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Abstract.: In this paper, we study Hermite wavelet method (HWM) for
numerical solutions of higher-order ordinary differential equations. The
Hermite wavelet used Hermite polynomial which is the basis for this method.
This technique uses collocation points that transform the differential equa-
tion into an algebraic system of equations which reduces difficult compu-
tations to easier form as compared with other numerical techniques. We
consider and evaluate two test problems, one of them is of order nine and
the other is of order ten in order to show the applicability of the method.
The outcomes that we get from the considered approach are approximately
similar to the exact solution and easily acquired. The absolute errors for
different number of collocation points are calculated and compared with
the results obtained by other methods present in the available literature,
and the graphical results obtained showed comparison between present
numerical results and analytical solutions. The proposed methodology is
also computationally efficient relative to other numerical approaches and
the results obtained via the proposed scheme are precise and correct.
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1. INTRODUCTION

Differential equations play a vital role in modeling many real world problems [2]. Many
physical phenomena can be modeled and can further be investigated for more interesting re-
sults via differential equations [29]. Due to their important applications, many researchers
have given attention to the study of differential equations in various aspects. These as-
pects include qualitative theory of existence, analytical solutions and numerical results.
For this purpose, fixed point theory has been used to study existence of solutions to differ-
ential equations. For analytical results, various techniques can be used such as Adomian
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decomposition method (ADM) [13], homotopy perturbation method (HPM) [14], new ho-
motopy perturbation method (NHPM) [11], Chebyshev wavelet method [7] etc. However,
in most situations finding exact and analytical solution is quite difficult job for many dif-
ferential equations problems. Therefore, various mathematicians developed different nu-
merical schemes to find the approximate solutions of various differential equations, for
example, see [12, 4, 1, 5, 6]. Wavelet method is also one of the interesting numerical
method. Wavelet family or wavelet was first introduced by a Hungarian mathematician
Haar in his Ph.D. thesis in 1909 [23]. But Morlet and the team under Grossmann in France
first proposed the present theoretical form of wavelet. Meyer and his colleagues developed
the wavelet analysis method and the main algorithm date back to Mallat’s work in 1988.
The Wavelet family is broadly divided into some categories i.e., discrete wavelet, contin-
uous wavelet, etc. Some wavelets techniques are discrete wavelets which constitute Haar
wavelet [20], Legendre wavelet [22], Villasenor wavelet (VW)[19], Cohen-Daubechies-
Feauveau wavelet [17], Daubechies wavelet [33], etc. While continuous wavelets contain
Beta wavelet [8], Poisson wavelet [18], Hermite wavelet [26], Hermitian hat wavelet [30],
Mexican hat wavelet [21], Spline wavelet [15].

Wavelet analysis is a new technique though its mathematical support date backs to the
work of Joseph Fourier in the nineteenth century. Fourier laid the foundation with his
theories of frequency analysis which is more considerable and impressive. However, the
word wavelet was firstly used by Haar but the main algorithm of wavelet was developed
by Mallat. After that, the researches on wavelets become international. The wavelet is a
wave like oscillation having an amplitude that begins at zero, increases and then decreases
back to zero. Wavelets are an interesting and useful mathematical tool for solving many
differential equations, integral equations as well as integro-differential equations in an easy
way and in less amount of time. These are functions that satisfy different mathematical
concepts and are easily used for the representation of data or functions. In wavelet analy-
sis, there is a scaling function that plays an important role. This analysis procedure is to
develop a wavelet function, known as analysing wavelet or mother wavelet. There is a type
of wavelets namely Hermite wavelets, which are a family of continuous functions and in-
troduced by a French mathematician Charles Hermite. It is also constructed from dilation
and translation of a single function of mother wavelet or analysing wavelet. Applications
of wavelet exists in many applied areas such as in music [27], optics [24], signal and image
processing [9], astronomy [28], radar [34], nuclear engineering [10], earthquake-prediction
[3], magnetic resonance [16], fingerprint compression [25], etc. The following family of
continuous wavelets is forming, when dilation parameterα and translation parameterβ are
changing continuously as

φα,β(y) = |α|−1
2 φ(

y − b

α
), for all α ∈ R, β ∈ R− {0}. (1. 1)

