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Abstract. In this article, we present the generalizedρ dependent poly-
nomials for the calculations of eccentricity, distance, total distance, and
degree-based topological indices of the identity graph ofZρ. This is
a thorough work in which we present many topological indices and co-
indices asρ dependent polynomials. The polynomials presented here can
play a key role in the further development of the theory of topological
indies for commutative rings. This paper presents a brand new approach
to generalizing the topological indices because instead of the traditional
way. A set-theoretic method is introduced here that can be very helpful
and game-changing in the field of algebraic graph theory first of all sets
of vertices for the identity graph of the commutative ringZρ are parti-
tioned into various sets, which makes it easier to generalize the degrees,
distances, and eccentricities of this graph. This paper presents various re-
sults that make it easier to generalize the topological indices of the identity
graph ofZρ.
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1. INTRODUCTION

The history of algebra dates back to ancient times, with the oldest surviving example
being an Egyptian papyrus from around 1500 BCE, which explains how to calculate vol-
umes using chords and arc length. The term ”algebra” was first recorded around 1000 BC,
and it comes from the title of the book written by Abu Ja’far Muhammad Ibn Musa al-
Khwarizmi called ”Kitab al-jabr wa’l muqabala”, which was later translated into different
European languages under various titles, including Liber abaci, Algebra, and others.

Ring theory is a mathematical branch that studies rings, and it was first mentioned by the
Italian mathematician, Gerolamo Cardano in 1391, who proposed a method for reducing
fractions. Although it was an interesting development in mathematics, ring theory didn’t
receive much attention as an independent topic until around 2000 AD.

Modern algebra’s foundational idea of rings has its roots in the late 19th-century efforts
to demonstrate Fermat’s final theorem. Ring research was started by Richard Dedekind,
and the word ’ring’ was first used by David Hilbert [58]. Rings are two-bit binary alge-
braic systems that have strong ties to groups, particularly Abelian groups [36]. Algebraic
number theory and algebraic geometry depend heavily on commutative rings, whereas non-
commutative geometry and quantum groups use non-commutative rings [4]. The investiga-
tion of unique rings, such as rings of power series, rings of polynomials, and Boolean rings,
as well as the creation of numerous theorems, like Wedderburn’s theorem on finite division
rings, have all resulted from the study of rings [15]. The development of modern algebra
has been aided by the history of ring theory, which has applications in many branches of
physics and mathematics [28].

Topological indices were initially developed in the field of chemistry to understand the
representations of various chemical structures, but they have now expanded beyond just
chemical graph theory. For instance Bielak and Broniszewska [14] presented the lower
bounds of the eccentric distance sum index of connected graph and cacti, while [42] calcu-
lated the same index for the bridge graph. Additionally, [18] computed the same index for
the thorn graph into polynomial form. Studies on the topological indices of tree graphs are
also available. [49] conducted a study on the first Zagreb index of the tree graph, calculat-
ing the upper bounds of the first Zagreb index of the tree graph, while [26] works on the
eccentric distance sum of a tree. The eccentric distance sum index and eccentric connectiv-
ity index of unicyclic graphs are calculated in [59] and [43], respectively. Moreover, [38],
[20], [35], and [60] presented topological indices of bipartite graphs, composite graphs,
windmill graphs, and Sierpinski graphs. The topological indices of some graph operations
can also be calculated, and a study is done on this in [23].

Graphs are the best tools to understand any type of relationship between the elements
of a set. Algebraic graph theory enables us to better visualize the elements of groups or
rings. Different algebraic structures are used to develop new graphs such as commuting
graph of quaternion and dihedral groups [53] and the non-commuting graphs of quaternion
and dihedral groups are discussed in [50]. In [34], the different groups and subgroups
are presented as graphs with examples, with many useful results presented especially for
the identity graph of groups. [22] discussed the conjugate graph of the group, while [10]
studied the subgroup graph of groups. [41], [52], [6], [7], [31], and [30] conducted studies
on the non-commuting graph of quasi-dihedral groups, dihedral groups, and other finite



Generalizedρ-dependent polynomials of topological indices of the identity graph for the ringZρ 399

groups, in general. Beside that [1] and [2] calculated the topological indices of the subgroup
graph of the symmetric group and dihedral groups.

