{8 \alpha-3}, v_{8 \alpha+1}, v_{8 \alpha+3}, v_{8 \alpha+4}\right\}, A_{3}=\left\{v_{8 \alpha-2}\right\}, A_{4}=$ $\left\{v_{8 \alpha-1}\right\}$ and $A_{5}=\left\{v_{8 \alpha+5}\right\}$. The Table 4, shows that Λ is resolving partition.

Case 5: Let $n=8 \alpha+6$. If $\alpha=1$, then consider $A_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right.$, $\left.v_{5}, v_{6}, v_{9}\right\}, A_{2}=\left\{v_{7}, v_{8}\right\}, A_{3}=\left\{v_{10}, v_{13}\right\}, A_{4}=\left\{v_{11}\right\}$ and

Table 4. $r(v \mid \Lambda)$ for $n=8 \alpha+5$

Distances of vertices from:	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
$v_{4 l+1}(0 \leq \delta \leq \alpha-2)$	0	$\delta+1$	$\delta+2$	$\delta+2$	$\delta+1$
$v_{4 \delta+2}(0 \leq \delta \leq \alpha-2)$	0	$\delta+1$	$\delta+3$	$\delta+2$	$\delta+1$
$v_{4 \delta+3}(0 \leq \delta \leq \alpha-2)$	0	$\delta+1$	$\delta+3$	$\delta+3$	$\delta+1$
$v_{4 \delta+4}(0 \leq \delta \leq \alpha-3)$	0	$\delta+2$	$\delta+3$	$\delta+3$	$\delta+1$
$v_{4 \alpha-4}$	0	α	$\alpha+1$	$\alpha+1$	$\alpha-1$
$v_{4 \alpha-3}$	0	α	$\alpha+1$	$\alpha+1$	α
$v_{4 \alpha-2}$	0	α	α	$\alpha+1$	α
$v_{4 \alpha-1}$	0	α	α	α	α
$v_{4 \alpha}$	0	$\alpha-1$	α	α	α
$v_{8 \alpha-4 \delta-3}(1 \leq \delta \leq \alpha-1)$	0	δ	$\delta+1$	$\delta+1$	$\delta+2$
$v_{8 \alpha-4 \delta-2}(1 \leq \delta \leq \alpha-1)$	0	δ	δ	$\delta+1$	$\delta+2$
$v_{8 \alpha-4 \delta-1}(1 \leq \delta \leq \alpha-1)$	0	δ	δ	δ	$\delta+2$
$v_{8 \alpha-4 \delta}(2 \leq \delta \leq \alpha-1)$	0	$\delta-1$	δ	δ	$\delta+2$
$v_{8 \alpha} \leq$	0	1	1	1	2
$v_{8 \alpha+2}$	0	1	1	1	1
$v_{8 \alpha-4}$	1	0	1	1	3
$v_{8 \alpha-3}$	1	0	1	1	2
$v_{8 \alpha+1}$	1	0	1	1	1
$v_{8 \alpha+3}$	1	0	2	1	1
$v_{8 \alpha+4}$	1	0	2	2	1
$v_{8 \alpha-2}$	1	1	0	1	2
$v_{8 \alpha-1}$	1	1	1	0	2
$v_{8 \alpha+5}$	1	1	2	2	0

$A_{5}=\left\{v_{12}, v_{14}\right\}$. It can be verified easily that Λ is a resolving partition.

If $\alpha \geq 2$, then consider $A_{1}=\left\{v_{i} \mid 1 \leq i \leq 8 \alpha-4\right\} \cup\left\{v_{8 \alpha+6}\right\}$,
$A_{2}=\left\{v_{8 \alpha-3}, v_{8 \alpha-2}\right\}, A_{3}=\left\{v_{8 \alpha-1}, v_{8 \alpha}, v_{8 \alpha+1}, v_{8 \alpha+3}\right\}, A_{4}=$ $\left\{v_{8 \alpha+2}, v_{8 \alpha+5}\right\}$ and $A_{5}=\left\{v_{8 \alpha+4}\right\}$. The Table 5, shows that Λ is resolving partition.

Case 6: Let $n=8 \alpha+7$. If $\alpha=1$, then consider $A_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right.$, $\left.v_{5}, v_{6}, v_{9}, v_{13}\right\}$,
$A_{2}=\left\{v_{7}, v_{8}, v_{11}\right\}, A_{3}=\left\{v_{10}, v_{14}\right\}, A_{4}=\left\{v_{12}\right\}$ and $A_{5}=$ $\left\{v_{15}\right\}$. It can be verified easily that Λ is a resolving partition.

If $\alpha \geq 2$, then consider $A_{1}=\left\{v_{i} \mid 1 \leq i \leq 8 \alpha-3\right\}$,
$A_{2}=\left\{v_{8 \alpha-2}, v_{8 \alpha-1}, v_{8 \alpha+1}, v_{8 \alpha+2}\right\}$,
$A_{3}=\left\{v_{8 \alpha}, v_{8 \alpha+4}\right\}, A_{4}=\left\{v_{8 \alpha+3}, v_{8 \alpha+6}, v_{8 \alpha+7}\right\}$ and $A_{5}=\left\{v_{8 \alpha+5}\right\}$.
The Table 6 , shows that Λ is resolving partition.