Now, if we apply restrictions on the parametersα andβ to discrete values

α = α−r
0 , β = sβ0α

−r
0 , α0 > 1, β0 > 0, (1. 2)

then the family of discrete wavelets are as follow

φr,s(y) = |α| 12 φ(αr
0y − sβ0), for all α ∈ R, β ∈ R− {0}. (1. 3)

whereφr,s(y) form a wavelet basis forL2(R).
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In the present article, we study Hermite wavelet method to obtain approximate solutions
of higher-order differential equations. The Hermite wavelet method uses Hermite polyno-
mial as a basis function. The unknown function is to be approximated through the Hermite
wavelet in which collocation points will be used. With the help of collocation points, we
will obtain a system of algebraic equations for the given differential equation. This system
of equations will then be solved to get the desired solution of the problem. Test prob-
lems of ninth and tenth order ordinary differential equations will be considered to study the
effectiveness and validity of the method.

The organization of the paper is as follows. In Section 2 we describe basic concepts
related to our work. In Section 3, we discuss Hermite wavelet method and function ap-
proximation for solution of ordinary differential equations. Test problems and its solution
are given in Section 4. While in Section 5, we provided conclusion of our work.

2. PRELIMINARIES

In this section we introduce some basic concepts which are used in our work.
Boundary Value Problems (BVPs):The problems of finding the solution of differential
equations such that the associated conditions relate at two or more than two different values
of the independent variable. For example, for second order ordinary differential equation,
we have

y(x0) = y0, y′(x1) = y1,

then these are called boundary conditions and the problem with given boundary conditions
is called boundary value problem (BVP).
Hermite Wavelet: Hermite wavelets are defined as

φs,j(y) =

{
2

r+1
2√
π

Nj(2ry − 2s + 1), s−1
2r−1 ≤ y < s

2r−1 ,

0, otherwise,
(2. 4)

wherej = 0, 1, 2, . . . ,. HereNj(y) is Hermite polynomial of degreej on the real lineR.
Hermite Polynomial: Hermite polynomialNj(y) of degreej can be defined on the real
lineR and satisfies the following recurrence formula.

N0(y) = 1,

N1(y) = 2y,

...

Nj+2(y) = 2yNj+1(y)− 2(j + 1)Nj(y),

wherej = 0, 1, 2, . . . ,.
There are some properties of Hermite polynomial. It is the beginner step for the gen-

eration of algorithm of Hermite wavelet method. The whole algorithm is based on the
Hermite polynomial, it works like a backbone. Another property is that, the first two steps
are already defined and the remaining steps are generating by the generalized formulae.
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3. SOLUTION OF DIFFERENTIAL EQUATION BY APPLYINGHERMITE WAVELET

METHOD

Let we have a general ordinary differential equation of orders. To obtain the solution
for this ordinary differential equation by Hermite wavelet method (HWM), we establish an
algorithm for solution of generalized ordinary differential equation (ODEs) as follow.
Considering the following equation

z(s)(y) = z(j)(y) + z(y) + g(y), j < s, s, j ∈ Z+, (3. 5)

with the conditions

z(0) = w0, z(r) = wr, z(s)(0) = z0, z(s)(r) = zr. (3. 6)

To obtain a better solution functionz(y) by Hermite wavelet method, we apply the follow-
ing steps in our proposed HWM algorithm.
Step 1.Consider

z(y) =
∞∑

s=1

∞∑

j=0

fs,jφ(y), (3. 7)

whereφs,j(y) is given as

φs,j(y) =

{
2

r+1
2√
π

Nj(2ry − 2s + 1), s−1
2r−1 ≤ y < s

2r−1 ,

0, otherwise,
(3. 8)

wherej = 0, 1, 2, . . . , .
Step 2.HereNj(y) is Hermite polynomial of degreej on the real lineR and satisfies the
following recurrence formula

N0(y) = 1,

N1(y) = 2y,

...

Nj+2(y) = 2yNj+1(y)− 2(j + 1)Nj(y),

wherej = 0, 1, 2, . . . , .
Step 3.In this step we approximatez(y) by truncating the series represented in Eq. (3. 7 )
as

z(y) ≈
2r−1∑
s=1

J−1∑

j=0

fs,jφ(y) = fT φ(y), (3. 9)

wheref andφ(y) are2r−1× J − 1 matrices andr, J ∈ Z+. These are represented as

fT = [f1,0, . . . ,f1,J−1,f2,0, . . . ,f2,J−1, . . . ,f2r−1,0, . . . ,f2r−1,J−1], (3. 10)

φ(y) = [φ1,0, . . . , φ1,J−1, φ2,0, . . . , φ2,J−1, . . . , φ2r−1,0, . . . , φ2r−1,J−1]. (3. 11)

