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Abstract.: In this paper, a perturbation scheme is applied to discuss the
instability model of a gravitating source under expansion free condition
upto Newtonian (V) and Post-Newtonian (p/N') approximations in Rastall
theory. For this purpose, we established field equations which are set of
partial differential equations with the help of suitable metric and fluid.
The linear perturbation scheme is used on these partial differential equa-
tions to formulate a collapse equation. We derived dynamical equations
by applying N and pN approximations. These equations represent that
instability of gravitating object is independent of adiabatic index I', while
the instability of the gravitating object can be determined with the help of
anisotropic pressure, energy density, Rastall parameter A\, and some con-
straints at NV and p/N approximations.
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1. INTRODUCTION

The problem of dynamical instability of gravitating source is an interesting study in the
field of General Relativity (GR). Gravitational collapse is happen when a massive star does
not maintain its equilibrium between outward forces and inward gravitational pull. During
the gravitational collapse a source passes through many stages of evolution. The instability
of spherically symmetric object with perfect fluid and non-adiabatic gravitating source has
been studied in [11, 20]. Herrera and Santos [21, 22] explored the results of spherically
symmetric gravitational collapsing object containing anisotropic fluid. The consequences
of limiting case of quasi-static approximation and dissipation of radiation transportation
has been discussed [35]-[38]. Sharif and Azam [35] worked to study the instability of
gravitating source at N and pN order. The authors in [23, 28] discussed the dynamics of
gravitating source under expansion-free condition . During the gravitational collapse a high
energetic explosion occur [29, 15], the expansion free condition is a reasonable condition
to describe this kind of explosion [18, 19]. The dust model with expansion-free condition
have some disadvantages and there is a negative energy density distribution, therefor, the
Skripkin model is not compatible with Darmois [12] junction conditions. During the ex-
plosion at center of the object a vacuum cavity is generated, in this situation the spherical
symmetric distribution of fluid remains constant [23]. A model [33] has been established in
which energy density remains constant and also this model useful for non-dissipative fluid
under expansion-free condition.

In the resent decades, some modified gravity theories have been studied to explore the
more mysterious features of the cosmos. These modifications have been made in Einstein’s
General theory of Relativity. The modified gravity theories describe the accelerated expan-
sion of universe. In this regard Rastall [32] proposed an interesting modification to General
Relativity (GR). Rastall challenged the law of conservation of energy momentum tensor
(EMT) (V,T°? = 0) in a curved space-time. He claimed that this law of conservation
of EMT does not always hold in curved space-time. According to Rastall, the covariant
divergence of energy momentum tensor is directly proportional to derivative of Ricci scalar
ie V7% « RP. Rastall introduced a coupling parameter in his theory which is known
as Rastall parameter. If this parameter is equal to zero, Rastall theory of gravity provides
the results back to GR.

New astrophysical models in Rastall theory have been investigated to explore the evo-
lution of stars. Recently, Abbas et al. [5] explored the models of collapse and expansion
of non-static anisotropic gravitating object in Rastall theory. The effects of Rastall param-
eter in the evolution of expansion and collapse models has been discussed. Tahir et al. [39]
studied the collapse of non-static configuration of dissipative source in Rastall theory. They
used Muiller-Israel-Stewart approach to formulate a heat transport equation and discus the
consequences of heat flux on the collapsing source. Dorrani [13] studied the collapse of
spherical symmetric gravitating source with homogeneous distibution in the field of Rastall
theory. He found that, the collapse becomes to stop when a scale factor attains its mini-
mum value, after this stage a bounce is occurred. The collapse of gravitating source has
been studied in Rastall gravity by taking a Vaidya space-time [40]. A dynamical evolution
of collapsing source has been studied by assuming a linear equation of state for the matter,
a naked singularity is the result of this collapse. Capozziello et al. [9, 10] explored the
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collapse of gravitating object using dust fluid and they obtained certain instability limits
for a collapsing source by using perturbation scheme.