Although a lot of work has been done on the graph of groups, not much research has
been conducted on graphs of rings. In [3], the eccentric connectivity index of a finite
commutative ring is discussed. Topological co-indices are not widely researched; thus, this
article presents topological co-indices along with the topological indices of the identity
graph of the ringZρ whereρ is any prime number. Set theory is used to simplify the
topological indices of the identity graph ofZρ into Zρ-dependent polynomials. As for
larger prime numbers, the identity graphs ofZρ become very large, and traditional methods
for calculating topological indices become complicated. However, using the polynomials
presented in this article, topological indices for the identity graph ofZρ for very large
values ofZρ can be calculated easily.

This article discusses the eccentric connectivity index of a finite commutative ring, along
with topological co-indices and indices of the identity graph ofZρ using set theory to
simplify the expressions intoZρ-dependent polynomials. This method is useful for larger
prime numbers where traditional methods become too complicated. While much work has
been done on the graph of groups, not much work has been done on graphs of rings, making
this article a valuable contribution to the field.

Additionally, the proposed method can be extended to other types of rings and graphs,
providing a new approach to the study of topological indices in algebraic structures. This
can open up new avenues for research in this field and potentially lead to new applications
in other areas such as computer science and physics.

The study of topological indices in algebraic structures such as rings and groups is a rich
and growing field with many potential applications. The development of new techniques
and methods for calculating these indices, as well as the exploration of new types of rings
and graphs, will continue to expand our understanding of the connections between algebra
and graph theory.

Exploring the physical and structural aspects of graphs, [33] employs topological in-
dices and diverse graph operations on simple connected graphs, revealing insights into the
hyper-Zagreb coindex of derived graphs. Delving into graph labeling, [44] demonstrates
C3-supermagic labeling for triangular book-snake graphs and extends findings to establish
Cm-supermagicness for polygonal book-snake graphs. Complementing the exploration of
book-snake graphs, [13] establishes C3-supermagic labeling and extends this analysis to
confer Cm-supermagicness upon polygonal book-snake graphs. Addressing degree-based
topological indices, [5] formulates indices for grape seed Proanthocyanidin networks, of-
fering a nuanced understanding of their structural characteristics.

2. DEFINITIONS.

In this section, we present some definitions that are crucial for the further development
of this article. The identity graph of the ringZρ as defined in [32] is denoted byId(Zρ)
is defined as the graph with vertex set equals to the set of units inZρ and two different
verticesσ and ς are adjacent ifσς = 1 and every vertex ofId(Zρ) is adjacent to the
multiplicative identity ofZρ. Id(Z5),Id(Z7) andId(Z13) are given in the Figure 1 and
Figure 2. the size of Id(Zρ) is defined as the number of edges inId(Zρ) and is denoted by
ψ(Id(Zρ)). The order of the graph Id(Zρ) is defined as the number of vertices in Id(Zρ)
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and is denoted byϕ(Id(Zρ)). The degree of a vertex ofσεV (Id(Zρ)) is defined by the
number of edges adjacent toσ and is denoted by̟ (σ). The distance betweenσ, ς ∈
V (Id(Zρ)) is defined as the number of vertices in the shortest path connecting them and
we denote it asΥ(σ, ς) In this article (σ, ς) denotes the distinct unordered pair of vertices
of Id(Zρ) i.e. σ 6= ς and (σ, ς)=(ς.σ) unless specified otherwise. Also, we defineβ to be
the set of all nonadjacent pairs of vertices i.eβ = {(σ, ς) : (σ, ς) 6∈ E(Id(Zρ))}. The
setγ is defined as the set of pairs of nonadjacent vertices in which one vertex isp − 1
or γ = {(ρ − 1, ς) : (ρ − 1, ς) 6∈ E(Id(Zρ))}. The cardinality of a set A is defined as
the number of elements in A and is denoted by|A|. In this article, the setµ is defined as
the set of pairs of vertices with a distance equal to 1.µ = {(σ, ς) : Υ(σ, ς) = 1}. The
Ω set is defined asΩ = {(1, ς) : ςεV (Id(Zρ)) ∧ ς 6= p − 1}. Theη set is defined as
η = E(Id(Zρ))− Ω− (1, ρ− 1).