Step 4.The Eq. (3. 5 ) is approximated by using Eq. (3. 9 ) as below

ds

dys

2r−1∑
s=1

J−1∑

j=0

fs,jφ(y) =
dj

dyj

2r−1∑
s=1

J−1∑

j=0

fs,jφ(y) +
2r−1∑
s=1

J−1∑

j=0

fs,jφ(y) + g(y). (3. 12)
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Now, using the subjected conditions of Eq. (3. 6 ) and Eq. (3. 9 ) we have

2r−1∑
s=1

J−1∑

j=0

fs,jφ(0) = w0,
ds

dys

2r−1∑
s=1

J−1∑

j=0

fs,jφ(0) = z0,

2r−1∑
s=1

J−1∑

j=0

fs,jφ(r) = z0,
ds

dys

2r−1∑
s=1

J−1∑

j=0

fs,jφ(r) = w0, (3. 13)

Then, solving Eq. (3. 12 ) and Eq. (3. 13 ) with the help of Maple software, we obtain the
values of the following coefficient constants as

f1,0, . . . ,f1,J−1,f2,0, . . . ,f2,J−1, . . . ,f2r−1,0, . . . ,f2r−1,J−1, (3. 14)

φ1,0, . . . , φ1,J−1, φ2,0, . . . , φ2,J−1, . . . , φ2r−1,0, . . . , φ2r−1,J−1. (3. 15)

Step 5. By putting the unknown constants of (3. 14 ) and (3. 15 ) in Eq. (3. 12 ) and
Eq. (3. 13 ), we get the approximation. Hence the equations (3. 7 )-(3. 15 ) constitute the
numerical procedure for problem described in Eq. (3. 5 ) and Eq. (3. 6 ).

Hermite wavelet have many advantages in solving many problems in different fields.
Some of them are: It can easily be applied to find the solution of different types of differ-
ential equation. It can also generate many other conditions (initial conditions or boundary
conditions) which help in the solution of the given differential equations. The error occur-
ring in the solution of this method is small as compared to other wavelets method. The
results obtained by this method (HWM) is very coincided with the exact solution. With the
help of this method we get approximation in a short interval of time and in an easy way.
Hermite wavelet method is also used to solve problems or equations arising in the field of
physics, engineering and in many other areas.

4. NUMERICAL RESULTS AND APPLICATIONS

In this section, we apply the constructed algorithm procedure on test problems.
Example 1.Let us consider the following ordinary differential equation of order nine with
some given boundary conditions [34].

z(9) + z(7) + yz(4) + z(3) + z sin(y) + z = 5y sin(y)− cos(y) + y2 cos(y)− y sin2(y)

+ sin(y) cos(y) + y cos(y), 0 < y < 1,
(4. 16)

and

z(0) = 0, z(1) = cos(1), z
′
(0) = 1, z

′
(1) = cos(1)− sin(1), z

′′
(0) = 0,

z
′′
(1) = −2 sin(1)− cos(1), z

′′′
(0) = −3, z

′′′
(1) = −3 cos(1) + sin(1), ziv(1) = 0.

(4. 17)

Exact solution is
z = y cos(y). (4. 18)

Consider

z(y) =
∞∑

s=1

∞∑

j=0

fs,jφ(y), (4. 19)
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whereφs,j(y) is given as

φs,j(y) =

{
2

r+1
2√
π

Nj(2ry − 2s + 1), s−1
2r−1 ≤ y < s

2r−1 ,

0, otherwise,
(4. 20)

wherej = 0, 1, 2, . . . , .
We solve this problem (4. 16 ) by the proposed method (Hermite wavelet method) for

r=1 andJ=10. We apply the proposed method algorithm to approximatez(y) by truncating
(4. 19 ) as

z(y) ≈
10−1∑

j=0

f1,jφ(y) = fT φ(y), (4. 21)

wheref andφ(y) are matrices of appropriate dimensions.

fT = [f1,0,f1,1,f1,2,f1,3,f1,4,f1,5,f1,6,f1,7,f1,8,f1,9,f1,10], (4. 22)

φ(y) = [φ1,0, φ1,1, φ1,2, φ1,3, φ1,4, φ1,5, φ1,6, φ1,7, φ1,8, φ1,9, φ1,10]T . (4. 23)