Levia and Steinhof [26] discussed the spinning gravitating objects in the effective field
theory in the post-Newtonian scheme in the context of the binary inspiral problem. They
obtained the equations of motion of the spin via a proper variation of the action, and also
derived the Hamiltonians. By applying the effective field theory for spin to derive all spin
dependent potentials up to next-to-leading order to quadratic level in spin, namely up to
the third post-Newtonian order for rapidly rotating compact objects. Boschung et al. [8]
studied the instability of the gravitating regular sphaleron solutions of the SU(2) Einstein-
Yang-Mills-Higgs system. The frequency spectrum of a class of radial perturbations have
been studied. It has been derived by using the a variational principle that there exist always
unstable modes. ngiin et al. [31] studied the shadow and energy emission rate of a spher-
ically symmetric non-commutative black hole in Rastall theory. The non-commutative and
non-vanishing parameter affects the formation of event horizon, also the visibility of ob-
tained shadow effected by the non-commutative parameter in Rastall theory. This obtained
shadow my obey the unstable circular orbit condition, which is crucial for the physical
validity of the black hole image model. Gurtug and his collaborators [16] explored the Sin-
gular and Nonsingular Colliding Wave Solutions in Einstein-Maxwell-Scalar theory. Black
hole solutions have been studied in the field of dRGT massive gravity coupled with non
linear electrodynamics [25].

Abbas and his collaborator [4] studied the dynamical instability of adiabatic fluid in
Einstein Gauss-Bonnet (EGB) theory. Jhingan and Ghosh [24] explored the exact solu-
tions for the collapse by assuming dust fluid in EGB theory. Sunil et. al [27] found the
solutions of spherically symmetric collapse of a source in EGB theory. Abbas and Tahir
[3, 2] discussed the dynamical solutions for perfect fluid dissipative collapse of a source in
EGB gravity. The dynamical solution of a collapsing object under expansion-free condi-
tion has been studied in f(R,T') theory [30]. Bamba et al. [7] discussed the solution of
gravitating source in f(R) theory and they found that this collapse leads to formation of
a curvature singularity. Arbuzova and Dolgov [6] studied the solutions for various viable
f(R) paradigms for the accelerated expansion of the universe with time dependent mass
density.

The higher order curvature terms are added to generalize the Einstein-Hilbert action
which come from the diffeomorphism property of the action. These higher order curvature
terms contribute a lot in the formation of geometry and evolution of collapsing source.
Therefore, the EGB, f(R), f(R,T), Rastall or Lanczos-Lovelock gravity theories have
interesting features in the higher order curvature gravity theories. An interior space-time
curvature of a source (star) increases during the continuous collapse of source and turns
into very large at the last state of collapse of source. Recently, Rastall theory of gravity
attained the much interest of the research community to study its impact on the gravitating
source. In this regard, some studies inculcate the compatibility of the results obtained in
the Rastall theory with the observational constraints[14, 34, 1]. This is the reason for us
that we worked in the modified theory of gravity like Rastall theory of gravity to study the
instability of the gravitating object under expansion-free condition [23]. For this purpose,
we assumed the spherically symmetric configuration of a source. A perturbation scheme is
to be considered for the metric as well as fluid material variables to establish the dynamical
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equations for collapsing source up to N and pN order. This paper is managed as: Section
2 deals with the field equations and matter distribution. We present perturb configuration
of the field equations in section 3. Section 4 describes the NV and PN approximations. In
section 5, the dynamical equations are formulated. Section 6 contains conclusion of the
paper. The last section contains an appendix.

2. FIELD EQUATIONS AND INTERIOR MATTER DISTRIBUTION
According to the Rastall theory, the law of conservation of EMT has the following form
VoIy = ARy 2.1)

where )\ is Rastall coupling parameter. The field equations in Rastall theory of gravity are
given in the following form

Gab + H)‘gabR = KTaba (2 2)

where « is gravitational coupling constant, G is Einstein tensor, g, is a metric tensor,
R is Ricci scalar and T, is an energy momentum tensor. We used the following metric to
formulate the geometry of the spherically symmetric object,

ds® = —A%dt* + Bdr® + R?(d6* + sin? 0d¢?), (2. 3)
where A = A(r,t), B = B(r,t) and R = R(r,t).
A non-static anisotropic fluid is given in the following equation

Ty = (0 +p0)VaVe + (Pr — P1)XaXb + P1LGab, (2.4

where p denotes density, p, and p, are radial and tangential pressures, x is unit normal
four vector and V¢ is four velocity which satisfy