FIGURE 1. Identity Graph ofZ5 andZ7

3. MAIN RESULTS

In this section first, we partitioned the vertex and edge set ofId(Zρ) into subsets with
certain properties of distances, eccentricities, degrees, and total distances. We calculated
the cardinality of each of those sets and used it to generalize theρ dependent polynomials
for topological indices ofId(Zρ).

3.1. Some sets defined on identity graph ofZρ. In this article, we defineβ as the set
of all nonadjacent pairs of vertices i.eβ = {(σ, ς) : (σ, ς) 6∈ E(Id(Zρ))} and the set
γ is defined as the set of pairs of nonadjacent vertices in which one vertex isρ − 1 i.e
γ = {(ρ − 1, ς) : (ρ − 1, ς) 6∈ E(Id(Zρ))}. TheΩ set is defined asΩ = {(1, ς) :
ςεV (Id(Zρ)) ∧ ς 6= ρ− 1}.Theη set is defined asη = E(Id(Zρ))− Ω− (1, ρ− 1). The
set A, B and C are defined asA = {ρ − 1}, B = {1} andC = V (G) − (A

⋃
B). The

degree of a vertex is denoted by̟.

Theorem 3.2. The size of(Id(zp)) =
3p−7

2 .
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FIGURE 2. Generalized Identity Graph ofZρ

Proof. As we can see that number of vertices in(Id(zp)) = p− 1. ̟(1) = p− 2, ̟(p−
1) = 1. it can be observed that̟(κ) = 2 ∀ κ ∈ V (Id(zp)) ∧ κ /∈ {1, p− 1}. The number
of vertices of degree 2 are (p-1)-2=p-3. Hence by hand shaking lemma

ψ(Id(zp)) =
1 + p− 2 + (p− 3)2

2

=
3p− 7

2
.

�

Theorem 3.3. Letβ = {(σ, ς) : (σ, ς) 6∈ E(Id(Zρ))} andγ = {(ρ − 1, ς) : (ρ − 1, ς) 6∈
E(Id(Zρ))} then

(1) |β| = (ρ−3)2

2 .
(2) |γ| = ρ− 3.
(3) |β − γ| = (ρ−5)(ρ−3)

2 .
(4) if (σ, ς) ∈ γ then̟(σ) = 1 ∧̟(ς) = 2.
(5) if (σ, ς) ∈ β − γ then̟(σ) = ̟(ς) = 2.
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Proof. (1) As we can see thatψ(Id(Zρ)) = ρ−1, the size of complete graph of orderρ−1

is (ρ−1)(ρ−2)
2 . According to theorem 3.2, the size ofId(Zρ) is 3ρ−7

2 , so

|β| =
(ρ− 1)(ρ− 2)

2
−

3ρ− 7

2

=
(ρ− 3)2

2
.

(2) As ϕ(Id(Zρ)) = ρ − 1 and the vertexρ − 1 is adjacent to only 1. The number of
non-adjacent vertices toρ− 1 areρ− 1− 2 = ρ− 3, hence|γ| = ρ− 3.

(3) As γ ⊂ β so |β − γ| = |β| − |γ|, hence,

|β − γ| = (
(ρ− 3)2

2
)− (ρ− 3)

=
(ρ− 5)(ρ− 3)

2
.

(4) Let (σ, ς) ∈ γ and assume thatσ = ρ − 1 thenς neqρ− 1 ∧ ς 6= 1, hence̟ (σ) =
1 ∧̟(ς) = 2.

(5) Let (σ, ς) ∈ β − γ ⇒ (σ, ς) ∈ β ∧ (σ, ς) 6∈ γ. (σ, ς) ∈ β ⇒ σ 6= 1 6= ς because 1 is
adjacent to every vertex ofId(Zρ). (σ, ς) 6∈ γ ⇒ σ 6= ρ− 1 6= ς . Since every vertex other
than 1 andρ− 1 have degree two so̟ (σ) = ̟(ς) = 2. �

Theorem 3.4. LetΩ = {(1, ς) : ςεV (Id(Zρ)) ∧ ς 6= ρ − 1} andη = E(Id(Zρ)) − Ω −
(1, ρ− 1).
(1) |Ω| = ρ− 3.
(2) ∀ (1, ς) ∈ Ω ̟(ς) = 2.
(3) |η| = ρ−3

2 .
(4) ∀ (σ, ς) ∈ η ̟(σ) = ̟(ς) = 2.