TABLE 5. $r(v \mid \Lambda)$ for $n=8 \alpha+6$

Distances of vertices from:	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
$v_{4 \delta+1}(0 \leq \delta \leq \alpha-2)$	0	$\delta+3$	$\delta+1$	$\delta+1$	$\delta+1$
$v_{4 \delta+2}(0 \leq \delta \leq \alpha-2)$	0	$\delta+3$	$\delta+2$	$\delta+1$	$\delta+1$
$v_{4 \delta+3}(0 \leq \delta \leq \alpha-2)$	0	$\delta+3$	$\delta+2$	$\delta+1$	$\delta+2$
$v_{4 \delta+4}(0 \leq \delta \leq \alpha-2)$	0	$\delta+3$	$\delta+2$	$\delta+2$	$\delta+2$
$v_{4 \alpha-3}$	0	α	α	α	α
$v_{4 \alpha-2}$	0	α	$\alpha+1$	α	α
$v_{4 \alpha-1}$	0	α	α	α	$\alpha+1$
$v_{8 \alpha-4 \delta-3}(1 \leq \delta \leq \alpha-1)$	0	δ	$\delta+1$	$\delta+2$	$\delta+2$
$v_{8 \alpha-4 \delta-2}(1 \leq \delta \leq \alpha-1)$	0	δ	$\delta+1$	$\delta+1$	$\delta+2$
$v_{8 \alpha-4 \delta-1}(1 \leq \delta \leq \alpha-1)$	0	δ	δ	$\delta+1$	$\delta+2$
$v_{8 \alpha-4 \delta}(1 \leq \delta \leq \alpha)$	0	δ	δ	$\delta+1$	$\delta+1$
$v_{8 \alpha+6}$	0	2	1	1	1
$v_{8 \alpha-3}$	1	0	1	2	2
$v_{8 \alpha-2}$	1	0	1	1	2
$v_{8 \alpha-1}$	1	1	0	1	2
$v_{8 \alpha}$	1	1	0	1	1
$v_{8 \alpha+1}$	2	1	0	1	1
$v_{8 \alpha+3}$	1	2	0	1	1
$v_{8 \alpha+2}$	1	1	1	0	1
$v_{8 \alpha+5}$	1	2	1	0	1
$v_{8 \alpha+4}$	1	2	1	1	0

Case 7: Let $n=8 \alpha+8$. If $\alpha=1$ then consider $A_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right.$, $\left.v_{5}, v_{7}, v_{10}\right\}$,
$A_{2}=\left\{v_{6}, v_{8}, v_{9}\right\}, A_{3}=\left\{v_{11}, v_{12}, v_{14}\right\}, A_{4}=\left\{v_{13}, v_{15}\right\}$ and $A_{5}=\left\{v_{16}\right\}$.

It can be verified easily that Λ is a resolving partition.
If $\alpha \geq 2$, then consider $A_{1}=\left\{v_{i} \mid 1 \leq i \leq 8 \alpha-3\right\} \cup\left\{v_{8 \alpha+2}\right\}$,
$A_{2}=\left\{v_{8 \alpha-2}, v_{8 \alpha-1}, v_{8 \alpha}, v_{8 \alpha+1}\right\}, A_{3}=\left\{v_{8 \alpha+3}, v_{8 \alpha+6}\right\}, A_{4}=$ $\left\{v_{8 \alpha+4}, v_{8 \alpha+7}\right\}$ and $A_{5}=\left\{v_{8 \alpha+5}, v_{8 \alpha+8}\right\}$. The Table 7, shows that Λ is resolving partition.

Case 8: Let $n=8 \alpha+9$. If $\alpha \geq 1$, then consider $A_{1}=\left\{v_{i} \mid 1 \leq\right.$ $i \leq 8 \alpha-2\}$,
$A_{2}=\left\{v_{8 \alpha-1}, v_{8 \alpha}, v_{8 \alpha+1}, v_{8 \alpha+3}\right\}, A_{3}=\left\{v_{8 \alpha+2}, v_{8 \alpha+8}\right\}$,
$A_{4}=\left\{v_{8 \alpha+4}, v_{8 \alpha+7}, v_{8 \alpha+9}\right\}$ and $A_{5}=\left\{v_{8 \alpha+5}, v_{8 \alpha+6}\right\}$.
The Table 8 , shows that Λ is resolving partition.

In all the above cases the partition representations are distinct, which completes the proof.

Table 6. $r(v \mid \Lambda)$ for $n=8 \alpha+7$

Distances of vertices from:	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
$v_{4 \delta+1}(0 \leq \delta \leq \alpha-1)$	0	$\delta+2$	$\delta+1$	$\delta+1$	$\delta+1$
$v_{4 \delta+2}(0 \leq \delta \leq \alpha-2)$	0	$\delta+2$	$\delta+2$	$\delta+1$	$\delta+1$
$v_{4 \delta+3}(0 \leq \delta \leq \alpha-2)$	0	$\delta+2$	$\delta+2$	$\delta+1$	$\delta+2$
$v_{4 \delta+4}(0 \leq \delta \leq \alpha-2)$	0	$\delta+3$	$\delta+2$	$\delta+1$	$\delta+2$
$v_{4 \alpha-2}$	0	α	$\alpha+1$	α	α
$v_{4 \alpha-1}$	0	α	$\alpha+1$	α	$\alpha+1$
$v_{4 \alpha}$	0	α	α	α	$\alpha+1$
$v_{8 \alpha-4 \delta-3}(0 \leq \delta \leq \alpha-1)$	0	$\delta+1$	$\delta+1$	$\delta+2$	$\delta+2$
$v_{8 \alpha-4 \delta-2}(1 \leq \delta \leq \alpha-1)$	0	δ	$\delta+1$	$\delta+2$	$\delta+2$
$v_{8 \alpha-4 \delta-1}(1 \leq \delta \leq \alpha-1)$	0	δ	$\delta+1$	$\delta+1$	$\delta+2$
$v_{8 \alpha-4 \delta}(1 \leq \delta \leq \alpha-1)$	0	δ	δ	$\delta+1$	$\delta+2$
$v_{8 \alpha-2}$	1	0	1	2	2
$v_{8 \alpha-1}$	1	0	1	1	2
$v_{8 \alpha+1}$	1	0	1	1	1
$v_{8 \alpha+2}$	2	0	1	1	1
$v_{8 \alpha}$	1	1	0	1	2
$v_{8 \alpha+4}$	1	1	0	1	1
$v_{8 \alpha+3}$	2	1	1	0	1
$v_{8 \alpha+6}$	1	1	1	0	1
$v_{8 \alpha+7}$	1	2	1	0	1
$v_{8 \alpha+5}$	1	1	1	1	0

