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Abstract.:The discretization of continuous distributions among researchers
become important issue, so several discretization methods exists in the lit-
erature for obtaining discrete version of continuous distribution which can
be pragmatic to discrete data. The present study proposes the discretiza-
tion of continuous Ailamujia distribution. Subsequently various statistical
properties has been studied including moment generating function, char-
acteristic function, mode, reliability, probability generating function etc.
Nature of density function and hazard function has been studied graphi-
cally. The technique of maximum likelihood estimation is used to estimate
the unknown parameter of the said model. Biodiversity and abundance
data applications are provided to flexibility and applicability of the new
distribution in ecological studies.
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data.

1. INTRODUCTION

Count data come across on day to day basis and proceedings. Statistical analysis in-
volving count data may take multiplex forms subject to the context of use. Simple count
data are as - number of childrens of a couple, number of bacteria per unit, number of trades
per month, number of plants in a particular field. Various count data may possess different
characteristics and hence must have different count data models. Many count data mostly
follows Binomial, Poisson, Geometric, Trucated possion, negative binomial, distribution
[4]. These discrete distributions are frequently been used to analyze and model count data
in scientific fields such as parasitology [2], veterinary medicine [18] and estimation of ore
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reserves [5].

From last few years discretization of continuous distribution interests the attention of re-
searchers in statistical literature. As in numerous real life data we come from corner to cor-
ner samples of discrete type, where it is challenging or problematic to get samples of contin-
uous type. For illustration, the data collected for testing the prevailing pandemic COVID-19
for the different people came out in the form of discrete type to examine whether a person
is effected with the pandemic or not. It is problematic to apply a continuous distribution in
such circumstances where the testing procedure is imperious for each one in similar way
life testing or reliability experiments, it is often difficult to compute life length of a device
on continuous scale e.g measuring reliability of an on / off switching device. Therefore,
new discrete statistical distributions are required in many applied areas such as ecology,
biology, seismology, etc.

In the statistical literature, there are several standard discrete distributions such as Pois-
son, geometric distributions which used to model count data. Similarly binomial, negative
binomial, geometric, hyper geometric distributions where as these distributions have con-
fined scope for modeling real life time data or having limited use as model for reliability,
failure, times, counts etc. Moreover, many authors have developed different approaches
for the discretization of continuous distribution. Some are given as Roy [21] investigated
the statistical properties of the discrete normal distribution, Roy [22] obtained discrete
Rayleigh distribution, Inusah et al. [9] defined a discrete analogue of the Laplace distri-
bution, Krishna et al. [12] studied several properties of discrete Burr and discrete Pareto
distributions, Al-Huniti ve Al-Dayjan [3] obtained discrete Burr type III distribution. Nek-
oukhou et al. [15] obtained discrete generalized exponential distribution Hussain and Ah-
mad [7] investigated the statistical properties of the discrete inverse Rayleigh distribution.
Several others like Szablowski [23], Hussain and Ahmad [8], Nekoukhou et al. [16] and
Alexander Kasyoki et al [1] etc suggested discretize analogue of continuous life time dis-
tributions and employ them on count data models Lv et al. [13] proposed a new continuous
distribution known as Ailamujia distribution. The interval estimation and hypothesis test-
ing based on small samples was studied by Pn et al. [17]. Reshi et al. [20] propsed the
Bayes estimates of unkown parameter of Ailamujia distribution under different loss func-
tion. As a result of these studies, Ailamujia distribution is flexible and can be used with one
parameter easily in real life applications. However, the number of discrete events can not
explained with continuous distribution and new discrete and more flexible distributions are
required especially for real data applications. The aim of present paper is to study discrete
analogue of a continuous Ailamujia distribution. In order to obtain required probability
mass function of the proposed model, we apply the procedure of infinite series method.

2. DISCRETEANALOGUE OF A ILAMUJIA DISTRIBUTION

Let X follows a continuous distribution having the pdffX(x) with range R, then the
corresponding random variable Y has the pmf given as

P (Y = y) = P (y, θ) = P (y) =
fX(y, θ)∑∞

i=−∞ fX(i, θ)
, y ∈ Z (2. 1)
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A random variable X is said to follows Ailamujia distribution if its pdf and cdf are,
respectively, defined as

f(x, α) = 4αxe−2αx, α > 0, x > 0 (2. 2)

and

F (x, α) = 1− (1 + 2αx)e−2αx, α > 0, x > 0c (2. 3)

Discretization of ( 2. 2 ) is obtained using after using it in the discretization method
given in ( 2. 1 ), and we obtained the probability mass function of discrete Ailamujia
model given below