Proof. (1) (1, ς) ∈ Ω ⇒ ς 6= 1 ∧ ς 6= ρ − 1. Since 1 is adjacent to all the vertices of
Id(Zρ) and there areρ− 1 vertices inZρ, so|Ω| = ρ− 3.

(2) (1, ς) ∈ Ω ⇒ ς 6= 1 ∧ ς 6= ρ− 1. All the vertices ofId(Zρ) other than 1 andρ− 1
have degree two, so̟ (ς) = 2.

(3) As η, Ω, and{(1, ρ− 1)} form a partition ofE(Id(Zρ)), hence

|E(Id(Zρ))| = |η|+ |β|+ {(1, ρ− 1)}.

|η| = |E(Id(Zρ))| − |Ω| − {(1, ρ− 1)}

=
3ρ− 7

2
− (ρ− 3)− 1

=
ρ− 3

2
.

(4) (σ, ς) ∈ η ⇒ σς 6= 1 ∧ σς 6= ρ − 1. All the vertices ofId(Zρ) other than 1 and
ρ− 1 have degree two, so̟ (σ) = ̟(ς) = 2. �
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Theorem 3.5. LetA = {ρ− 1},B = {1}, andC = V (Id(Zρ))− (A ∪B). Then,
(1) ∀ v ∈ A,̟(v) = 1.
(2) ∀ v ∈ B,̟(v) = ρ− 2.
(3) ∀ v ∈ C,̟(v) = 2.
(4) |A| = 1, |B| = 1, |C| = ρ− 3.
(5) ∀ v ∈ A, e(v) = 2.
(6) ∀ v ∈ B, e(v) = 1.
(7) ∀ v ∈ C, e(v) = 2.
(8) ∀ v ∈ A,D(v) = 2ρ− 5.
(9) ∀ v ∈ B,D(v) = ρ− 2.
(10) ∀ v ∈ C,D(v) = 2ρ− 6.

Proof. (1) For all primeρ, ρ− 1 is self inverse inZρ hence, inV (Id(Zρ)),̟(ρ− 1) = 1.
(2) Since there areρ−1 vertices inId(Zρ), 1 is adjacent to every vertex ofId(Zρ) other

than itself. Hence,̟ (1) = ρ− 2.
(3) Since for allv ∈ C, v 6= 1 andv 6= ρ− 1. Then,v is adjacent to1 and adjacent to its

inverse. SinceZρ is a ring, there exists an inverse. Also,v 6= ρ− 1, sov is not self-inverse.
Hence,̟ (v) = 2.
(4) There is only one element inA andB. C contains all the vertices ofId(Zρ) other than
1 andρ − 1. The number of vertices ofId(Zρ) other than1 andρ − 1 is ρ − 1, hence
|C| = ρ− 3.
(5, 6, 7)Since every vertex is adjacent to1, the eccentricity of all vertices other than1 is 2,
and the eccentricity of1 is 1.
(8)

D(ρ− 1) = d(ρ− 1, 1) + d(ρ− 1, 2) + d(ρ− 1, 3) + . . .+ d(ρ− 1, ρ− 2).

Sinceρ− 1 is adjacent to only1, its distance from1 is 1. Every vertex is adjacent to1, so
the distance ofρ− 1 from every other vertex other than1 is 2. Hence,

D(ρ− 1) = 1 + 2(ρ− 3)

= 2ρ− 5.

(9)
D(1) = d(1, 2) + d(1, 3) + . . .+ d(1, ρ− 1)

Since1 is adjacent to every vertex ofId(Zρ), its distance from every vertex ofId(Zρ) is
equal to1. There areρ− 2 vertices inId(Zρ) other than1, hence,

D(1) = (ρ− 2).

(10) Let v ∈ C, thend(v, v−1) = 1 andd(v, 1) = 1. For allσ ∈ V (Id(Zρ)), v−1 6=
σ 6= 1. Thend(v, σ) = 2, so

D(v) = 2 + 2(ρ− 4)

= 2ρ− 8 + 2

= 2ρ− 6.