To find the values of eleven unknown constants namely

f1,0,f1,1,f1,2,f1,3,f1,4,f1,5,f1,6,f1,7,f1,8,f1,9,f1,10, (4. 24)

we need eleven algebraic equations for the solution values of the constants of (4. 24 ),
but there are only eight boundary conditions given, which are not sufficient for finding the
eleven unknown constants. Therefore we have to find out three more conditions from which
we generate three more equations which help us in finding the above (4. 24 ) unknown
constantsfs,j . The remaining conditions are obtained by substituting Eq. (4. 16 ) in Eq.
(4. 21 ), we obtain

z(9)
10−1∑

j=0

f1,jφ(y)) + z(7)
10−1∑

j=0

f1,jφ(y) + yz(4)
10−1∑

j=0

f1,jφ(y) + z(3)
10−1∑

j=0

f1,jφ(y)

+ z
′
sin(y) + z = 5y sin(y)− cos(y) + y2 cos(y)− y sin2(y).

(4. 25)

Then, we have to collocate the Eq. (4. 25 ) by limit points of the following sequence, to
obtain the remaining three equations,

{yi} = {1
2
(1 + cos

(i− 1)π
9

)},

wherei = 2, 3, . . . , . Hence, we obtain

z(9)
10−1∑

j=0

f1,jφ(yi)) + z(7)
10−1∑

j=0

f1,jφ(yi) + yiz
(4)

10−1∑

j=0

f1,jφ(yi) + z(3)
10−1∑

j=0

f1,jφ(yi)

+ z
′
sin(yi) + z = 5yi sin(yi)− cos(yi) + y2

i cos(yi)− yi sin2(yi).
(4. 26)
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By using the boundary conditions of Eq. (4. 17 ) and Eq. (4. 26 ), we get the following
system of equations

2.678819088× 108f1,10 + 6.988223640× 106f1,9 − 9.705866244× 106f1,8

+ 9.705866232× 105f1,7 + 2.079828480× 105f1,6

− 69327.61602f1,5 + 6932.761602f1,4 = 0,

− 2.412601044× 107f1,10 + 6.697047720× 106f1,9 + 1.941173250× 105f1,8

− 3.033083198× 105f1,7 + 34663.80804f1,6 + 8665.951998f1,5

− 3466.380800f1,4 + 433.2976002f1,3 = −3,

2.41260104× 107f1,10 + 6.697048020× 106f1,9 − 1.94117314× 105f1,8

− 3.033083188× 105f1,7 − 34663.80796f1,6 + 8665.95200f1,5

+ 3466.380802f1,4 + 433.2976002f1,3 = −3 cos(1) + sin(1),

− 2.677779146× 106f1,10 − 6.03150260× 105f1,9 + 1.860291030× 105f1,8

+ 6066.16634f1,7 − 10832.44000f1,6 + 1444.325332f1,5

+ 433.2976000f1,4 − 216.6488000f1,3 + 36.10813334f1,2 = 0,

− 2.6777790× 106f1,10 + 6.0315032× 105f1,9 + 1.86029101× 105f1,8

− 6066.1656f1,7 − 10832.43996f1,6 − 1444.32534f1,5 + 433.297601f1,4

+ 216.6488002f1,3 + 36.10813334f1,2 = −2 sin(1)− cos(1),

− 4.838489× 105f1,10 − 66944.46908f1,9 + 16754.172f1,8 + 5813.4095f1,7

− 216.64878f1,6 − 451.351671f1,5 − 72.216266f1,4

+ 27.0811001f1,3 + 18.05406667f1,2 + 4.513516668f1,1 = cos(1)− sin(1),

4.838489867× 105f1,10 + 66944.47908f1,9 − 16754.17386f1,8 + 5813.40948f1,7

+ 216.648801f1,6 − 451.3516666f1,5 + 72.2162667f1,4

+ 27.08110002f1,3 − 18.05406667f1,2 + 4.513516668f1,1 = 1,

9279.79038f1,10 + 12096.22465f1,9 − 1859.568869f1,8 − 523.567934f1,7

+ 207.6217667f1,6 + 9.0270334f1,5 − 22.56758335f1,4

+ 4.513516664f1,3 + 2.256758334f1,2 − 2.256758334f1,1 + 1.128379167f1,0 = 0,

9279.801f1,10 − 12096.223f1,9 − 1859.568969f1,8 + 523.56795f1,7 + 207.62178f1,6

− 9.027035f1,5 − 22.56758335f1,4 − 4.51351659f1,3

+ 2.25675833f1,2 + 2.256758334f1,1 + 1.128379167f1,0 = cos(1),

− 4.204195981 + 1.876818634× 1012f1,10 + 1.115135716× 1011f1,9 + 1.334438606× 109f1,8