P (y) =
(1− θ)2

θ
yθy, y = 1, 2...; θ > 0 (2. 4)

whereθ = e−2αx, we will called the pmf in ( 2. 4 ) as discrete Ailamujia distribution and
analogous cdf of discrete Ailamujia distribution is acquired by using following procedure

F (y) = P (Y ) = 1− P (Y > y)

= 1−
∞∑

w=y+1

f(w) = 1−
∞∑

w=y+1

(1− θ)2

θ
wθw

After manipulating, we get

F (y) = 1− [y(1− θ) + 1]θy, y = 1, 2...; θ > 0 (2. 5)

Figures 1 and 2 depicts the behaviors of the pmf and cdf at various values of parameter
(θ = 0.2, 0.8, 1.2, 2.2)
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FIGURE 1. The plots for the pmf of the discrete Ailamujia distribution
with several values of parameters.

3. STATISTICAL PROPERTIES OFDISCRETEA ILAMUJIA DISTRIBUTION

3.1. Moment generating function. Let Y be a random variable which follows discrete
Ailamujia distribution. Then, moment generating function of Y denoted byMY (t) is ob-
tained as follows:
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FIGURE 2. The plots for the cdf of the discrete Ailamujia distribution
with several values of parameters.

My(t) =E(eY t) =
∞∑

y=1

eytP (y)

=
∞∑

y=1

(1− θ)2

θ
etyyθy

=
(1− θ)2

θ

∞∑
y=1

y(θet)y

=
(1− θ)2

θ
eθ[1− θeθ]−2
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TABLE 1. Summary of discrete Ailamujia distribution under different
values of parameters

θ Mean Variance Skewness Kurtosis
2.0 3 4 2.12 0
3.0 2.5 1.5 5.62 -3
4.0 2.3 0.88 11.5 -8
10 2.12 0.243 115.42 -80
12 2.10 0.238 122.56 -85

My(t) =
(1− θ)2et

[1− θeθ]2
, ∀t 6= log

1
θ

(3.1)

The first four moments about origin of the proposed distribution are given under:

µ
′
1 =

1− 2θ

1− θ
, µ

′
2 =

θ2 + 4θ + 1
(1− θ)2

µ
′
3 =

4θ3 + 8θ2 + 11θ + 1
(1− θ)3

µ
′
4 =

2θ4 − 42θ3 − 123θ2 + 21θ + 6
(1− θ)4

The moments about mean, variance, C.V, skewness, kurtosis of the discrete Ailamujia
distribution are obtained as

µ2 =
2θ

(1− θ)2

µ3 =
3θ2 − θ + 2

(1− θ)3

µ4 =
−11θ4 − 22θ3 − 163θ2 + 9θ + 5

(1− θ)4

σ =

√
2θ

1− θ

C.V =

√
2θ

1 + θ

√
β1 =

3θ2 − θ + 2
8
√

θ

√
β2 =

−11θ4 − 22θ3 − 163θ2 + 9θ + 5
4θ2

where, C.V = coefficient of variation,β1 =Skewness,β2 =Kurtosis
From TABLE 1, we see that as the value ofθ increases mean of the distribution de-

creases. Also from the data we see that the proposed model is positively skewed and has
platykurtic curve.
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3.2. Characteristics function. Let Y be a random variable which follows discrete Aila-
mujia distribution. Then, characteristic function of Y denoted byφY (t) is given as

φY (t) =E(eitY ) =
∞∑

y=1

eitY P (y)

=
∞∑

y=1

(1− θ)2

θ
eitY yθy

=
(1− θ)2

θ

∞∑
y=1

y(θeit)y

=
(1− θ)2

θ
eit[1− θeit]−2

φY (t) =
(1− θ)2eit

[1− θeit]2
,∀it 6= log

1
θ

, i =
√−1 (3. 6)

3.3. Probability generating function. Let Y be a random variable which follows discrete
Ailamujia distribution. Then, probability generating function of Y denoted byPY (t)is
given as

PY (t) =
∞∑

y=0

tyP (y)

=
(1− θ)2

θ

∞∑
y=0

tyyθy

=
(1− θ)2

θ

∞∑
y=0

y(θt)y

=
(1− θ)2t
(1− θt)2

, ∀t 6= 1
θ

3.4. Survival and Hazard Rate Function. Suppose Y be a discrete random variable with
cdf F (y), y = 1, 2, 3, ....Then, its reliability function which is also called survival function
is defined as

S(y) = P (Y > y) = 1− F (y, θ)

Survival function of discrete Ailamujia distribution is given as

S(y, θ) = 1− F (y, θ) = [y(1− θ) + 1]θy (3.2)

Plots for survival function of discrete Ailamujia distribution is presented in Figure 3.
Hazard Function: Hazard rate function of the random variable y is given as

h(y, θ) =
P (y)

S(y, θ)
(3.3)
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FIGURE 3. Plots of survival rate function of discrete Ailamujia distribu-
tion with several values of parameters.

