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Abstract. MHD flow equations are non-linear partial differential equations. In this essay,we
have considered the flow of an incompressible fluid through a porous medium and have em-
ployed a strategy based on the traveling wave solution. By utilizing wave parameters, the
non-linear equations are transformed into ordinary differential equations. In this approach,
all the fluid parameters, initially functions of (x, y, t), are now represented by a single vari-
able ‘z’ through the transformation z = bx + ay + ct. Finally, expressions for the pressure
function, magnetic field, vorticity, velocity components, and other parameters are derived
for two different cases, and comparisons are drawn with previously known results.
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1. INTRODUCTION

Finding an exact solution to the partial differential equations of fluid d ynamics i s c rucial i n nonlinear 
physics [21]. Exact solutions are not only important as solutions for fundamental flows, but they also serve 
as accuracy checks for exponential, numerical, and asymmetric methods. The numerous applications of non-
Newtonian fluids in industrial processes such as nuclear reactors, blood flow, food processing, exotic lubricant 
suspension solutions, etc., make understanding their behavior [18], [2] significantly i mportant. Due to their 
nonlinear nature, the Navier-Stokes equations are extremely challenging to solve. Only a small number 
of researchers have been able to transform these nonlinear equations into ordinary differential equations 
using various well-known approaches, including similarity transformation [28],hodograph transformation 
[27],magnetograph transformation [12],traveling wave solution [15], lapalce transform [4] and the Martine’s 
method [6]. In order to verify numerical solutions and aid in the stability analysis of solutions, it is crucial 
to find the exact solution, if one exists, for these nonlinear equations. Higher-order equations of motion exist 
in non-Newtonian second-order fluids than in the Navier-Stokes equations [ 30]. The second-grade fluid has 
already been investigated and is still being studied by researchers worldwide. Various techniques have been 
employed to solve the second-grade fluid, including the inverse method [17], by assuming certain conditions 
on the stream function [5], perturbation method [7],the Lie group approach [31] and others.
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One of the key methods for addressing the issue is the inverse technique [22]. However, despite this, the
results are not general answers to the original equations because they were reached by assuming a particular
shape for the vorticity or stream function. The perturbation approach is a well-known method in science
and engineering that aids in our understanding of numerous non-linear issues. However, the Lie group tech-
nique [8] requires extremely time-consuming calculations, and algebraic programming frameworks find it
challenging to incorporate arbitrary functions when they appear in Lie algebra.

One of the crucial method in addressing non-linear issues is the traveling wave solution approach [11].
Many fields, including plasma physics, mathematical biology, chemical kinetics, fiber optics, etc., use trav-
eling waves. Specific example of findings that Khan et al. [16] achieved after studying micro-polar fluid and
using the traveling wave technique to solve the issue is provided by Shahzad et al. [26]. J. E. Dunn and R. L.
Fosdick [9] as well as Kashif Ali Abro [1],J. E. Dunn and K. R. Rajagopal [10] conducted a thermodynamic
analysis of second-grade fluid. They utilized the concept of extremum of stored energy to identify restrictions
on the response function for stress and stored energy in incompressible fluids of differential type. In recent
years, a number of other researchers, including M. Aldhabani [3], have used the traveling wave method to de-
termine precise solutions to the equations governing the motion of MHD and the flow of heat through porous
media.

Umer Rehman et al. [24] described a mathematical formulation on the coating of a thin film for a com-
pressible isothermal MHD viscous-plastic fluid flowing across a narrow gap between two rotating rolls. They
obtained a relation that explains the relationship between MHD wave and instability through analytical cal-
culations. Saeed Ur Rehman and Jose Luis Diaz Palecia [23] modeled fluid flow with a p-Laplacian operator.
They provided an analytical assessment of weak solution together with a numerical validation analysis for a
1-D fluid in MHD flowing in porous media.