Theorem 3.2. $\operatorname{pd}\left(G_{n}\right) \geq 5$ for $n \geq 10$.
Proof. We will show that $p d\left(G_{n}\right) \neq 4$ for $n \geq 10$
Assume that $p d\left(G_{n}\right)=4$. Let $\Lambda=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ be a resolving partition of $V\left(G_{n}\right)$. Clearly one of the sets $A_{1}, A_{2}, A_{3}, A_{4}$ contains at least 3 vertices so assume that $\left|A_{1}\right| \geq 3$. It is clear that there exist one vertex $v_{i} \in A_{1}$ such that $d\left(v_{i}, A_{j}\right)>1$ for some $j \in\{2,3,4\}$ otherwise $r(v \mid \Lambda)=(0,1,1,1)$ for all $v \in A_{1}$. Without loss of generality consider $d\left(v_{i}, A_{3}\right) \geq 2$. Let v_{j} be a vertex in A_{3} where $j>i$, s.t $d\left(v_{i}, v_{j}\right)=d\left(v_{i}, A_{3}\right)$. Let $V^{*}=\left\{v_{j-1}, v_{j-2}, v_{j-3}, v_{j-4}\right\}$ then no vertex in V^{*} belongs to A_{3} as $d\left(v, v_{i}\right)<d\left(v_{j}, v_{i}\right)$ for all $v \in V^{*}$ also $d\left(v, A_{3}\right)=1$ for all $v \in V^{*}$. Without loss of generality assume that $V^{*} \cap A_{1} \neq \phi$.
Case 1: If all the elements of V^{*} are in A_{1}. i.e. $\left|V^{*} \cap A_{1}\right|=4$ then

$$
\begin{aligned}
r\left(v_{j-4} \mid \Lambda\right) & =\left(0, a, 1, a^{\prime}\right), r\left(v_{j-3} \mid \Lambda\right)=\left(0, b, 1, b^{\prime}\right), r\left(v_{j-2} \mid \Lambda\right)=\left(0, c, 1, c^{\prime}\right), \\
r\left(v_{j-1} \mid \Lambda\right) & =\left(0, d, 1, d^{\prime}\right) . \text { Since } k+1 \text { is the diameter so } 1 \leq a, b, c, d, a^{\prime} \\
b^{\prime}, c^{\prime}, d^{\prime} \leq k & +1
\end{aligned}
$$

Case 1.1: If $k \leq a, a^{\prime} \leq k+1$.
The possible choices for $d\left(v, A_{2}\right)$ and $d\left(v, A_{4}\right)$ for $v \in V^{*}$ are shown in Tables 9 to 11. It is easy to that for $r=2$ (see Table 9) and $r \geq 4$ (see Table 11) at least two representations will

TABLE 7. $r(v \mid \Lambda)$ for $n=8 \alpha+8$

Distances of vertices from:	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
$v_{4 \delta+1}(0 \leq \delta \leq \alpha-1)$	0	$\delta+2$	$\delta+1$	$\delta+1$	$\delta+1$
$v_{4 \delta+2}(0 \leq \delta \leq \alpha-2)$	0	$\delta+3$	$\delta+1$	$\delta+1$	$\delta+1$
$v_{4 \delta+3}(0 \leq \delta \leq \alpha-2)$	0	$\delta+3$	$\delta+2$	$\delta+1$	$\delta+1$
$v_{4 \delta+4}(0 \leq \delta \leq \alpha-2)$	0	$\delta+3$	$\delta+2$	$\delta+2$	$\delta+1$
$v_{4 \alpha-2}$	0	α	α	α	α
$v_{4 \alpha-1}$	0	α	$\alpha+1$	α	α
$v_{4 \alpha}$	0	α	$\alpha+1$	$\alpha+1$	α
$v_{8 \alpha-4 \delta-3}(0 \leq \delta \leq \alpha-1)$	0	$\delta+1$	$\delta+2$	$\delta+2$	$\delta+2$
$v_{8 \alpha-4 \delta-2}(1 \leq \delta \leq \alpha-1)$	0	δ	$\delta+2$	$\delta+2$	$\delta+2$
$v_{8 \alpha-4 \delta-1}(1 \leq \delta \leq \alpha-1)$	0	δ	$\delta+1$	$\delta+2$	$\delta+2$
$v_{8 \alpha-4 l}(1 \leq \delta \leq \alpha-1)$	0	δ	$\delta+1$	$\delta+1$	$\delta+2$
$v_{8 \alpha-2}$	1	0	2	2	2
$v_{8 \alpha-1}$	1	0	1	2	2
$v_{8 \alpha}$	1	0	1	1	2
$v_{8 \alpha+1}$	1	0	1	1	1
$v_{8 \alpha+3}$	1	1	0	1	1
$v_{8 \alpha+6}$	1	2	0	1	1
$v_{8 \alpha+4}$	1	1	1	0	1
$v_{8 \alpha+7}$	1	2	1	0	1
$v_{8 \alpha+5}$	1	1	1	1	0
$v_{8 \alpha+8}$	1	2	1	1	0