+ 9.178759093× 107f1,7 + 79881.04795f1,6 + 64358.84551f1,5 + 9614.423334f1,4

+ 441.3492882f1,3 + 14.61610214f1,2 + 5.702446940f1,1 + 1.128379167f1,0 = 0,

− 3.586855568 + 1.439649437× 1012f1,10 + 1.072350470× 1011f1,9 + 1.041235660× 109f1,8

+ 9.189602127× 107f1,7 − 51707.30948f1,6 + 40985.35543f1,5 + 8233.933679f1,4

+ 426.5085778f1,3 + 9.44943140f1,2 + 4.970647465f1,1 + 1.128379167f1,0 = 0.
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Then solving the above equations, we obtain the unknown constants as below

f1,0 = 0.3154160820, f1,1 = 0.1099302198, f1,2 = −0.348028622e−1,

f1,3 = −0.4950358146e−2, f1,4 = 0.31118836e−3, f1,5 = 0.27369780e−4,

f1,6 = −9.197627× 10−7, f1,7 = −5.788142× 10−8,f1,8 = 1.2813069× 10−9,

f1,9 = 7.75299× 10−11, f1,10 = −2.034180× 10−12.
(4. 27)

By putting the values of unknown constants of Eq. (4. 27 ) in Eq. (4. 26 ), we obtain the
numerical result of Eq. (4. 16 ),

z(y) = −0.2406824105e−5y10 + 0.3496729659e−4y9 − 0.2198572828e−4y8

− 0.1363934584e−2y7 − 0.14216927e−4y6 + 0.4166988271e−1y5 + 1× 10−12y4

− 0.5000000001y3 + 1.39× 10−10y2 + 1.000000001y − 1× 10−10.
(4. 28)

TABLE 1. HWM and analytical solutions, and absolute error (AE) com-
parison with Petrov-Galerkin method [31] for the Example 1.

y Exact solution Approximate solution by HWM AE in solution [31] AE in HWM
0.00 0.000000000000000 -0.000000000100000 1.457692× 10−07 1.0000000000× 10−10

0.01 0.009999500004000 0.009999499914000 2.458692× 10−07 9.0000000000× 10−11

0.02 0.019996000130000 0.019996000050000 7.003546× 10−07 8.0000000000× 10−11

0.03 0.029986501010000 0.029986500940000 1.430511× 10−06 7.0000000000× 10−11

0.04 0.039968004270000 0.039968004210000 2.324581× 10−06 6.0000000000× 10−11

0.05 0.049937513020000 0.049937512970000 1.668930× 10−06 5.0000000000× 10−11

0.06 0.059892032390000 0.059892032360000 2.086163× 10−07 3.0000000000× 10−11

0.07 0.069828570020000 0.069828569990000 1.430511× 10−06 3.0000000000× 10−11

0.08 0.079744136500000 0.079744136490000 1.609325× 10−06 1.0000000000× 10−11

0.09 0.089635745970000 0.089635745970000 1.072884× 10−06 0.0000000000× 10+00
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FIGURE 1. Comparison graph between exact and approximate solution
for example 1.

Example 2. Let us consider the following ordinary differential equation of order ten
[10].

z(10) − z(3) = 2eyz2, 0 < y < 1, (4. 29)

with boundary conditions

z(0) = 1, z(1) = e−1, z
′
(0) = −1, z

′
(1) = −e−1, z

′′
(0) = 1,

z
′′
(1) = e−1, z

′′′
(0) = −1, z

′′′
(1) = −e−1, ziv(0) = 1, ziv(1) = e−1.