�
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3.6. Mixed topological indices based on the distance between vertices and degrees of
vertices. In this section, we dig into a complete examination of graph indices for the graph
Id(Zρ). We continue with the definition of the Wiener index, denoted asW (Id(Zρ))
[21], which measures the summation of distances between pairs of vertices, represented by
Υ(σ, ς). Specifically,

W (Id(Zρ)) =
∑

{σ,ς}⊂V (Id(Zρ))

Υ(σ, ς). (3. 1)

The mentioned reference [21] offers insights into several graph operations, including
the generalized hierarchical product, T-th subdivision, and Mycielski’s construction, all of
which are pertinent to this index. Furthermore, we study the hyper Wiener index, written
asWW (Id(Zρ)) [41], which extends the Wiener index by including both distances and
their squares. Specifically,

WW (Id(Zρ)) =
1

2

∑

{σ,ς}⊂V (Id(Zρ))

[Υ(σ, ς) + (Υ(σ, ς))2]. (3. 2)

In reference [21], non-commuting graphs for generalized quaternion groups are ex-
plored.

Moving on, the old Harary index, referred to asHold(Id(Zρ)) [63], emerges as a mea-
sure that takes into consideration the reciprocal of the squared distances between vertex
pairs. Specifically,

Hold(Id(Zρ)) =
1

2

∑

{σ,ς}⊂V (Id(Zρ))

1

Υ(σ, ς)2
. (3. 3)

In reference [63], upper bounds for triangle-free and quadrangle-free graphs are com-
puted. Meanwhile, the Harary index, defined asH(Id(Zρ)), captures the reciprocal of
distances between vertices. Specifically,

H(Id(Zρ)) =
1

2

∑

{σ,ς}⊂V (Id(Zρ))

1

Υ(σ, ς)
. (3. 4)

In reference [56], they focused on the upper and lower boundaries of the Harary index.
Our exploration continues with the degree distance index, also known as the Schultz

indexDD(Id(Zρ)) [54], which combines vertex degrees and distances between vertex
pairings. Specifically,

DD(Id(Zρ)) =
∑

σ 6=ς

[̟(σ) +̟(ς)]Υ(σ, ς). (3. 5)

The Gutman indexGut(Id(Zρ)) [11] is a metric that considers the product of vertex
degrees and the related distances. Specifically,

Gut(Id(Zρ)) =
∑

σ 6=ς

[̟(σ)̟(ς)]Υ(σ, ς). (3. 6)
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Lastly, we analyze the reciprocal degree distance index, frequently referred to as the ad-
ditively weighted Harary indexHα(Id(Zρ)) [8], and the multiplicatively weighted Harary
index HM (Id(Zρ)), discussed in references [19], [57], and [9]. These indices utilise
weighted reciprocals of distances and are instrumental in distinguishing distinctive struc-
tural elements within the graph.

This section presents a complete review of numerous graph indices, each aimed to ex-
pose different facets of the graphId(Zρ). These indexes, based in precise mathematical
definitions and backed by applicable references, offer useful insights for graph analysis and
applications.

TABLE 1. Mixed topological indices based on the distance between ver-

tices and degrees of vertices

Name of the Index Formula for index

Wiener index [21] W (Id(Zρ)) =
∑

{σ,ς}⊂V (Id(Zρ))
Υ(σ, ς)

Old Harary index [63] Hold(Id(Zρ)) =
1
2

∑
{σ,ς}⊂V (Id(Zρ))

1
Υ(σ,ς)2

Hyper Wiener index [41] WW (Id(Zρ)) =
1
2

∑
{σ,ς}⊂V (Id(Zρ))

[Υ(σ, ς) + (Υ(σ, ς))2]

The Harary index [56],[17] H(Id(Zρ)) =
1
2

∑
{σ,ς}⊂V (Id(Zρ))

1
Υ(σ,ς)

The degree distance index
or Schultz index [54] DD(Id(Zρ)) =

∑
σ 6=ς [̟(σ) +̟(ς)]Υ(σ, ς)

The Gutman index [11] Gut(Id(Zρ)) =
∑

σ 6=ς [̟(σ)̟(ς)]Υ(σ, ς)

The reciprocal degree distance index
or additively weighted Harary index[8] Hα(Id(Zρ)) =

∑
σ 6=ς

[̟(σ)+̟(ς)]
Υ(σ,ς)

The multiplicatively weighted Harary
index [19],[57],[9] HM (Id(Zρ)) =

∑
σ 6=ς

[̟(σ)̟(ς)]
Υ(σ,ς)

Theorem 3.7. W (Id(Z1)) = 0, W (Id(Z2)) = 1, and for all ρ ≥ 3, W (Id(Zρ)) =
ρ2 − 1

2 (9ρ+ 11).