be same, leading to a contradiction. For $r=3$, there are two vertices at $k+1$ distance so the representation $r(v \mid \Lambda) \neq r(w \mid \Lambda)$ for $v, w \in V^{*}$ if we either choose $2^{\text {nd }}$ or $3^{r d}$ column of Table 10 for $d\left(v, A_{2}\right)$ or $d\left(v, A_{4}\right)$.

Since we have $v_{j} \in A_{3}$ and $v_{j}, v_{j-1}, v_{j-2}, v_{j-3}, v_{j-4}$ are consecutive vertices with the connection set $\{1,2,3,4\}$ so $r\left(v_{j} \mid \Lambda\right)=$ $(1, k, 0, k)$.

Assume $v_{j+1} \in A_{2} \cup A_{4}$ then v_{j+1} is either in A_{2} or in A_{4}. If $v_{j+1} \in A_{2}, d\left(v_{j-1}, A_{2}\right)=1$ and if $v_{j+1} \in A_{4}, d\left(v_{j-1}, A_{4}\right)=1$. Which results in a contradiction. Similarly $v_{j+2} \in A_{2} \cup A_{4}$ leads to contradiction. Hence $v_{j+1}, v_{j+2} \in A_{1} \cup A_{3}$.

If $v_{j+1}, v_{j+2} \in A_{1}$, then $r\left(v_{j+1} \mid \Lambda\right)=(0, k, 1, k)=r\left(v_{j+2} \mid \Lambda\right)$ results in a contradiction. If v_{j+1} is in A_{1} and v_{j+2} in A_{3}, then $r\left(v_{j} \mid \Lambda\right)=(1, k, 0, k)=r\left(v_{j+2} \mid \Lambda\right)$ results in a contradiction. Similar arguments work if we either choose $3^{\text {rd }}$ or $4^{\text {th }}$ column of Table 10 for $d\left(v, A_{2}\right)$ or $d\left(v, A_{4}\right)$.
Case 1.2: If $k \leq a \leq k+1$ and $a^{\prime}<k$.
For $d\left(v, A_{2}\right)$ we will have Tables 9 to 11 and $d\left(v, A_{4}\right)$ distances are chosen either from Table 12 or from Table 13. It can be verified easily that in all possible choices we will get at least

TABLE 8. $r(v \mid \Lambda)$ for $n=8 \alpha+9$

Distances of vertices from:	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
$v_{4 l+1}(0 \leq \delta \leq \alpha-1)$	0	$\delta+2$	$\delta+1$	$\delta+1$	$\delta+1$
$v_{4 \delta+2}(0 \leq \delta \leq \alpha-1)$	0	$\delta+2$	$\delta+1$	$\delta+1$	$\delta+2$
$v_{4 \delta+3}(0 \leq \delta \leq \alpha-2)$	0	$\delta+3$	$\delta+1$	$\delta+1$	$\delta+2$
$v_{4 \delta+4}(0 \leq \delta \leq \alpha-2)$	0	$\delta+3$	$\delta+2$	$\delta+1$	$\delta+2$
$v_{4 \alpha-1}$	0	α	α	α	$\alpha+1$
$v_{4 \alpha}$	0	α	$\alpha+1$	α	$\alpha+1$
$v_{8 \alpha-4 \delta-3}(0 \leq \delta \leq \alpha-1)$	0	$\delta+1$	$\delta+2$	$\delta+2$	$\delta+2$
$v_{8 \alpha-4 \delta-2}(0 \leq \delta \leq \alpha-1)$	0	$\delta+1$	$\delta+1$	$\delta+2$	$\delta+2$
$v_{8 \alpha-4 \delta-1}(1 \leq \delta \leq \alpha-1)$	0	δ	$\delta+1$	$\delta+2$	$\delta+2$
$v_{8 \alpha-1}$	1	0	1	2	2
$v_{8 \alpha}$	1	0	1	1	2
$v_{8 \alpha+1}$	1	0	1	1	1
$v_{8 \alpha+3}$	2	0	1	1	1
$v_{8 \alpha+2}$	1	1	0	1	1
$v_{8 \alpha+8}$	1	2	0	1	1
$v_{8 \alpha+4}$	2	1	1	0	1
$v_{8 \alpha+7}$	1	1	1	0	1
$v_{8 \alpha+9}$	1	2	1	0	1
$v_{8 \alpha+5}$	2	1	1	1	0
$v_{8 \alpha+6}$	1	1	1	1	0

two same representations. In Table 12 and 13 , we take $\lambda=a$ for $d\left(v, A_{2}\right)$ and $\lambda=a^{\prime}$ for $d\left(v, A_{4}\right)$. In case of $r=3$, if we choose $3^{\text {rd }}$ column from Table 10 and $2^{\text {nd }}$ column from Table 12 the representations might not repeat. So following the same procedure as in case (i) we will get $r\left(v_{j} \mid \Lambda\right)=(1, k, 0, \lambda-1)$ and $v_{j+1} \notin A_{2} \cup A_{4}$. So either $v_{j+1} \in A_{1}$ or A_{3} so assume that $v_{j+1} \in A_{1}$, which implies $r\left(v_{j-1} \mid \Lambda\right)=(0, k, 1, \lambda-1)=r\left(v_{j+1} \mid \Lambda\right)$. If $v_{j+1} \in A_{3}$ then $r\left(v_{j} \mid \Lambda\right)=(1, k, 0, \lambda-1)=r\left(v_{j+1} \mid \Lambda\right)$. So in both cases we get contradiction. A similar argument can be given if we choose distances from Table 13 and Table 10.
Case 1.3: If $a<k$ and $a^{\prime}<k$.
$d\left(v, A_{2}\right)$ and $d\left(v, A_{4}\right)$ will be chosen from Table 12 or Table 13. It can be verified easily that in all possible cases at least two representations will be same which results in a contradiction.