Ve = A"158, x* = B¢, (2.5)
and
X*Xe =1, V4V, = =1 and x*V, = 0. 2. 6)
Four acceleration a,, and expansion scalar O are defined as
O =V, aq = VaV"’. 2.7
Shear tensor o, of the fluid is given below
7 = Vi) + a(aViy — 50 (0us + VaVh). 2.8)
Egs.(2. 3),(2. 5)and (2. 7) provide us the following non-zero component of four-
acceleration,
2
a; = AZ/, a®an = (;14;) , 2.9

and expansion scalar takes the following form

1/B R
@_A<B+R) . 10)
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where ' and . represent the partial derivative with respect to r and ¢, respectively. From
Eqgs.(2. 8)and (2. 5), we get the following non zero components of shear tensor,

2 1
011 = gBZO', G99 = Og38in 20 = —gRQU, 2.1D
and shear scalar is given below
2
o%o. = 302, (2. 12)
where
1/B R
We obtained the following field equations with the help of Eqs.( 2. 2 )-(2. 4),
1 ) ..
kuA? = 5 [A°R'(BR' — 2B'R) — B*(A* + R*) — 2BR(BBR — A’R")]
2A
LYy [A*(B(2RR"” + R”? — B?) - 2B'RR') + A’R(B(A"R + A'R) — A'B'R)
—~ABR(2B*R + RB) — AB’R(RB + 2BR) + AB?R(2BR + RB)), (2. 14)
1 , .. .. .
kp,B? = Y [A2(AB? — (2A'R + AR)R') — B*((AR — AR)2R — AR?)]
+% [A3(B(2RR" + R? — B%) — 2B'RR') + A’R(B(A"R + A'R) — A'B'R)
—ABR(2B?R + BR) — AB?R(BR + 2BR) + AB>R(2BR + BR)], (2. 15)
wp B2 = — L [R(BA - AB)B?
(AB)?
—A*(A"B + A'B)) + AB((BR + BR)B — A(A'R' + AR")) + A>B'R' — B*>AR]
2K\
+ 553 [A3(B(2RR" + R? — B?) — 2B'RR') + A’R(B(A"R+ A'R) — RA'B’)
—ABR(2B’R + RB) — AB’R(RB + 2BR) + AB>R(2BR + CB)], (2. 16)
2 . . )
= —(A'BR - ABR' + ABR' 2.1
0 ABR( R R'+ ABR'), (2. 17)
From Egs.(2. 10), (2. 13), and ( 2. 17 ), we obtained
1 ! !
3(@—0) —O’%:O. (2. 18)
The Misner-Sharp mass function is given by
R RQ R/2

We have following non trivial components of the Bianchi identities, 7%, = 0,

1. R B
TVa=—Z(i+2(u+p1) 5+ (n+p)5) =0. (2. 20)
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and
ab 1 / A/ !
Ty xa:E(pr+j(u+pr)+2(pr—m)§) =0. .21
From Eqgs.( 2. 10 ) and ( 2. 20 ), we get
R
fi42(pr —pr) 5 + (0 +pr)AO =0, (2. 22)

R

3. PERTURBED EQUATIONS

Here, the perturbation scheme is used on the field equations and the dynamical equa-
tions which is the small change in the physical system. In this work, we want to analyze
the stability or instability of the gravitating source after slightly disturbing the source by
applying the perturbation. For this purpose, initially, we assume that geometry and fluid
components depend only on the radial dependent coordinates, this implies that the system
is in static equilibrium. With the passage of time all the matter quantities depend upon the
radial and time. We have concern with the non-linear partial differential equations, in or-
der to analyze roll of radial dependent variables on the dynamical instability of the source,
we adopt the particular mathematical method to solve the equations. In this context, we
considered the following linear perturbation on the metric and matter functions [20, 35]

A(r,t) = Ao(r) + ea(r)T(#), (3. 23)
B(r,t) = Bo(r) + eb(r)T(t), (3.24)
R(r,t) = Ro(r) + ec(r)T (), (3. 25)
p(r;t) = po(r) + en(r, t), (3. 26)
pr(r,t) = pro(r) + epp(r, 1), (3.27)
pi(r,t) =pro(r) + epy(rt), (3. 28)
m(r,t) = mo(r) + em(r,t), (3.29)
O(r,t) = €O(r, 1), (3. 30)
o(r,t) = ea(r,t), (3.31)

where (0 < € < 1). For the static configuration, we used Egs.( 3. 23 - 3. 28 ) and Egs.(
2. 14 -2. 17) with Ry = r (Schwarzschild coordinates), and then obtained the following
equations