In another research, Jose Luis Diaz Palecia et al. [19] conducted a study to provide an analysis of the
solution to a 1-D Eyring-Powell fluid in MHD with general initial conditions.Mohammad Ishaq et al. [13]
investigated two dimensional nanofluid film flow of Eyring Powell Fluid with variable heat transmission in
the existence of uniform magnetic field (MHD) on an unsteady porous stretching sheet. They studied The
influence of the unsteady parameter (A) over thin film analytically for different values. Extending this work,
again, Jose Luis Diaz Palecia et al. [20] applied the traveling wave solution to a fluid flowing in porous media
with non-linear diffusion, in which the viscosity term is formulated with an Eyring-Powell law, together with
non-homogeneous diffusion. Recently, Najeeb et al. [15] applied the traveling wave solution method and
studied heat transfer in a second-grade incompressible fluid with aligned flow, by converting the non-linear
partial differential equation into a solvable ordinary differential equation.

For the present paper, the adopted method is as follows. In Section 4, we present the governing equations
of the problem. In Section 5, the traveling wave solution is introduced, and the coupled partial differential
equation is converted into an ordinary partial differential equation. In Section 6, solutions for the various
fluid variables are obtained under two conditions by solving the derived differential equation.

2. NOMENCLATURE

f⃗ = Body force per unit stress,
µ =Constant viscosity,
ρ =Density,
σ = Electrical conductivity,
H⃗ = Magnetic field intensity,
H1 and H2 = Magnetic field components,
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µ∗ =Magnetic permeability,
P =Pressure,
ϕ∗ = Porosity,
k = Permeability of the medium,
α1 and α2 the constant normal stress moduli,
A⃗1 and A⃗2 the 1st two Rivlin-Ericson tensor
V⃗ = Velocity vector,
u and v = Velocity components.

3. FLOW DEVELOPMENT

The fundamental equations that control the aligned motion of an unsteady, plane, incompressible, electri-
cally conducting second-grade fluid through porous media, when a magnetic field is present, are as follows
[25]:

∂ρ

∂t
+ div

(
ρV⃗
)
= 0, (3. 1)

ρ

[
∂V⃗

∂t
+
(
V⃗ · ∇⃗

)
V⃗

]
= ∇⃗ ·

(
A⃗
)
+ ρf⃗ + µ∗

(
curlH⃗

)
× H⃗ − ϕ∗

k

(
µ+ α1

∂

∂t

)
V⃗ , (3. 2)

∂H

∂t
= curl

(
V⃗ × H⃗

)
− 1

µ∗σ

(
curlH⃗

)
× H⃗, (3. 3)

divH⃗ = 0. (3. 4)
The stress constitutive equation is, [29]

A⃗ = −PI + µA⃗1 + α1A⃗2 + α2A⃗
2
1, (3. 5)

where,

A⃗1 =
(
∇⃗V⃗

)
+
(
∇⃗V⃗

)T
, (3. 6)

A⃗2 =
∂A⃗1

∂t
+
(
∇⃗A⃗1

)
V⃗ +

(
∇⃗V⃗

)T
+ A⃗1

(
∇⃗V⃗

)
. (3. 7)

Dunn and Fosdick [26] discovered that the material constant must satisfy µ ≥ 0, α1 ≥ 0, α1 + α2 = 0.
, in order for the second grade fluid to be compatible with thermodynamics and to meet the requirement that
its Helmholtz free energy be a minimum. According to Fosdick and Rajugopal [9], the second-grade fluid
exhibits anamolous behaviour for α1 ≤ 0. Hence, it is reasonable to suppose µ ≥ 0 and α1 ≥ 0.

Here we shall consider the two dimensional MHD flow in which the body force is minimal or negligible.
So we must have V⃗ = uî+ vĵ, [where u = u(x, y, t) and v = v(x, y, t)] ,

H⃗ = H1î+H2ĵ, [whereH1 = H1 (x, y, t) and H2 = H2 (x, y, t)] , f⃗ = 0 and P = P (x, y, t).