Case 2: If three vertices of V^{*} are in the set A_{1} i.e. $\left|V^{*} \cap A_{1}\right|=3$. We can assume that v_{p}, v_{q}, v_{r} are in $V^{*} \cap A_{1}$ and remaining one vertex v_{s} is in $V^{*} \cap A_{2}$. This will give $r\left(v_{p} \mid \Lambda\right)=(0,1,1, a), r\left(v_{q} \mid \Lambda\right)=$ $(0,1,1, b), r\left(v_{r} \mid \Lambda\right)=(0,1,1, c)$.

If $d\left(v_{s}, A_{4}\right)=\mu$ then either $\mu-1 \leq a, b, c \leq \mu$ or $\mu \leq a, b, c \leq \mu+1$.
as $v_{p}, v_{q}, v_{r}, v_{s}$ are consecutive vertices with connection set $\{1,2,3,4\}$. So by Pigeonhole principle at least two of the vertices will have the same partition representation. Which results in a contradiction.
Case 3: If two vertices of V^{*} are in the set A_{1}. i.e. $\left|V^{*} \cap A_{1}\right|=2$.
Case 3.1: Assume that v_{p}, v_{q} are in $V^{*} \cap A_{1}, v_{r}$ in $V^{*} \cap A_{2}$ and v_{s} in $V^{*} \cap A_{4}$ then $r\left(v_{p} \mid \Lambda\right)=(0,1,1,1), r\left(v_{q} \mid \Lambda\right)=(0,1,1,1)$, results in a contradiction.
Case 3.2: Assume that v_{p}, v_{q} are in $V^{*} \cap A_{1}$ and v_{r}, v_{s} are in $V^{*} \cap A_{2}$ then

$$
r\left(v_{p} \mid \Lambda\right)=(0,1,1,1)=r\left(v_{q} \mid \Lambda\right) \text { and } r\left(v_{r} \mid \Lambda\right)=(1,0,1,1)=
$$ $r\left(v_{s} \mid \Lambda\right)$.

Which results in a contradiction.

Table 9. Possible choices for $d\left(v, A_{2}\right)$ and $d\left(v, A_{4}\right)$ where $v \in V^{*}$ and $r=2$

v_{j-4}	$k+1$	k	k	k	k
v_{j-3}	k	$k+1$	k	k	k
v_{j-2}	k	k	$k+1$	k	k
v_{j-1}	k	k	k	$k+1$	k

Table 10. Possible choices for $d\left(v, A_{2}\right)$ and $d\left(v, A_{4}\right)$ where $v \in V^{*}$ and $r=3$

v_{j-4}	$k+1$	$k+1$	k	k	k	k
v_{j-3}	k	$k+1$	$k+1$	k	k	k
v_{j-2}	k	k	$k+1$	$k+1$	k	k
v_{j-1}	k	k	k	$k+1$	$k+1$	k

Table 11. Possible choices for $d\left(v, A_{2}\right)$ and $d\left(v, A_{4}\right)$ where $v \in V^{*}$ and $r \geq 4$

v_{j-4}	$k+1$	$k+1$	$k+1$	$k+1$	k	k	k	k
v_{j-3}	k	$k+1$	$k+1$	$k+1$	$k+1$	k	k	k
v_{j-2}	k	k	$k+1$	$k+1$	$k+1$	$k+1$	k	k
v_{j-1}	k	k	k	$k+1$	$k+1$	$k+1$	$k+1$	k

Table 12. Possible choices for $d\left(v, A_{2}\right)$ and $d\left(v, A_{4}\right)$ where $v \in V^{*}$

v_{j-4}	λ	λ	λ	λ
v_{j-3}	$\lambda-1$	λ	λ	λ
v_{j-2}	$\lambda-1$	$\lambda-1$	λ	λ
v_{j-1}	$\lambda-1$	$\lambda-1$	$\lambda-1$	λ

Table 13. Possible choices for $d\left(v, A_{2}\right)$ and $d\left(v, A_{4}\right)$ where $v \in V^{*}$

v_{j-4}	β	β	β	β
v_{j-3}	$\beta+1$	β	β	β
v_{j-2}	$\beta+1$	$\beta+1$	β	β
v_{j-1}	$\beta+1$	$\beta+1$	$\beta+1$	β

The subsequent lemma will be helpful in proving the partition dimension of G_{10}.

Lemma 3.1. Let $\Lambda=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ be a resolving partition of G_{10}.
(i) If $\left|A_{j}\right|=1$ for some $1 \leq j \leq 5$, then $d\left(v, A_{j}\right)=2$ for exactly one $v \in V\left(G_{10}\right)$.
(ii) If $\left|A_{j}\right| \geq 2$ for some $1 \leq j \leq 5$, then for all $v \in V\left(G_{10}\right)$, we have $d\left(v, A_{j}\right) \leq 1$.