1 2’1"36 2 1 1 Ag AaB(]
- (Z20 B2 1) o] — = - .32
Ho Bgr2( B, |00 Fl72BE T2 T 4By ABS 3. 32)

1 [2rAl 1 B2 A'B, A,B}
Py = —5— 0 _B24+1)+2X\k|— — =0 4 2020 207043 33
o B(2)’I“2 ( AO 0 + + m r2 r2 + AO A()BQ (3 )
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1 (Ay A\B), 1[(A, B
o (- 452 (-1
5\ Ao oBo r\Ay Bo
1 r2Al Al Bir?
el = — 1 0 _ ZobBo |
+ ”[Bg T B, AB
The perturbed form up to the first order in € are given by

o) - B9 - -

229

(3. 34)

—2)\K 2L” _ 2 + C/ _ b + a + % _ 27a
B3r  Bird  AgB2r? B3r2  AgB2r? 3 Agr?
2Bjc” Apc” Apb Aja n a” n 2A3Byb Bya'  AyBjb
BST A()Bo’l" AOBS A%Bo A%BO AOBé A()Bg AA()B([)l
AlBha ALY Te  Tb a
— — - = ——| = 2Kkpo—T 3.35
AZB3 ~ AB3 AZr T A2B, | oA, (3.35)
2T b Ay 1
Sy -2 (Lo )&y, (3. 36)
A()BO T ’I“Bo Ao r;)r
o QCT—i— a /+ 1+T‘A6 c /+Bg c b 2T
" = Alr Ap Ap r r \r By)|rB?
e 2" 2 2¢ 2¢ 20 2By ’ N a’ n Al
Bgr Bg’f’s Bg?"2 73 B()’I“2 Bg?“ AQBQT A()BO AQBS

c b ..

b
)T 2ps
A§r+A§B§> rpré3p3T)

Ala  ALBYb ALY ALBla  Bhd
AZB, | AgBY ~ ABY ' AIBY  A\B}

oo A ) (2583
r  Bg| A2 Ay r Ag By ) \ Ag
2 B () - (Y (2) ) D a2 2 2
r Ay Bog/\r r Ay ) \ By A2 B2r  B3r?  B2r?
_ZB{)c” Ay’ a” n 2A"c B A"b B Aja AyBb B A B Apb
Bir AoBor?  AgBo  AoBor AgB2 A3By, AoBi AoBi AB}
AyBja  Bja'  2ABlb  2A[Bjc c b\ ¢
Ang - AOBS AOBSL - AoBg’T2> - (14(2)7_ + 14%>T - 2/{pJ_O;T. (3 38)
From Eqgs.( 2. 10), (3. 30 ) and ( 3. 31 ), we have

~ T b c
6_Ao<Bo+2r)’ (3. 39)

Eq.(2. 13) with Egs.( 3. 30 ) and ( 3. 31), gives us

_ T b c
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From Eqgs.( 2. 20 ), (2. 21 ), and ( 3. 23 - 3. 28 ), we get the following static configuration

;oAb 2
Dro + 1, Ho +pro) +=|pPro—pL) =0, (3.41)
0 T

and the perturbed quantities are given below

1. C . b .
— | +2{po+pro|=-T+ |po+p0o|=5T|=0, (3.42)
AO r By
and
11, o A6 a\’ e\’
o T | A T — | T 2 r0 — - | T
BO{PT+<M+P>AO+ Ho + Pro A +2{pro — P10 ,
2
+; <p} — plﬂ =0. (3. 43)
Integrating Eq.( 3. 42 ), we get
b c
= —Kpro +M0>B +2<pm +M0) } T. (3. 44)
0 T
From Eqgs.(2. 19), (3.23-3. 25), and ( 3. 29 ), we get
1 r
m0—2[7“—BJ7 (3. 45)
and
me | ()i )| (3. 46)
B B2\ By 2 B? ' '

Eq.( 3. 27 ) with condition p, == 0 takes the following form
pro=""0, p. =" 0. (3. 47)

We assumed that the value of c is not equal to zero, so from Eqs.( 3. 37 ) and ( 3. 47 ), we
have

7 - pT == 0, (3. 48)

where

Adr A2 e\ [ rA] a\ Bi(b ¢
B=—m = 2. _ B2\ \ T+l ) g
(—=2Bgc — 2kABic — kAbr) | Be \ \ r A A r \By r

12 2" 2c n 4 Bic _ 2Bob  2By” N By’ N Boa”  AGb  AfBoa
I & 73 72 Byr Apr A Ag A?
AyBb _ Ay AjBja _ Bja’
AoBg AQBO A%BO A()BO ’
Equation ( 3. 48 ) provides solution containing the oscillating and non-oscillating functions.