In view of the above, system of equations governing the flow is replaced by

∂u

∂x
+

∂v

∂y
= 0, (3. 8)
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

−∂P

ρ ∂x
+ υ

(
∂2u

∂x2
+

∂2u

∂y2

)
+ α



∂3u

∂t∂2x
+

∂3u

∂t∂2y
+ u

∂3u

∂3x
+ 13

∂u

∂x

∂2u

∂2x
+

v
∂3u

∂y∂2x
+ 4

∂v

∂x

∂2v

∂2x
+ 2

∂v

∂x

∂2u

∂y∂x
+ 3

∂2v

∂2x

∂u

∂y

+ 4
∂3u

∂2y∂x
+ 3

∂u

∂y

∂2u

∂y∂x
+ v

∂3u

∂3y
+

∂u

∂x

∂2u

∂2y


+

β(8
∂u

∂x

∂2u

∂x2
+2

∂v

∂x

∂2v

∂x2
+2

∂u

∂y

∂2u

∂y∂x
+2

∂2v

∂x2

∂u

∂y
+2

∂v

∂x

∂u

∂y∂x
)−ηH2

(
∂H2

∂x
− ∂H1

∂y

)
−ϕ∗

kρ

(
µ+ α1

∂

∂t

)
u,

(3. 9)

∂v

∂t
+ u

∂v

∂x
+ v

∂u

∂y
=

−∂P

ρ ∂y
+ υ

(
∂2v

∂x2
+

∂2v

∂y2

)
+α



∂3v

∂t∂2x
+

∂3v

∂t∂2y
+ u

∂3v

∂3x
− ∂u

∂x

∂2v

∂2x
− 4

∂3u

∂y∂2x

+ 13
∂u

∂x

∂2u

∂y∂x
− v

∂3u

∂3x
− 3

∂2u

∂x2

∂v

∂x
+ 3

∂v

∂x

∂2v

∂y2

− v
∂3u

∂2y∂x
− 2

∂2u

∂x2

∂u

∂y
+ 4

∂u

∂y

∂2u

∂y2


+

β(8
∂u

∂x

∂2u

∂x2
−2

∂v

∂x

∂2u

∂x2
+2

∂u

∂y

∂2v

∂y2
+2

∂v

∂x

∂2u

∂y2
−2

∂2u

∂x2

∂u

∂y
)−ηH1

(
∂H2

∂x
− ∂H1

∂y

)
− ϕ∗

kρ

(
µ+ α1

∂

∂t

)
v,

(3. 10)

∂2H2

∂t∂x
− ∂2H1

∂t∂y
=

1

µ∗σ

[
∂3H2

∂x3
+

∂3H2

∂2y∂x
− ∂3H1

∂2x∂y
− ∂3H1

∂y3

]
+ v

∂2H1

∂x2
+

∂2v

∂x2
H1 +

∂2v

∂y2
H1−

v
∂2H1

∂y2
− u

∂2H2

∂x2
− ∂2u

∂x2
H2 − u

∂2H2

∂y2
− ∂2u

∂y2
H2,

(3. 11)

∂H1

∂x
+

∂H2

∂y
= 0, (3. 12)

where,

υ =
µ

ρ
, η =

µ∗

ρ
, α =

α1

ρ
, β =

α2

ρ
, ϕ =

ϕ∗

k
. (3. 13)

4. SUMMARY OF THE METHOD

The approach being considered can be summarised up as follows:
Regarding the specified coupled partial differential equation system

C

(
∂u

∂x
,
∂v

∂y

)
= 0, (4. 14)

L1

(
u, v,

∂P

∂x
,
∂u

∂t
,
∂u

∂x
,
∂u

∂y
,
∂2u

∂2x
.......

∂v

∂t
,
∂v

∂x
,
∂v

∂y
,
∂2v

∂x2
, .......H1,

∂H1

∂y
,
∂H2

∂x

)
= 0, (4. 15)
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L2

(
u, v,

∂P

∂y
,
∂u

∂t
,
∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
.......

∂v

∂t
,
∂v

∂x
,
∂v

∂y
,
∂2v

∂x2
, .......H1,

∂H1

∂y
,
∂H2

∂x

)
= 0, (4. 16)

D

(
u, v,

∂2u

∂x2
,
∂2u

∂y2
, .........

