Punjab University Journal of Mathematics
(ISSN 1016-2526)
Vol. 53(1)(2021) pp. 71-82

On the Oscillatory Behavior of Some Qeneralized Differential Equation

Juan E. Nipoles Valés
UNNE, FaCENA
Corrientes 3400, Argentina
Email: jnapoles@exa.unne.edu.ar

UTN-FRRE
Resistencia, Chaco 3500, Argentina
Email: jnapoles@exa.unne.edu.ar
Yusif S. Gasimov
Azerbaijan University
Baku, Azerbaijan

Institute of Mathematics and Mechanics
Baku, Azerbaijan

Institute for Physical Problems, Baku State University
Email: yusif.gasimov@au.edu.az
Aynura R. Aliyeva
Sumgayit State University
Sumgayit , Azerbaijan

Received: 03 July, 2020 / Accepted: 20 January, 2021 / Published online: 21 January, 2021

Abstract.: In this article, using the Riccati-type transformation, we study
the oscillatory nature of the solutions of the generalized differential equa-
tion and give some criteria of the Kamenev type that generalizes several
well-known results on the topic.
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1. INTRODUCTION

Since the arbitrary order differential equations, integer or otherwise, are extensions of
ordinary or partial differential equations, only in the past 40 years have been found a variety
of applications and utility in various fields of science and technology (cf. [27], [30], [40]
and [41]). Along with the above, several investigations have also been carried out related
to the qualitative properties of its solutions (see [2], [3], [7], [8], [9], [10], [11], [12], [13],
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[15], [19], [20], [23], [28], [29], [34], [46], [47] [49], [52] and references cited therein).
However, it should be noted that in those investigations, the oscillation of the solutions has
not received much attention, despite the fact that it is one of the most required qualitative
properties in the applications, since the existence of a certain periodic behavior, or quasi-
periodically, ensures the existence of a desirable regime in the system or phenomenon
studied.

Although since 2014 the definitions of the several local fractional derivatives (con-
formable or not) were given, all of them can be considered as particular cases (including
the ordinary classic) of the definition of the Generalized Derivative, as we will see later.
Between its own theoretical development and the multiplicity of applications, this field has
grown rapidly in recent years. It is also known that a single definition of fractional deriva-
tive or integral does not exist, or at least is not unanimously accepted, in [6] suggests and
justifies the idea of a fairly complete classification of the known operators in non-integer or-
der Calculus. In particular, in the work [9], the reason for the appearance of new fractional
operators, practically every day, linked to applications and theoretical developments is ar-
gued. On the other hand, in [4], Chapter 1, a historical tour of the classic global operators
and the most recent local operators is made. Most important is the sentence in paragraph
1.4, when it concludes (in our words) “global fractional derivatives are not derivatives,
local fractional derivatives are not fractional” (see also [48]). As we have said on other
occasions, they are operators of different nature, which have shown their strength in many
applications.

A generalized local differential operator appeared in [38] and was defined in the follow-
ing way (see also [22] and [53]).

defn 1.1. Given a functiony : [0, +00) — R.We will define the N-derivative of orderof
function¢ as follows
[0)) _
E—

with « € (0, 1], 7 > 0, being®(«, 7) the kernel of operator. Sometimes it is very useful
to write this kernel®, using the Mittag-Leffler Functio, ., (.), with Re(v), Re(w) >
0. we will also consider the k-th term of the development of this function, designated as
Ewlw(T_a)k.

If we consider thap is N-differentiable for certair0, «), and 11%1+N§f)¢(r) exists, we

will put N3 (0) = 111€+Néa)¢(7'), in the case of differentiable, we havey (™ ¢(r) =
®(7, )¢’ (1) where¢' (1) is the ordinary derivative.

It is known that this function plays a prominent role in several areas of Mathematics
and, in particular, in the development of Fractional Calculus. Its classic expression is given

by
Eu(z):kz:;)m, a€eC, Re(w) >0, zeC,

with T the classic Gamma function. From seminal works of Mittag-Leffler (see [31,
32]), various studies and successive extensions of this function have appeared (see, for
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example, [14], [17, 18], [26, 44], [50]). Prabhakar introduced a new generalizaionz)
defined as ([42])

= (w)y, 2
Ey ., (2) = E — —— vw,u€C; Re(v),Re(w),Re(u) >0, zeC,
prs L (vk + w) k!

with (u), the Pochhammer symbol (see [43]).