The oscillating functions corresponds to the stable state of gravitating source while the non-
oscillating functions corresponds to unstable state of gravitating source. In this work, we
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would like to discuss the instability of collapsing source, therefore, we have concerned with
the non-oscillating functions. The solution of Eq.( 3. 48 ) is given bellow

T(t) = —exp(v/Bxiot). (3. 50)

Equation ( 3. 50 ) provides us 7'(—oo) = 0 when ¢ = —oo, a static system starts to
collapsing and areal radius of this system is start to decreasing as ¢ increases. We consider
the law of thermodynamics which relates p and zi. Here, we take the following equation of
state [17],

DPro _
, 3. 51)
Ho + po'u

where I represents the adiabatic index, which used to measure the variation of pressure
with respect to the density variation, this implies that it measures the stiffness of the fluid,
and it remains constant throughout the fluid distribution.

p_r:F

4. NEWTONIAN AND POST NEWTONIAN TERMS

We can distinguish between the various types of terms such as N and p N approximation,
which are useful to established the dynamical equations for unstable model of gravitating
source. We considered the following inequalities for /V approximation [23],

o > Pro , Mo > Plo- 4. 52)
The metric components up to PN approximation are given below

Gmo Gmo
By=1
r 0 + O2r ;

where G represents gravitational constant. The difference between N and p/N approxima-
tions can be determined with the help of the order of C, which are given bellow

N order : terms of order C°, (4. 54)

(4. 53)

pN order : terms of order C~2, (4. 55)

5. DYNAMICAL EQUATION

Here, we have formulated the dynamical equation with the help of equations given in
previous sections under expansion free condition. On the basis of this dynamical equation
will able to determined the stability or instability conditions. Eq.( 3. 39 ) with © = 0
provides us

b 2c
—_— = 5. 56
By . ( )
From Eq.( 3. 36 ) and ( 5. 56 ), we have
2T (r2¢\’
— ] =0. 5.57
’I”SBO <A0 ) ( )
Eq.(5. 57 ) provides us
Ag

c= nr—g, (5. 58)
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where 7 is constant. From Eqgs.( 5. 56 ) and ( 3. 44 ), we get
c
it =2[pro —pro] T (5. 59)

Above equation represents that the energy density in perturbed form depends on the static
anisotropic pressure. Eqs.( 3. 51 ) and ( 5. 59 ) provide us the following equation

- c
pr= 20— [ —pio| TS (5. 60)
Ho + Pro T
Eq.( 3. 41 ) give us
Al 1 .2
2o + 2 pro — . 5. 61
Ag o + Pro (prO r <p ° pm)) ( )

From Eqgs.( 3. 32) and ( 3. 45), we get

By Kiors — 2mg

By  2r2—drmg
Here, we would like to discuss the instability of self-gravitating source with © = 0 up
to pN approximation. Due to lengthy calculations of dynamical equations for instability,
we put them in an appendix A. We used g = dr" (where n €(—o0,00) and § > 0 are
constants) in Eq.( 9. 72 ) (see appendix A) and obtained the N and p/N approximation
with G = C' = 1. The N approximation can be obtained from Eq.( 9. 72 ), which is given
below,

(5. 62)

2~ 200F6) (22 XS (A (r(20miyr™ (2|plo | (Tr2 4 3) — 6r" 1 (3ar? — 2m)) — 22))

—2mgr(8%(2mg 4 11)r*™ 1 4 |plo|(77% + 3)r™ + |plo[*r) + 6°mG?r*™+2) + 2moprolpyol(2r* — 1))

+6r" 2 (2mgr? (|phol(2r — 1) — adr™) 4+ mgr? (adr™ — 2|p;olr + |prol)
—|—p,«077(§7“"+2 +phol))) + /i/\r](527’2"(r6 (7’(3@1"2 —8rn —8n—"70) + ngzr2

+2mg (13 — 3r% — 6r + 3)) 4+ 16mEmgn + 4myre((3 — 2m{)r + 6)) + 8mopro|plol(3r — 1)r°