∂2v

∂x2
,
∂2v

∂y2
, .........H1, H2.........

∂H1

∂x
, ........

∂H2

∂x
, .......

)
= 0, (4. 17)

S

(
∂H1

∂x
,
∂H2

∂y

)
= 0, (4. 18)

We seek the following travelling wave solution,

u (x, y, t) = u (z) , v (x, y, t) = v (z) , P (x, y, t) = P (z) , H1 (x, y, t) = L (z) , H2 (x, y, t) = J (z) ,
(4. 19)

where, z = a1x+ a2y + a3t, then system (4.14) - (4.18) can be reduced to a system of ordinary differential
equation

C

(
∂u

∂z
,
∂v

∂z

)
= 0, (4. 20)

L1

(
u, v,

∂P

∂z
,
∂u

∂z
,
∂2u

∂z2
,
∂3u

∂z3
, .........

∂v

∂z
,
∂2v

∂z2
,
∂3v

∂z3
......L,

∂L

∂z
.........

∂J

∂z

)
= 0, (4. 21)

L2

(
u, v,

∂P

∂z
,
∂u

∂z
,
∂2u

∂z2
,
∂3u

∂z3
, .........

∂v

∂z
,
∂2v

∂z2
,
∂3v

∂z3
......L,

∂L

∂z
.........

∂J

∂z

)
= 0, (4. 22)

D =

(
u, v,

∂2u

∂z2
,
∂2v

∂z2
, L, J,

∂L

∂z
, .......

∂J

∂z

)
= 0, (4. 23)

S

(
∂L

∂z
,

∂J

∂z

)
= 0, (4. 24)

Where a1, a2, a3 are constants. We use the equation of continuity (4.20) to remove P from equations (4.21)
and (4.22) in order to determine the solution of the system of ordinary differential equations. The resultant
equation is simple to integrate for the variables u and v. The values of u and v can be used to calculate the
other variable.

5. SOLUTION

On substituting the representation of the solution into (3.9)-(3.13), we get

a1
∂u

∂z
+ a2

∂v

∂z
= 0, (5. 25)
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(a3 + a1u+ a2v)
∂u

∂z
=

−a1
ρ

∂P

∂z
+ν
(
a2

2 + a1
2
) ∂2u

∂z2
+α



a3
(
a2

2 + a1
2
) ∂3u

∂z3
+ a1

3u
∂3u

∂z3
+ 13a1

3 ∂u

∂z

∂2u

∂z2
+

a2a1
2v

∂2u

∂z2
+ 4a1

3 ∂v

∂z

∂2v

∂z2
+ 2a2a1

2 ∂v

∂z

∂2u

∂z2
+

3a2a1
2 ∂

2v

∂z2
∂u

∂z
+ a2

2a1u
∂2u

∂z2
+ a2

3v
∂2u

∂z2
+

4a2
2a1

∂u

∂z

∂2u

∂z2


+ β

[
8a1

3 ∂u

∂z

∂2u

∂z2
+ 2a1

3 ∂v

∂z

∂2v

∂z2
+ 2a2

2a1
∂u

∂z

∂2u

∂z2
+ 2a2a1

2 ∂u

∂z

∂2v

∂z2
+ 2a1

2 ∂v

∂z

∂2u

∂z2

]
− ηJ

(
a1

∂J

∂z
− a2

∂L

∂z

)
− ϕvu− ϕαa3

∂u

∂z
,

(5. 26)