Proof. (i) Let $A_{j}=\left\{v_{i}\right\}$ for some $1 \leq j \leq 5$, then $d\left(v_{i+1}, A_{j}\right)=$ $d\left(v_{i+2}, A_{j}\right)=d\left(v_{i+3}, A_{j}\right)=d\left(v_{i+4}, A_{j}\right)=d\left(v_{i-1}, A_{j}\right)=d\left(v_{i-2}, A_{j}\right)=$ $d\left(v_{i-3}, A_{j}\right)=d\left(v_{i-4}, A_{j}\right)=1$ and $d\left(v_{i+5}, A_{j}\right)=2$.
(ii) If $\left|A_{j}\right| \geq 2$ for some $1 \leq j \leq 5$, then all the vertices in $V\left(G_{10}\right) \backslash$ A_{j} are at distance 1 from some vertex in A_{j}.

Theorem 3.3. $p d\left(G_{10}\right)=6$.
Proof. Let $A_{1}=\left\{v_{0}\right\}, A_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, A_{3}=\left\{v_{5}, v_{8}\right\}, A_{4}=\left\{v_{6}\right\}$, $A_{5}=\left\{v_{7}\right\}, A_{6}=\left\{v_{9}\right\}$. Since $\Lambda=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right\}$ is a resolving partition of $V\left(G_{10}\right)$, we have $p d\left(G_{10}\right) \leq 6$.

By Theorem 3.2 we know that $p d\left(G_{10}\right) \geq 5$. We only need to show that $p d\left(G_{10}\right) \neq 5$. Let $\Lambda=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ be a resolving partition of $V\left(G_{10}\right)$. Here we have the subsequent cases.
Case 1: If $\left|A_{j}\right|=2$ for all $j \in\{1,2,3,4,5\}$. It is clear from Lemma 3.1 that $d\left(v, A_{j}\right) \leq 1$ for all $v \in V\left(G_{10}\right)$. Therefore, $r(v \mid \Lambda)=$ ($0,1,1,1,1$) for both vertices in A_{1}. Which contradicts our assumption.
Case 2: If $\left|A_{j}\right| \geq 3$ for some $j \in\{1,2,3,4,5\}$, consider $\left|A_{1}\right| \geq 3$. Let $x_{1}, x_{2}, x_{3} \in A_{1}$. Since the partition representation of x_{1}, x_{2}
and x_{3} are distinct therefore, there exist $i, j \in\{1,2,3\}$ such that $\left.r\left(v_{i} \mid \Lambda\right)\right)$ and $r\left(v_{j} \mid \Lambda\right)$ have 2 as one of its coordinates. We can consider, $x_{1} \in A_{1}$ with $d\left(x_{1}, A_{4}\right)=2$ and $x_{2} \in A_{1}$ with $d\left(x_{2}, A_{5}\right)=2$. Lemma 3.1 implies that all other vertices of G_{10} have the representations with fourth and fifth coordinates at most 1. Since $r=2$ for G_{10} so there is only one vertex at the diameter distance from any given vertex. This implies that $r\left(x_{1} \mid \Lambda\right)=(0,1,1,2,1), r\left(x_{2} \mid \Lambda\right)=(0,1,1,1,2)$.

Moreover there is exactly one vertex in G_{10} with the representation having the fifth coordinate 0 and at most two vertices with the representation having fourth coordinate 0 . Thus G_{10} contains at least five vertices, say $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ with the representations having fourth and fifth coordinates equal to 1 . Let $V^{*}=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. We distinguish the subcases.

Case 2.1: Four vertices of V^{*} are in A_{1} or A_{2} or A_{3}.
We can assume that $u_{1}, u_{2}, u_{3}, u_{4} \in V^{*} \cap A_{1}$ then $r\left(u_{1} \mid \Lambda\right)=$ $\left(0, b_{1}, c_{1}, 1,1\right), r\left(u_{2} \mid \Lambda\right)=\left(0, b_{2}, c_{2}, 1,1\right), r\left(u_{3} \mid \Lambda\right)=\left(0, b_{3}, c_{3}, 1,1\right)$ and $r\left(u_{4} \mid \Lambda\right)=\left(0, b_{4}, c_{4}, 1,1\right)$
where $b_{1}, b_{2}, b_{3}, b_{4}, c_{1}, c_{2}, c_{3}, c_{4} \in\{1,2\}$.
Case 2.1.1: If $b_{1}=2$ or $c_{1}=2$. Suppose $b_{1}=2$ then we must have $c_{1}=1$ as $r=2$ and Lemma 3.1 implies that $b_{2}=b_{3}=b_{4}=1$. Also only one of c_{2}, c_{3} and c_{4} can be 2. Assume that $c_{2}=2$ then we must have $c_{3}=c_{4}=1$. This means that u_{3} and u_{4} will have same representations, which results in a contradiction.
Case 2.1.2: Suppose $b_{1}=1$ and $c_{1}=1$ then only one of the coordinates of u_{2}, u_{3} and u_{4} can be 2 . Suppose $b_{2}=2$ then we must have $c_{2}=1$ as $r=2$ and Lemma 3.1 implies that $b_{3}=b_{4}=1$. Also only one of c_{3} and c_{4} can be 2. Assume that $c_{3}=2$ then $c_{4}=1$. This means u_{1} and u_{4} will have same representations, which results in a contradiction.
Case 2.2: Three vertices of V^{*} are in A_{1} or A_{2} or A_{3} and two vertices in one of the other sets. Suppose u_{1}, u_{2}, u_{3} are in $V^{*} \cap A_{1}$ and u_{4}, u_{5} in $V^{*} \cap A_{2}$ then $r\left(u_{1} \mid \Lambda\right)=\left(0, b_{1}, c_{1}, 1,1\right)$, $r\left(u_{2} \mid \Lambda\right)=\left(0, b_{2}, c_{2}, 1,1\right), r\left(u_{3} \mid \Lambda\right)=\left(0, b_{3}, c_{3}, 1,1\right)$ $r\left(u_{4} \mid \Lambda\right)=\left(a_{1}, 0, c_{4}, 1,1\right)$ and $r\left(u_{5} \mid \Lambda\right)=\left(a_{2}, 0, c_{5}, 1,1\right)$ Since $\left|A_{1}\right| \geq 3$ and $\left|A_{2}\right| \geq 2$, so by Lemma 3.1 we must have
$a_{1}=a_{2}=b_{1}=b_{2}=b_{3}=1$ and only one of $c_{1}, c_{2}, c_{3}, c_{4}$ and c_{5} can be 2 .
So assume that $c_{1}=2$ then $c_{2}=c_{3}=c_{4}=1$ which means u_{2} and u_{3} will have same representations, which results in a contradiction. Now if we take $c_{4}=2$ then u_{1}, u_{2} and u_{3} will have same representations again we get a contradiction.