Remark 1.2. Under certain cases of thé kernel we can obtain some local derivatives,
defined in recent years. First we note tha®ifr, «) = 1, we have the ordinary derivative.
In addition if ®(7,a) = Ey1(7~%), we have the non conformable derivatid&* ¢()
defined if21] (see alsq37]); in the case tha® (7, o) = Ey 1 (7!17%), = 717, &(7,a) =
Ei (r7%), = 1*0or ®(r,a) = E11(77%), = 7~%, we obtain the local derivatives of
[25], [39] and [33], respectively. On the other hand, consideritgr, ) = Eq1((1 —
o)1) = (>~ 17 we obtain a conformable derivative not yet reported in the literature.

Remark 1.3. The generalized operator presented above has some qualitative differences
with the ordinary derivative, which we want to point out. Firfi@5] presents an exam-

ple (p.67) of a function -differentiable, which is not differentiable in the usual sense.
One of the features that define a fractional derivative of a classic derivative is the “non-
compliance” of the Product Rule, if88] from Definition 1.1, a local operator is con-
structed that violates the product rule ( see p. 1012). We recommend section 3 of this last
work (“ON THE TARASOVS AFFIRMATIONS”) where we present additional details.

One of the most required properties of a derivative operator is the Chain Rule (see [38]),
to calculate the derivative of compound functions, which does not exist in the case of clas-
sical fractional derivative'g (f o g)(t) = Ng f(g(t)) = flg(t))Ngg(¢) .

Next, we define the generalized integral operator that we will use in our work (see [22]
and [53]):

defn 1.4. Witha € (0,1] and0 < w < v. The functionM : [u,v] — R we will say

a-fractional integrable orfu, v], if
X M(r
WM =y MO0 = [ 2D

o(r,a)

1.2)

exists and is finite.

Remark 1.5. Taking into account the examples of kernels presented above, it is clear that
we will have different integral operators. To name just one cas&(if o) = 1 we will

have the classic Riemann integral. This operator has also been used in the study of Integral
Inequalities generalized see, for examplg,

Remark 1.6. Obviously a local operator like the Derivative 1.1, has no direct relationship
with the classic Fractional Derivatives (they are global operators), which if it has been
established, seR?2], the relationship between the integral operator of Definition 1.4 and
fractional integral operators of the Riemann-Liouville type.

The following result is a natural extension of the classical calculus (see [22] and [53]).
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Theorem 1.7. Leta € (0, 1] and ¢ a function N -differentiable on(ry, o). The following
properties are true{ > o):

a) If ¢ is differentiabley,. J2 (Ngo(7)) = (1) — ¢(70).
b) Ng (NFJ% (T)) = ¢(7).
An important and necessary property obtained in this work is the following result

Theorem 1.8. (Integration by parts) Let € (0, 1], andu, v N-differentiable functions on
(70, 00). For all 7 > 7, The following rule is satisfied:

NaJr, (ulNgv)(7)) = [uv(7) — wv(70)] =Ny J7, (WNgu)(7)) 1.3

The objective of this work is to investigate the oscillatory behavior of the solutions of
the following non linear generalized differential equation:

N [p(r)Ny(T)] + a(r)N"y(7) + r(7)2(y(7)) = R(7, y(7)), 1.4
under the following assumptions:
() p € C([r0, ), (0,0)),
1 q € C([ro,0),[0,00)),
(my r e C([r, ), R),
(V) 0 <a<l1, feC®R,R)suchthay®(y) > 0fory # 0, and
(V) R(r,y(r)) € C([ro,0)zR,R) satisfying ’?IET;())” < s(r), y # Owith s €
C([r0,00), (0, 00)).

We will call oscillatory any non-trivial solution of (1. 4) that has infinitely large zeros;
otherwise it is said to be non-oscillatory. If all the solutions of the equation (1. 4) are
oscillatory, then this is called oscillatory.

Models involving fractional equations and nonlinear systems play an essential role in
many applications, for example, population growth, diffusion, fluid mechanics, signal the-
ory, ..., in all these areas, as we noted before, the study of oscillating solutions, that is,
the existence of a certain periodic, quasi-periodic or variable but bounded “ work ” regime
is of vital importance in applications. It is noteworthy that, in general, they are centered
on equations with the classical “global” fractional derivatives and qualitative research is
almost non-existent, using local fractional derivatives (see [35, 36] for a tried in that direc-
tion, although in these works very different tools are used, a transformation that takes us
from the non-conformable fractional equations studied to ordinary differential equations).