(a3 + a1u+ a2v)
∂v

∂z
=

−a1
ρ

∂P

∂z
+ν
(
a2

2 + a1
2
) ∂2v

∂z2
+α



a3
(
a2

2 + a1
2
) ∂3u

∂z3
+ a1

3u
∂3v

∂z3
− a1

3 ∂u

∂z

∂2v

∂z2
−

a2a1
2u

∂2u

∂z2
+ 11a1

3 ∂u

∂z

∂2v

∂z2
− a1

3v
∂2u

∂z2
−

3a1
3 ∂

2u

∂z2
∂v

∂z
+ 3a2

2a1
∂2u

∂z2
∂v

∂z
− a2

3a1v
∂2u

∂z2
+

4a2
2 ∂u

∂z

∂2u

∂z2



+ β

[
8a2a1

3 ∂u

∂z

∂2u

∂z2
− 2a1

3 ∂v

∂z

∂2u

∂z2
+ 2a2

2a1
∂u

∂z

∂2u

∂z2
+ 4a2a1

∂v

∂z

∂2u

∂z2
− 2a2a1

2 ∂u

∂z

∂2u

∂z2

]
− ηJ

(
a1

∂J

∂z
− a2

∂L

∂z

)
− ϕυv − ϕαa3

∂v

∂z
,

(5. 27)

a3

(
a1

∂2J

∂z2
− a2

∂2L

∂z2

)
=
(
a2

2 + a1
2
) [ 1

µ∗σ

(
a1

∂J

∂z
− a2

∂2L

∂z2

)
+ v

∂2L

∂z2
+ L

∂2v

∂z2
− u

∂2J

∂z2
− J

∂2u

∂z2

]
,

(5. 28)

a1
∂L

∂z
+ a2

∂J

∂z
= 0, (5. 29)

On Integrating the equation (5.25) and (5.29), we get

a1u+ a2v = m1, (5. 30)

a1L+ a2J = m2. (5. 31)

From equation (5.26) and (5.27), eliminating pressure and making use of equation (5.30) and (5.31), we get
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α
(
a2

2 + a1
2
)
(a3 +m1)

∂3u

∂z3
+ υ

(
a2

2 + a1
2
) ∂2u

∂z2
− (a3 +m1)

∂u

∂z
− ϕυ

(
a2

2 + a1
2
) u

a2
+ ϕυ

a1m1

a2

− ϕαa3
a2

(
a2

2 + a1
2
) ∂u
∂z

= 0.

(5. 32)
Now there are two possible cases

Case I, a3 = −m1, Case II, a3 ̸= −m1

Let’s discuss the two cases one by one

Case I, a3 = −m1, In this case equation (32) becomes,

∂2u

∂z2
− ϕαa3

a2υ

∂u

∂z
− ϕ

a
u =

ϕa1m1

a2 (a22 + a12)
, (5. 33)

whose solution is given as

u = m3e
k1z +m4e

k2z − a1m1

(a22 + a12)
, (5. 34)

here,

k1 =
A+

√
A2 + 4B2

2
, k2 =

A−
√
A2 + 4B2

2
, A =

ϕαa3
a2v

, B =
ϕ

a2
.

And, v = m1

a2
− a1

a2
u,

v =
m1

a2
− a1

a2

[
m3e

k1z +m4e
k2z − a1m1

a22 + a12

]
. (5. 35)

Substituting equation (5.34) and (5.29) in equation (5.28), we get

∂3L

∂z3
= 0, (5. 36)

which on integration gives
L = m5z

2 +m6z +m7. (5. 37)

Using equation (5.37) in equation (5.31), we get

J = −a1
a2

[
m5z

2 +m6z +m7

]
. (5. 38)

The pressure function for this case is,

P = m8

(
m3k1e

k1z +m4e
k2z
)
+m9

(
m3k

2
1e

k1z +m4k
2
2e

k2z
)
−m10e

2k1z −m11e
(k1+k2)z −m12e

2k2z−

m14

(
m5z

2 +m6z +m7

)2−ϕυ

(
m3e

k1z

k1
+

m4

k2
ek2z

)
−ϕαm1

(
m3e

k1z +m4e
k2z
)
− a1m1

a22 + a12
z−m15

(5. 39)
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where,

m8 =
ρ

b

(
υ
(
a2

2 + a1
2
)
a2

2m1 +
a2

2a1
2

a22 + a12
m1

)
, m9 =

ρ

a1
βm1a2

2, m10 =
ρ

a2
β


2a1

5

a22
+ 2a2

2a1+

2a1
3 +

2a1
3

a2

 m2
3k1
2

m11 =
βρm3m4k1k2

a1

[(
2a1

5

a22
+ 2a2

2a1 + 2a1
3 +

2a1
3

a2

)]
, m12 =

βm2
4k

2
2

2a1
, m14 =

ηρ

2a22
(
a2

2 + a1
2
)

m15 = ρ
a2

(
ϕαm2

1a1

a2
2+a1

2

)
.