(4. 30)

Exact result is given by
z = e−y. (4. 31)

We solve this problem by the proposed method forr=1 andJ=12. We truncate the series
to approximatez(y) by using Eq. (3. 7 ) as

z(y) ≈
12−1∑

j=0

f1,jφ(y) = fT φ(y), (4. 32)

wheref andφ(y) are matrices of appropriate dimensions.

fT = [f1,0,f1,1,f1,2,f1,3,f1,4,f1,5,f1,6,f1,7,f1,8,f1,9,f1,10,f1,11,f1,12],
(4. 33)

φ(y) = [φ1,0, φ1,1, φ1,2, φ1,3, φ1,4, φ1,5, φ1,6, φ1,7, φ1,8, φ1,9, φ1,10, φ1,11, φ1,12]T .
(4. 34)

Further we need thirteen equations to find the values of eleven unknown constants

f1,0,f1,1,f1,2,f1,3,f1,4,f1,5,f1,6,f1,7,f1,8,f1,9,f1,10,f1,11,f1,12, (4. 35)
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but there are only ten boundary conditions given, therefore, we have to find out other three
conditions which help in finding the above unknown constantsfs,j . The remaining condi-
tions are obtained by substituting Eq. (4. 29 ) in Eq. (4. 32 ), and we get

z(10)
12−1∑

j=0

f1,jφ(y)− z(3)
12−1∑

j=0

f1,jφ(y) = 2eyz2. (4. 36)

Then, we have to collocate the Eq. (4. 36 ) by limit points of the following sequence, to
obtain the remaining three equations

{yi} = {1
2
(1 + cos

(i− 1)π
9

)},
wherei = 2, 3, . . . , .. From which we get the following

z(10)
12−1∑

j=0

f1,jφ(yi)− z(3)
12−1∑

j=0

f1,jφ(yi) = 2eyz2, (4. 37)

From the boundary conditions in Eq. (4. 30 ) and Eq. (4. 37 ), the system of equations
obtained by computation in Maple software will become sufficient to find the unknown
constants. Then solving the system of equations with the help of Maple software, we
obtain the unknown constants as follow

f1,0 = 0.8074957166, f1,1 = −0.2061596808, f1,2 = 0.2603949965e−1,

f1,3 = −0.2183499505e−2, f1,4 = 0.1370350229e−3, f1,5 = −0.6872029673e−5,

f1,6 = 2.869676903× 10−7, f1,7 = −1.026574756× 10−8, f1,8 = 3.210828766× 10−10,

f1,9 = −8.897106673× 10−12, f1,10 = 2.184740907× 10−13,

f1,11 = −4.562480041× 10−15, f1,12 = 6.909943807× 10−17.
(4. 38)

By putting the values of unknown constants from Eq. (4. 38 ) in Eq.(2.9), we obtain the
numerical solution of Eq. (4. 29 )

z(y) = 8.707755555× 10−10y12 − 1.959850734× 10−8y11 + 2.595102538× 10−7y10

− 0.2721387724e−5y9 + 0.2474878748e−4y8 − 0.1983595486e−3y7 + 0.1388858384e−2y6

− 0.8333325823e−2y5 + 0.4166666665e−1y4 − 0.1666666666y3 + 0.5000000000y2

− 0.9999999997y + 0.9999999999.
(4. 39)



Numerical solution of ninth and tenth order ordinary differential equations via Hermite wavelet method 343

TABLE 2. Absolute error comparison (AE) of HWM with Galerkin
method with septic B-splines [32], HWM and analytical results for Ex-
ample 2.

y Exact solution Approximate solution by HWM AE in solution [32] AE in HWM
0.1 0.904837418000000 0.904837418000000 6.735325E-06 0.0000000000E+00
0.2 0.818730753100000 0.818730753100000 4.410744E-06 0.0000000000E+00
0.3 0.740818220700000 0.740818221100000 3.629923E-05 4.0000000000E-10
0.4 0.670320046000000 0.670320046100000 4.839897E-05 1.0000000000E-10
0.5 0.606530659700000 0.606530660200000 4.929304E-05 5.0000000000E-10
0.6 0.548811636100000 0.548811636200000 3.945827E-05 1.0000000000E-10
0.7 0.496585303800000 0.496585304200000 9.834766E-06 4.0000000000E-10
0.8 0.449328964100000 0.449328964200000 1.996756E-06 1.0000000000E-10
0.9 0.406569659700000 0.406569660300000 5.066395E-06 6.0000000000E-10

FIGURE 2. Comparison graph between exact and approximate solution
for Example 2.

5. CONCLUSION

In this paper, a numerical scheme based on Hermite wavelet method has been developed
to solve higher order ordinary differential equations. We used Maple software for compila-
tion of numerical algorithm. The proposed method has been tested on two boundary value
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problems of order nine and ten. The solutions obtained through proposed method has also
been compared with exact solutions and with other numerical results. From this, it is ob-
served that the numerical results obtained by the proposed method are better as compared
to other numerical methods and also approximately coincides with the exact solutions.
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