In this paper we study equation (1. 4 ) using the Riccati Transformation and then formu-
late two general oscillation criteria of Kamenev type. For this purpose the study is divided
into two parts: in the first a particular case of equation (4) is studied and in the second one
the general equation itself is investigated.

2. MAIN RESULTS

For the well known Hill equation

— +r(n)y(r) =0, (2.5)
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Kamenev established a new oscillation criterion using an integral average method (cf.
[24]), which generalizes some previous results, specifically states that if

1 T _
lim sup—— / (r — o) ty(o)ds = +o0 (2. 6)
T—00 T T

0
for I > 2, then (2. 5) is oscillatory. Based on that seminal result, we will focus our
work.

2.1. A simple case.Instead of the (1. 4 ) consider the simplest case:

N [p(r)N“y(T)] + a(T)Ny(1) + r(7)y(1) = R(7,y(7)), 2.7)

subject to the conditions stated above (withy) = y), we have the following result.

We consider a certain continuous functidh: D = {(r,0) : 7 > ¢ > 70} — R satis-
fying M(r,7) = 0for 7 > 79, M(r,0) > 0for 7 > o > 79, with 2 continuos and non
positive function onDy = {(7,0) : 7 > o > 70 }. In addition, suppose there is a function
m : Dy — R continuous for which you have

O0H
—a—J(T, o) =m(r,o)\/M(1,0),

forall (7,0) € Dy.

Theorem 2.2, Taking M(1,0) and m(7,0) defined as before. The equati¢a 7)) is
oscillatory if the condition

lim sup

500 ]V[(71—, o) N {]\4(7'7 o)(q(t) —s(7)) — pSTU) (q(g)\/m — M(71,0)®(0, a)) } = o0,

p(o)
(2. 8)
hold.

Proof. Assume the contrary, that equation (2. 7) has a certain solytionwith a finite
number of zeros, that is, not oscillatory. From aboveype # 0 for 7 > t,. Consider
the functionw(r) = %, then it follows from (2. 7)), using the Chain Rule, the
assumptions IV and V above, the following Riccati Inequality

Nw+ — 4+ ——=w+ (g(7) = (7)) <0, 7>79.

Hence

NIo (M(7,0)(q(1) = 5(7)))(7) <

< — NJ%(M(T,O’)NQ’LU)(T)f NJ%(M(T,O’)

w? q(o)w

m)(ﬂ* NI (M(7,0)

Integrating by parts, rearranging and completing square we get
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NI (M(7,0)(q(7) = s(7)))(7) < M (7, 70)w(70) —

) lm p(0) (CI(U; VM(7,0) = m(7,0)9 (o, a>)] ()=

p(o) 2 \p(o

p(o) q(O ?
[4 <pa —m(1,0)®(0,a) 1 (7).
In this way
NJo (M(7,0)(q(T) — s())(7) +
+ ~nJn [f) (ZEZ; M(t1,0) —m(r,0)®(0o, a)) ] (r) <

S M(T, to)’LU(’To).
From here the proof of the theorem is easily obtained, We divid&/l§y, o) and take

the upper limit, whenr — oo on both members, as the right member is bounded, we get a
contradiction with the requirement (2. 8). O

Remark 2.3. Under the condition® (7, a) = Ey1(7'7%), = 77%, ¢ = 0, ®(y) = v,

and R = 0 equation(1. 4) comes down to the equation studied[4%]. In this case
Theorem 2.2 generalize the Theorem 10 givef8) p.3] In particular, Corollaries 12

and 13 remain valid. Of course, Theorem 14, Corollary 15, Theorem 16 and Corollary 17
can be proved in a similar way and more general results than these ones can be obtained.
It is an exercise that we leave to the reader.

Remark 2.4. With ! an integer such that > 2 and using the functiod/(r,0) = (7 —
)=, 7 > s > 19, the requirements of the Theorem are fulfiled wittr, o) = (1—1)(7 —
J)(l_?’)/2 forr > o > 7.