Substituting (2.4) and (3.2), into (3.3), we get the hazard rate function of discrete Ailamujia
distribution as

h(y, θ) =
(1−θ)2

θ yθy

[y(1− θ) + 1]θy
=

(1− θ)2y
θ[y(1− θ) + 1]
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FIGURE 4. Plots of hazard rate function of discrete Ailamujia distribu-
tion with several values of parameters.

Plots for hazard rate function of discrete Ailamujia distribution are presented in Figure 4.
As seen in Figure 4, the hazard rate function is monotone increasing shape.
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4. ESTIMATION OF PARAMETER OFDISCRETEA ILAMUJIA DISTRIBUTION

We apply two methods for estimating the parameter of proposed model namely method
of moments and method of maximum likelihood.

4.1. Method of Moments. To find the sample moments of discrete Ailamujia distribution,
we equate population moments with sample moments

µ = µ′1 =
1
n

n∑

i=1

yi

µ = ȳ =
1 + θ

1− θ

ȳ(1− θ) = (1 + θ) =⇒ θ̂ =
ȳ + 1
ȳ − 1

4.2. Maximum likelihood estimation. Let Y1, Y2, ...Yn be a random sample of size n
from discrete Ailamujia distribution. Then, its likelihood function is given by

l(θ) =
n∏

i=1

P (yi) =
n∏

i=1

(1− θ)2

θ
P (yi)θyi

The log-likelihood is given as

logl(θ) = = ln

[
(1− θ)2

θ

]n

+
n∑

i=1

lnyi +
n∑

i=1

yilogθ

=2nlog(1− θ)− nlogθ +
n∑

i=1

lnyi +
n∑

i=1

yilogθ

Differentiate w.r.t’θ’we get

∂log(θ)
∂θ

=
2n

θ − 1
− n

θ
+

1
θ

n∑

i=1

yi

Substituting∂log(θ)
∂θ =0,we get the required estimator ofθ

2n

θ − 1
− n

θ
+

1
θ

n∑

i=1

yi = 0 =⇒ n(θ + 1)
θ(θ − 1)

+
n

θ
ȳ = 0

After simplification it yields as

θ̂ =
ȳ − 1
ȳ + 1
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5. APPLICATION

Discrete Ailamujia distribution has been fitted numerous data sets to test its goodness of
fit over other candidates model viz zero truncated Poisson (ZTP), zero truncated general-
ized Poisson (ZTGP) and zero truncated Poisson gamma (ZTPG) distributions. Data I: The
first data set is count data set presented in Table 2 shows the number of mites per leaf, the
European red mite belongs to a group of plant-feeding mites, called spider mites stated by
Garman [6].

TABLE 2. The number of mites per leaf, the European red mite belongs
to a group of plant-feeding mites

Y 1 2 3 4 5 6 7
f 38 17 10 9 3 2 1

TABLE 3. Summary of the table 2.

Mean Variance Median Ist Quartile 3rd Quartile
2.15 2.103 2.00 1.00 3.00

Tables 6 portray the goodness of fit test of the first and second data sets, respectively.
We calculate the expected frequencies for fitting discrete Ailamujia, ZTP, ZTGP and ZTPG
distributions, using R studio Pearson?s chi-square test is used for testing the goodness of fit.

TABLE 4. Goodness of fit test result for the number of mites per leaf data

Y Observed FrequencyDiscrete Ailamujia ZTP ZTPG ZTGP
1 38 32.258 28.7 30.31 30.7
2 17 23.538 25.7 25.15 22.2
3 10 12.892 15.3 12.34 12.9
4 9 6.274 6.9 7.23 5.9
5 3 2.962 2.5 3.22 3.0
6 2 1.453 0.7 1.22 1.7
7 1 0.633 0.2 0.62 1.1

80.00 80.00 80.00 80.00 80.0
χ2 2.067 9.827 5.631 2.467
d.f 3 2 2 3
P-value 0.566 0.091 0.059 0.4813

Table 6, reveals ZTGP distribution is not good fit at all, whereas ZTP and ZTGP fits
good. However, discrete Ailamujia distribution fits better than the ZPG and ZTGP distri-
butions. Thus, the null hypothesis that data emanate from discrete Ailamujia distributions
is powerfully accepted. Tables 7 shows the maximum likelihood estimates,?2??ogL, AIC
and BIC values from which it is seen that AIC and BIC values of discrete Ailamujia is
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TABLE 5. AIC, BIC and log likelihood values for the fitted distributions
for the number of mites per leaf data

Criterion Discrete Ailamujia ZTP ZPGD ZTGP
Maximum Likelihood Estimate 0.36507 1.7916 1.3842 0.9265 0.2646 0.9986

(Standard Error) (0.0303) (0.1705) (0.2732) (0.1323) (0.0548) (0.1805)
- l 118.779 122.794 118.928 118.9245
AIC 241.559 247.589 241.856 242.849
BIC 243.941 249.639 246.221 246.6131

smaller than other existing models.