+0[plolr" O (r(mg (r? — 81 +4) = 12(r — 1)rn) — 2my(r? — 81 +4)) + 4|pjo[*r®(n - 5))
+rT(=20[plor" T (—ar® + vty — 1) + 820" (= (ar® (1 = 3n) + 7° — 14n)) + 4|p}*r*n)

+26 N2 or®n(2|plo | — 6%r%")) = 0

From above equation, it can be observed that the instability is independent of adiabatic
index, while it depends on anisotropic pressure, density, different parameters and Rastall
parameter A. For instability condition, we considered that all the terms in Eq.( 5. 63 ) re-
main positive. Therefore, we assumed that all the dynamical quantities, arbitrary constants
and Rastall parameter A remain positive and p.., < 0, this implies that the pressure is de-
creasing during collapse of the gravitating source. For instability condition, all the terms
must be positive in Eq.( 5. 63 ), therefore, following constraints must be satisfied for the
instability condition at N order

(20myr™ (2|pho| (772 + 3) — 5r™ T (3ar? — 2m}) — 22)) — 2m{r(6%(2m} + 11)r*"+!
FpLo|(Tr% 4 3)r™ 4 |plol®r) + 82mi2r?"T3) > 0, (5. 64)

2r—=1>0, pro > pros (5. 65)

(5. 63)
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(2mor? (Ipyo|(2r — 1) — adr™) + mgr® (adr™ — 2|plolr + |plol) + pron(6r"
+|prol)) > 0, (5. 66)

(8212 (r (r(3ar? — 8rn — 81 — 70) + 2my%r? + 2m{ (r® — 3r% — 61 + 3)) + 16mEmyn
O3 — 2m)r -+ 6)) + Smopyolplol(3r% — 1r® + alpolr™ S(r{mf (r? - 81 +4)

—12(r — 1)rn) — 2my(r® — 8r 4+ 4)) + 4|plo[*r?(n — 5)) > 0, (5. 67)
(=20 |pLolr™ T (—ar? + vy — 1) + 6%r*™ (—(ar?(1 — 3n) + r® — 14n))
+A|pyo[*r®n) > 0, (5. 68)

(2lpLol? — 82r2™) > 0, (5. 69)

If all the above inequalities hold, then the system will be unstable otherwise it will be in the
stable state. From Eq.( 10. 73 ) (see appendix B), it can be seen that the instability is in-
dependent of adiabatic index, while it depends on the energy density, anisotropic pressure,
various parameters and Rastall parameter at p/V order. The instability condition satisfied
when all the terms in Eq.( 10. 73 ) remains positive, therefore, Eq.( 10. 73 ) must be satisfy
the constraints which are given in appendix C. If the inequalities given in the appendix C
satisfied then the gravitating system remain unstable, but the system remains in equilibrium
state if these conditions are not satisfied.

From Eq.( 5. 63 ) at N order and Eq.( 10. 73 ) at p/N order can be observed that
the instability is independent of a parameter I', while it depends on the various structural
properties of fluid like energy density and anisotropic pressure as well as depends on some
parameters. In this regards, it will be sufficient that p,g > p¢, Eqs.( 5. 63 ) and ( 10.
73 ) must be positive for the various values parameters. Here, we can say that adiabatic
index does not play any roll in Egs.( 5. 63 ) and ( 10. 73 ), therefore, the expansion-
free collapse would be happened without any compression of the fluid. The collapse rate
of gravitating source with © = 0 may be increased or decreased due to energy density,
anisotropic pressure and Rastall parameter A at N and p/N order.

6. NOTATIONS AND PRELIMINARIES

The expectations for children’s actions in the mathematics class were quite different
from their previous experiences in school. However, in this mathematics class it was nec-
essary for children to express their thinking in order to create opportunities for learning and
so that their existing constructions could be investigated by both the teacher and researchers

7. DISCRETE EVOLUTION SEMIGROUP

Using these premises of children’s learning as her guideline, the teacher initiated the
mutual construction of a different set of norms for mathematics lessons as she acted to help
the students reconceptualize their role during mathematics instruction. Her intention was
for the children to figure things out for themselves and to express their ideas in the pub-
lic arena of whole-class discussions. Additionally, during small-group work she expected
them to cooperate and work together to solve problems and to agree on an answer. Her
expectation that the children would express their thoughts placed the students under the
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obligation of having to recall their solutions and explain them to others during the whole-
class discussion.