Case 2.3: Two vertices of V^{*} are in A_{1} and three in A_{2}. Suppose u_{1}, u_{2} are in $V^{*} \cap A_{1}$ and u_{3}, u_{4}, u_{5} are in $V^{*} \cap A_{2}$ then

$$
\begin{aligned}
& r\left(u_{1} \mid \Lambda\right)=\left(0, b_{1}, c_{1}, 1,1\right), r\left(u_{2} \mid \Lambda\right)=\left(0, b_{2}, c_{2}, 1,1\right) \\
& r\left(u_{3} \mid \Lambda\right)=\left(a_{1}, 0, c_{3}, 1,1\right), r\left(u_{4} \mid \Lambda\right)=\left(a_{2}, 0, c_{4}, 1,1\right) \text { and } \\
& r\left(u_{5} \mid \Lambda\right)=\left(a_{3}, 0, c_{5}, 1,1\right)
\end{aligned}
$$

Since $\left|A_{1}\right| \geq 3$ and $\left|A_{2}\right| \geq 3$, so by Lemma 3.1 we must have
$a_{1}=a_{2}=a_{3}=b_{1}=b_{2}=1$ and only one of $c_{1}, c_{2}, c_{3}, c_{4}$ and c_{5} can be 2 .
Assume that $c_{1}=2$ then $c_{2}=c_{3}=c_{4}=c_{5}=1$ which means u_{3}, u_{4} and u_{5} will have same representations, which results in a contradiction. Now if we take $c_{3}=2$ then u_{1} and u_{2} will have same representations and also u_{4} and u_{5} will have same representations. Again we get a contradiction.
Case 2.4: One vertex of V^{*} is in A_{1}, two in A_{2} and two in A_{3}. Suppose u_{1} is in $V^{*} \cap A_{1}, u_{2}, u_{3}$ are in $V^{*} \cap A_{2}$ and u_{4}, u_{5} are in $V^{*} \cap A_{3}$ then
$r\left(u_{1} \mid \Lambda\right)=\left(0, b_{1}, c_{1}, 1,1\right), r\left(u_{2} \mid \Lambda\right)=\left(a_{1}, 0, c_{2}, 1,1\right)$
$r\left(u_{3} \mid \Lambda\right)=\left(a_{2}, 0, c_{3}, 1,1\right), r\left(u_{4} \mid \Lambda\right)=\left(a_{3}, b_{2}, 0,1,1\right)$ and $r\left(u_{5} \mid \Lambda\right)=\left(a_{4}, b_{3}, 0,1,1\right)$
Since $\left|A_{1}\right| \geq 3,\left|A_{2}\right| \geq 2$ and $\left|A_{3}\right| \geq 2$, so by Lemma 3.1 we must have
$a_{1}=a_{2}=a_{3}=b_{1}=b_{2}=b_{3}=c_{1}=c_{2}=c_{3}=1$.
Which will give at least two same representations, which results in a contradiction.
Case 2.5: Two vertices of V^{*} are in each of A_{1} and A_{2} and one in A_{3}. Suppose u_{1}, u_{2} are in $V^{*} \cap A_{1}, u_{3}, u_{4}$ are in $V^{*} \cap A_{2}$ and u_{5} is in $V^{*} \cap A_{3}$ then
$r\left(u_{1} \mid \Lambda\right)=\left(0, b_{1}, c_{1}, 1,1\right), r\left(u_{2} \mid \Lambda\right)=\left(0, b_{2}, c_{2}, 1,1\right), r\left(u_{3} \mid \Lambda\right)=$ $\left(a_{1}, 0, c_{3}, 1,1\right)$,
$r\left(u_{4} \mid \Lambda\right)=\left(a_{2}, 0, c_{4}, 1,1\right)$ and $r\left(u_{5} \mid \Lambda\right)=\left(a_{3}, b_{3}, 0,1,1\right)$.
Since $\left|A_{1}\right| \geq 3,\left|A_{2}\right| \geq 2$, so by Lemma 3.1 we must have $a_{1}=a_{2}=a_{3}=b_{1}=b_{2}=b_{3}=1$ and only one of c_{1}, c_{2} and c_{3} can be 2 so as in the previous case we will get at least two same representations, which results in a contradiction.
Case 2.6: Three vertices of V^{*} are in A_{2} and two in A_{3}. Suppose u_{1}, u_{2}, u_{3} are in $V^{*} \cap A_{2}$ and u_{4}, u_{5} are in $V^{*} \cap A_{3}$ then
$r\left(u_{1} \mid \Lambda\right)=\left(a_{1}, 0, c_{1}, 1,1\right), r\left(u_{2} \mid \Lambda\right)=\left(a_{2}, 0, c_{2}, 1,1\right)$
$r\left(u_{3} \mid \Lambda\right)=\left(a_{3}, 0, c_{3}, 1,1\right), r\left(u_{4} \mid \Lambda\right)=\left(a_{2}, b_{1}, 0,1,1\right)$ and $r\left(u_{5} \mid \Lambda\right)=\left(a_{3}, b_{2}, 0,1,1\right)$
Since $\left|A_{1}\right| \geq 3,\left|A_{2}\right| \geq 3$ and $\left|A_{3}\right| \geq 2$, so by Lemma 3.1 we must have