Data II: The second data set presented in Table 6 is the animal abundance data of Keith
and Meslow[10] regarding the distribution of snowshoe hares captured over 7 days. Al-
berta snowshoe investigations carried out near the town of Rochester, approximately 60
miles north of Edmonton. The data presented here are from intensive livetrapping on six
different study areas during 1962-67.

TABLE 6. The animal abundance data of Keith and Meslow[10]

Y 1 2 3 4 5
f 184 55 14 4 4

TABLE 7. : Summary of the table 8.

Mean Variance Median Ist Quartile 3rd Quartile
1.425 0.629 1.00 1.00 2.00

TABLE 8. The goodness of fit test results of the animal abundance data
of Keith and Meslow[10]

Y Observed FrequencyDiscrete Ailamujia ZTP ZTPG ZTGP
1 184 177.643 170.6 172.74 172.7
2 55 62.175 72.5 63.335 60.1
3 14 15.320 15.4 16.734 18.3
4 4 3.808 2.2 5.843 6.8
5 4 1.833 0.3 2.325 3.1

261 261 261 261 261
χ2 1.105 6.216 1.492 2.241
d.f 2 1 2 2
P-value 0.575 0.013 0.474 0.5239
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TABLE 9. AIC, BIC and log likelihhod values for the fitted distributions
for the animal abundance data

Criterion Discrete Ailamujia ZTP ZPGD ZTGP
Maximum Likelihood Estimate 0.175 0.425 0.6132 1.7561 0.7984 6.6177

(Standard Error) (0.0151) (0.0738) (0.0534) (1.012) (0.0280) (0.7277)
- l 228.400 335.243 234.347 263.6471
AIC 458.801 672.486 472.694 528.432
BIC 462.366 676.0505 474.337 534.516

TABLE 10. AIC, BIC and log likelihood values for simulated data

Criterion Discrete Ailamujia ZTP ZPGD ZTGP
Maximum Likelihood Estimate 1.133 2.322 2.4314 3.5221 0.8864 4.3643

(Standard Error) (0.0263) (0.1022) (0.9542) (1.752) (0.02674) (0.8653)
- l 133.41 148.567 139.633 144.063
AIC 268.82 299.134 283.266 290.126
BIC 268.82 299.134 284.266 290.126

Table 10 reveals ZTGP distribution is not good fit at all, whereas ZTP and ZTGP fits
good. However, discrete Ailamujia distribution fits better than the ZPG and ZTGP distri-
butions. Thus, the null hypothesis that data emanate from discrete Ailamujia distributions
is powerfully accepted. Tables 11 shows the maximum likelihood estimates,?2??ogL, AIC
and BIC values from which it is seen that AIC and BIC values of discrete Ailamujia is
smaller than other existing models.

6. SIMULATION STUDY

In our simulation study, we choose a sample size ofn = 100 to represent medium data
set. Random numbers are generated and iterated 5000 times using inverse probability trans-
formation method. On the basis of sample, we estimate the value parameter. On the basis
of generated sample, we use R code and check the goodness of fit of the Discrete Ailamujia
Distribution and compare it with other candidates model viz zero truncated Poisson (ZTP),
zero truncated generalized Poisson (ZTGP) and zero truncated Poisson gamma (ZTPG)
distributions. Results are shown in Table 12.

From table 12 it is seen that AIC and BIC values of discrete Ailamujia is smaller than
other existing models. Thus we can say that discrete Ailamujia performs better fit than
other existing models.

7. CONCLUSION

In this paper a discrete analogue of continuous Ailamujia distribution is proposed and
several structural properties of the proposed model is discussed. The proposed model is
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compared with other candidate?s model as discussed in various tables. From Tables 6 and
10 it is evident that proposed model displays its appropriateness by showing higher P-
values. Moreover, from Tables 7 and 11 it is shown that the proposed model shows smaller
values AIC, BIC and AICC. These lesser values of the model selection statistics advo-
cate that the proposed model is the superlative probability model among other competing
models.
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