Remark 2.5. From (2. 7)) we can obtain a damped second-order ordinary differential
equation of the typel ( (1 )dy) +q(1)% + r(r)y(r) = R(r,y) if we use the kernel
®(7,a) = 1, so our results are consistent with those reported in the literature for this
equation.

If instead of usingV/ (7, o) as above, we directly considér — o)?c® with a € (1, 00)
andb € [0, 1) we can state the following result.

Theorem 2.6. The equatior{2. 7 )will be oscillatory, assuming that the conditions

TILH;O sujvi N (T — 0)ob(q(o) — 5(0)) (1) = o0, (2.9
TILH;O supi NI {K(r,0)*(1 —0)* 20" ?}(1) < o0, (2. 10)

are fulfiled withK (r,0) = [%(T —0)s+ ac®(o,a) — b(t — 0)P(o, a)} .
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Proof. Proceeding as in the previous proof, after defining w in the same way, integrating
and rearranging terms is obtained

NIo (T = 0)0"(q(0) = 5(0))(7) < (¢ — 70)"Tyw(m0) —

2
o a/2_p/2_ W p(o) a2 b2 -
- NJTO{(T—U) o’ o) + oy K(ro)(r—o) T o } (1)

+ N5 {p(j)K(T, o) (r — J)“QabQ}(T).

Dividing by 7* and taken upper limit the Theorem is obtained without difficulty.

Remark 2.7. In the cased(r, o) = 1, the previous Theorem becomes the Theore®ildf
in particular Corollary 1 of this work is still valid. So we can state the following Kamenev
generalized criteria.

Corollary 2.8. Suppose for some € (1,00) andb € [0,1), (2. 9)is satisfied. Then the
equation(2. 7 )is oscillatory.

2.9. A general case.Now consider the most general case, that is, the equation (1. 4 ), with
g a function that can be negative for arbitrarily large values.ofThus we can state our
criterion of oscillation:

Theorem 2.10. Under the conditionp € C([19, >0), (0,00)), ¢ € C([r0,0),R), r €
C([10,0),R),0 < a <1, f € C(R,R) such thaty®(y) > 0 fory # 0 and R(r,y(7)) €
C([70, 00)aR, R) satisfying St < s(7), y # 0 with 5 € C([ro, ), (0, 00)). If, in
addition, there is a function(7) > 0, withv(7) € C[r, 00), and a constant € (0, ),
then the equatio. 7 Ywill be oscillatory if the following conditions are satisfied:

i sup e 7% |(7 = 0)"(a(0) — slo))u(o) - {MK( o) = o

T—00 TA
2. 11)

with K(1,0) = [(T - J)%U(O’) + av(o)®(o, ) + (1 — O')N%U(O‘)} .

Proof. As in the proof of Theorem 2.2, lgi(7) be a solution with a finite number of zeros,
that is, a not oscillatory solution of the equation (1. 4). Then we cangéke # 0 for

T > 79. Let’s define the function w as follows (1) = %. Then from (1. 4) we
have
N“w+w—2NC‘f+@w+(q(T) —5(7)) <0, t>t
p(r) " () T

Multiplying the above inequality byr — o)%v(7) integrate taking into account the
Theorem 2.10 we have
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(r—0)**p(o)

w3 (7= 0 ale) = stonto) - { T B D o ||

< (7 —710)"v(m0)w(70) —

- o ﬁT—oa/Q v(o) | w (T_Oy%z”p(U) T, 0 27’
NJTD{< p(g)( ) ()) + NG K(r, )}()-

forall - > o > 79. So, we have

w3 (= arutenio) - { T B ko f ) <

< (17— 70)"v(10)w(70).
forall 7 > o > 7. Divide the above inequality by, we will obtain a contradiction

with (2. 11) if we maker — oo and take an upper limit. In this way, we complete the
proof. d

Remark 2.11. As we said above, if we use the kerfgl, o) = 1, our equation(1. 4)

is reduced to an ordinary differential equation of second order of the ﬁ/p(@(ﬂ%) +

q(r)% +r(m)®(y(7)) = R(7,y), therefore, the results obtained are consistent with those
reported, for ordinary differential equations, in the literature.

3. CONCLUSIONS

In this paper various Kamenev type oscillatory results are obtained for a Generalized
Differential Equation, which in the particular case turns to the classic Ordinary Differential
Equations. Throughout the work the strength and extent of the obtained results, which
generalize many of those reported in the literature is shown.
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