Also,

H1(z) = m5z
2 +m6z +m7, (5. 40)

H2 (z) =
−a1
a2

(
m5z

2 +m6z + 7
)
. (5. 41)

Case II, a3 ̸= −m1

Then equation (5.32) takes the form

Eu′′′ + Fu′′ −Gu′ −Nu = −Q, (5. 42)

where, E=α
(
a2

2 + a1
2
)
(a3 +m1) , F = υ

(
a2

2 + a1
2
)
, G =

[
a3 +m1 +

ϕαa3

a2

(
a2

2 + a1
2
)]

N = ϕυ
a2

(
a2

2 + a1
2
)
, Q = ϕva1m1

a2
.

Solution of this equation (5.42) is,

u = m16e
(α∗−β∗)z +m17e

(α∗W 2−β∗W)z +m18e
(α∗W−β∗W 2)z − Q

N
(5. 43)

where, α∗ = −F 2

9E2β∗− G
3β∗F , β∗ =

[(
F 3

9E3 + G
6E + N

2E

)
+

√(
F 2

9E2 − 2F 2

9E2 − G
3F

)3
+
(

F 3

18E2 + G
6E + N

2E

)2] 1
3

,

and,W = −1
2 + i

√
3
2 , m16, m17 and m18 are constant.

Also,

v =
m1

a2
− a1

a2

[
m16e

(α∗−β∗)z +m17e
(α∗W 2−β∗W)z +m18e

(α∗W−β∗W 2)z − Q

N

]
. (5. 44)

Substituting equation (5.43), (5.44) and (5.29) in equation (5.28), we get

∂3L

∂z3
+m19

∂2L

∂z2
= 0, (5. 45)
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where,

m19 = µ∗σa2

((
a2

2 + a1
2
)

m1

a2
− Q

N + a3

a2

(
a2

2 + a1
2
)

(a22 + a12)
2

)

which gives the solution,

L = m20e
m19z +m21z +m22. (5. 46)

And using (5.46) in (5.31), we get

J = −a1
a2

(m20e
m19z +m21z +m22) , (5. 47)

where, m20,m21, and m22 are constants.

The pressure function for this case is

P = m23e
(α∗−β∗)z +m24e

(α∗W 2−β∗W)z +m25e
(α∗W−β∗W 2)z

+m26e
2(α∗−β∗)zm27e

2(α∗W 2−β∗W)z +m28e
2(α∗W−β∗W 2)z+

m29e
(α∗−β∗+α∗W 2−β∗W)z +m30e

(α∗−β∗+α∗W−β∗W2)z
+

m31e
(α∗W−β∗W2+α∗W2−β∗W)z

−m32[m20e
m19z +m21z +m22]

2 −m33z

, (5. 48)

here,

m23 =
ρ

a1

[
υ
(
a2

2 + a1
2
)
− βm1a2

2m16 (α
∗ − β∗)−

β
(
a3
(
a2

2 + a1
2
)
+ a1

2m1

)
m17

(
α∗W 2 − β∗W

)2
]
+

ϕυm17

α∗ − β∗ − ϕαa3m16

,

m24 =
ρ

a1

[
υ
(
a2

2 + a1
2
)
− βm1a2

2m17

(
α∗W 2 − β∗W

)
−

β
(
a3
(
a2

2 + a1
2
)
+ a1

2m1

)
m17

(
α∗W 2 − β∗W

)2
]
+

ϕυm17

(α∗W − β∗W 2)
− ϕαa3m17

,

m25 =
ρ

a1

[
υ
(
a2

2 + a1
2
)
− βm1a2

2m18

(
α∗W − β∗W 2

)
−

β
(
a3
(
a2

2 + a1
2
)
+ a1

2m1

)
m18

(
α∗W 2 − β∗W 2

)2
]
+

ϕυm18

(α∗W − β∗W 2)
− ϕαa3m18

,

m26 =
−βρ

a1

[
2a1

5

a22
+ 2a2

2a1 + 2a1
3 +

2a1
3

a2

]
m2

16(α
∗ − β∗)