$$
a_{1}=a_{2}=a_{3}=b_{1}=b_{2}=c_{1}=c_{2}=c_{3}=1 .
$$

Which will give at least two same representations, which results in a contradiction. So in each case we concluded that $p d\left(G_{10}\right) \neq 5$. Hence $p d\left(G_{10}\right)=6$.

4. Conclusion

In this article, we concluded that

$$
\operatorname{pd}\left(G_{n}\right)= \begin{cases}n, & \text { if } 8 \leq n \leq 9 \\ 6, & \text { if } n=10 \\ 5, & \text { if } n \geq 11\end{cases}
$$

Here we conclude with the following open problem.
OpenProblem 4.1. Calculate the $p d\left(C_{n}(1,2, \ldots, t)\right)$ for positive integer n and $t \geq 5$.

Acknowledgement:

The authors are grateful to the reviewer's valuable comments that improved the manuscript.

References

[1] Azhar K., Zafar S., Kashif A. and Zahid Z., On fault-tolerent partition dimension of graphs, J. Intell. Fuzzy Syst. 40(1), (2021), 1129-1135.
[2] Chartrand G., Eroh L., Johnson M.A. and Oellermann O.R., Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105, (2000), 99-113.
[3] Chartrand G., Salehi E. and Zhang P., The partition dimension of a graph, Aequ. Math. 59, (2000), 45-54.
[4] Garey M.R. and Johnson D.S., Computers and intractability: A guide to the theory of NP-completeness. Freeman, New York. (1979).
[5] Grigorious C., Kalinowski T., Ryan J. and Stephen S., The metric dimension of the circulant graph $C(n, \pm\{1,2,3,4\})$, Australas. J. Combin. 69(3), (2017), 417-441.
[6] Grigorious C., Stephen S., Rajan B. and Miller M., On the partition dimension of circulant graphs, Comput. J. 60, (2017), 180-184.
[7] C. Grigorious, S. Stephen, B. Rajan, M. Miller and A. William, On the partition dimension of a class of circulant graphs, Inf. Process. Lett. 114 (2014) 353-356.
[8] F. Harary and R. A. Melter, On the metric dimension of a graph, Theory Comput. Syst. Ars Combinatoria 2, (1976), 191-195.
[9] Z. Hussain, J. A. Khan, M. Munir, M. S. Saleem and Z. Iqbal, Sharp bounds for partition dimension of generalized Mobius ladders, Open Math. 16 (2018) 1283-1290.
[10] M. Imran, A. Q. Baig and S. Rashid, On the metric dimension and diameter of circulant graphs with three jumps, Discrete Math Algo and Apps. 10, No. 1 (2018), 17 pages.
[11] I. Javaid, N. K. Raja, M. Salman and M. N. Azhar, The partition dimension of circulant graphs, World Appl. Sci. J. 18, No. 12 (2012) 1705-1717.
[12] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217-229.
[13] E.C. M. Maritz and T. Vetrik, The partition dimension of circulant graphs, Quaest. Math. 41, No. 1 (2018) 49-63.
[14] A. Nadeem, A. Kashif, S. Zafar and Z. Zahid, On 2-partition dimension of the circulant graphs, J. Intell. Fuzzy Syst. 40, No. 5 (2021), 9493-9503.
[15] A. Nadeem, A. Kashif, S. Zafar, A. Aljaedi and O. Akanbi, Fault tolerant addressing scheme for oxide interconnection networks, Symmetry. 14, No. 8 1740, (2022). https://doi.org/10.3390/sym14081740.
[16] A. Nadeem, A. Kashif, S. Zafar and Z. Zahid, 2-partition resolvability of induced subgraphs of certain hydrocarbon nanotubes, Polycycl. Aromat. Compd. (2022), 1-11.
[17] A. Nadeem, A. Kashif, S. Zafar and Z. Zahid, On 2-partition dimension of rotationally-symmetric graphs, Discrete Math. Algorithms Appl. (2022). https://doi.org/10.1142/S1793830922501531.
[18] M. Salman, I. Javaid and M. A. Chaudhry, Resolvability in circulant graphs, Acta Math. Sin. (Engl. Ser.) 28 (2012) 1851-1864.
[19] A. Sebö and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29, No. 2 (2004) 383-393.
[20] P. J. Slater, Leaves of Trees, In Proc. 6th Southeastern conf. combinatorics, graph theory and computing, Congressus Numerantium, 14, (1975), 549 559.