8. CONCLUSION

Here, we discussed instability of a spherically symmetric collapsing object under expansion-
free condition at NV and pN order in Rastall theory. We derived set of the partial differ-
ential equations also called field equations. We used a linear perturbation scheme on the
fluid material components and metric components to established dynamical equations for
the instability collapsing object. From Eq.( 3. 48 ), we obtained a solution which contains
oscillating function and non-oscillating function. The oscillating function corresponds to
stable stage of gravitating source while non-oscillating function corresponds to unstable
stage of the spherically symmetric source. We concerned with non-oscillating functions
to study the instability of collapsing source. A solution given in Eq.( 3. 50 ) provides a
result 7(—oo) = 0 when t = —oo, this implies that a static system starts collapsing and
the areal radius of this system decreases as ¢ increases. The perturbed form of dynamical
equations are used to obtained the main collapse equation ( 9. 72 ) (see appendix). The
energy density profile py = dr™ (where n €(—o0,00) and § > 0 are constants) has been
used in ( 9. 72) to obtained equations upto N and pN order. An Eq.( 5. 63 ) at N order
and Eq.( 10. 73) at pN order under expansion-free condition show that the adiabatic index
does not contribute in the instability of collapsing object, while the instability depends on
the energy density, anisotropic pressure, Rastall parameter \ and other parameters involved
in Eq.( 5. 63 ) and Eq.( 10. 73 ). Also, for instability some constraints must be satisfy at
N and pN approximation. Moreover any possible model is further constrained by physical
requirements such as positivity of energy density, energy density greater than pressure, and
stability of local oscillations modes.

9. APPENDIX A
From Eqgs.(5.59),(5.60),(3.43),(3.48),and (3. 38), we get

al c\’ 2ac 2 a\” \”
”(“”M) (Ao> ”’"(M“O) (r> <Aar+33<(Ao> *(r>
24, By 1\[a\ (A, B, 2\/[c\ 2¢ (1 B}
e mr )@ G n)C) G 5
_|_Aé>+ A6 (4C_a)+2(c/+2(:)+A6B6(a_26>+ 4A6 (c>l
Ay AoBo\'r  Ap Byr2\ By r AoB3\ Ay 1 AoBo \ r

1 , aBj By ([ ¢ 2¢ c
- —al( L)) —okp S =0 9.70
+AoBo (a Bg aA% ’I“Bo T PL r 0 ( )
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From Eqgs.( 3. 37),(3. 48 ),(5. 56 ), and (5. 58 ), we get

/ -1 2 2
a KAr B} KAy Al 2rA2 3 By
N R ) 0 K4 B2 Ao\ 0, 9(p2_+1\_ (Do
(Ao> ( + By > ( 2 (inp oB5 + (A()) A + " By -1 « p
By 2B{\ [ Ay 4A[ 64 24 Ay 34,
Y 9 20 20 240 2420 2o _ 240
" 77<( + Ay By ) < r2 r3 + rd + Agr 2 73 rd

_2A()Bg B AgB() CEB?) 2 ))

rd r2 Agr?  Agr?

©.71)
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From Eq.( 9. 70 ) with the help of Egs.( 5. 58 ) and (9. 71 ), we obtained
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10. APPENDIX B

Eq.(9. 72) gives us the following equation up to p/N order,
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11. APPENDIX C

Pro > P10, (11.74)
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(1]
[2]
(3]
[4]
[5]
[6]
(7]
[8]
[9]
(10]
(11]

[12]
[13]
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+4m(2pror?(|plol(2r — 1) — 47™8) — 7 6(nd (1™ — 2|plo|)r™ 2 + 4p1o(1 — 2r)r
+2mo((ar + 6)0r™ + |plol(3 — 8r)r)))) > 0, (11. 81)

(r"*2(ar — 3)8 — |plo|) > 0. (11. 82)
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—my (2pL067™ — 2pr007™ 4 pro|plo|T) ((Tr% 4 3)8r™ 4 2|plo|r))r"™ T2 + 8mipro|plo|d2r™ T2
+mo(8pLoprod((2r2 — 1)8r™ + 4|plo|r)r™ + 6% (|plo|(Bar* — 6Tm{r3 + 8(m{ + 5)r?
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+8p2 (621%™ + |plo|(2r? — 5)or™ Tt + 3|ply|*r?)) > 0. (11. 83)
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