2

2
,

m27 =
−βρ

a1

[
2a1

5

a22
+ 2a2

2a1 + 2a1
3 +

2a1
3

a2

]
m2

17

(
α∗W 2 − β∗W

)2
2

,
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m28 =
−βρ

a1

[
2a1

5

a22
+ 2a2

2a1 + 2a1
3 +

2a1
3

a2

]
m2

18

(
α∗W − β∗W 2

)2
2

,

m29 =
−βρ

a1

[
2a1

5

a22
+ 2a2

2a1 + 2a1
3 +

2a1
3

a2

]
m16m17 (α

∗ − β∗)
(
α∗W 2 − β∗W

)2
(α∗ − β∗ + a∗W 2 − β∗W )

+
m16m17(α

∗ − β∗)
2(
α∗W 2 − β∗W

)2
(α∗ − β∗ + α∗W 2 − β∗W )

m30 =
−βρ

a1

[
2a1

5

a22
+ 2a2

2a1 + 2a1
3 +

2a1
3

a2

]
m16m18 (α

∗ − β∗)
(
α∗W − β∗W 2

)2
(α∗ − β∗ + α∗W − β∗W 2)

+
m16m18(α

∗ − β∗)
2(
α∗W − β∗W 2

)2
(α∗ − β∗ + α∗W − β∗W 2)

m31 =
ρ

a1

[
2a1

5

a22
+ 2a2

2a1 + 2a1
3 +

2a1
3

a2

]
m17m18

(
α∗W 2 − β∗W

) (
α∗W − β∗W 2

)
(a∗W 2 − β∗W + α∗W − β∗W 2)

,

m32 =
ρ

a1

[
ηa1
a22

(
a2

2 + a1
2
)]

, m33 =
ϕQvρ

Na1

and,

H1 (z) = m20e
m19z +m21z +m22, (5. 49)

H2 (z) = −a1
a2

(m20e
m19z +m21z +m22) . (5. 50)

6. RESULT AND DISCUSSION

In the present work, the method of obtaining traveling wave solutions has been employed for the second-
grade fluid flow through porous media, leading to the determination of exact solutions for the variables of
interest. By transforming the variables (x, y, t) into a single variable, z, we simplified the coupled partial
differential equations into a much simpler linear differential equation. This simplified form facilitates easy
integration to find the solution. Through the elimination of pressure from equations (5.26) and (5.27) and
the utilization of equations (5.30) and (5.31), a second and third-order linear differential equation in u was
obtained. Subsequently, two possible cases arose for the variable c. By separately considering these two
cases, Case I, C = −m1, Case II, C ̸= −m1, we were able to find the desired solutions with ease.
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7. CONCLUSION

The purpose of this study was to determine the exact solutions of second-grade fluids flowing through
porous media with electrically conducting, incompressible MHD oriented flow. To linearize the partial dif-
ferential equation,for this, we employed the travelling wave solution method. The approach was implemented
in a straightforward manner without imposing restrictive assumptions or convoluted calculations.It has been
noted that the answer C = −m1, includes both exponential and polynomial terms. But that for C ̸= −m1,
the solution is of the exponential kind. By inserting ϕ = ϕ∗

ρ = 0, we obtain the same solution as Najeeb et
al. [14]. We can verify this as follows:

For non-porous media, ϕ∗ = 0.

Putting this in equation (5.32), we get,
α
(
a2 + b2

)
(C +m1)u

′′′ + υ
(
a2 + b2

)
u′′ − (C +m1)u

′ = 0,

which gives the result,
u′′ = 0 , for C = −m1 ( case-I), and

Eu′′′ + Fu′′ −Gu′ = 0, for C ≠ −m1, ( case-II)

which is the same as obtained by Najeeb et al. [14].
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