Proof. W (Id(Z1)) = 0 because there is no pair of distinct vertices inId(Z1), andW (Id(Z2)) =
1 as there is only one pair of vertices inId(Z2), and both vertices are adjacent to each other.
For allρ ≥ 3, we have

W (Id(Zρ)) =
∑

{σ,ς}⊂V (Id(Zρ))

Υ(σ, ς)

=
∑

(σ,ς) 6∈E(Id(Zρ))

Υ(σ, ς) +
∑

(σ,ς)∈E(Id(Zρ))

Υ(σ, ς).



406 Rukhshanda Anjum, Muhammad Umar Mirza, Naila Niaz

Since all the vertices are adjacent to1, soΥ(σ, ς) = 2 for all (σ, ς) 6∈ E(Id(Zρ)). For all
the adjacent vertices,Υ(σ, ς) = 1. Hence,

W (Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

2 +
∑

(σ,ς)∈E(Id(Zρ))

1.

According to Theorem 3.3,

W (Id(Zρ)) = 2(
(ρ− 3)2

2
) +

(3ρ− 7)

2

W (Id(Zρ)) = ρ2 −
1

2
(9ρ+ 11).

�

Theorem 3.8.WW (Id(Z1)) = 0,WW (Id(Z2)) = 1, and for allρ ≥ 3,WW (Id(Zρ)) =
3ρ2

2 − 15ρ
2 + 10.

Proof. WW (Id(Z1)) = 0 because there is no pair of distinct vertices inId(Z1). WW (Id(Z2)) =
1 because there is only one pair of vertices inId(Z2), and both vertices are adjacent to each
other. Forρ > 3, we have

WW (Id(Zρ)) =
∑

{σ,ς}⊂V (Id(Zρ))

(Υ(σ, ς) + Υ(σ, ς)2)

=
∑

(σ,ς) 6∈E(Id(Zρ))

(Υ(σ, ς) + Υ(σ, ς)2) +
∑

(σ,ς)∈E(Id(Zρ))

(Υ(σ, ς) + Υ(σ, ς)2).

Since all the vertices are adjacent to1, soΥ(σ, ς) = 2 for all (σ, ς) 6∈ E(Id(Zρ)). For all
the adjacent vertices,Υ(σ, ς) = 1. Hence,

WW (Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

(2 + 4) +
∑

(σ,ς)∈E(Id(Zρ))

(1 + 1)

=
∑

(σ,ς) 6∈E(Id(Zρ))

6 +
∑

(σ,ς)∈E(Id(Zρ))

2.

According to Theorem 3.3,

WW (Id(Zρ)) =
1

2
(6(

(ρ− 3)2

2
) + 2

(3ρ− 7)

2
)

=
3ρ2

2
−

15ρ

2
+ 10.

�

Theorem 3.9. H(Id(Z1)) = 0, H(Id(Z2)) = 1, and for all ρ ≥ 3, H(Id(Zρ)) =
1
4 (ρ

2 − 5).
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Proof. H(Id(Z1)) = 0 because there is no pair of distinct vertices inId(Z1). H(Id(Z2)) =
1 because there is only one pair of vertices inId(Z2), and both vertices are adjacent to each
other. Forρ > 3, we have

H(Id(Zρ)) =
∑

{σ,ς}⊂V (Id(Zρ))

1

Υ(σ, ς)

=
∑

(σ,ς) 6∈E(Id(Zρ))

1

Υ(σ, ς)
+

∑

(σ,ς)∈E(Id(Zρ))

1

Υ(σ, ς)
.

Since all the vertices are adjacent to1, soΥ(σ, ς) = 2 for all (σ, ς) 6∈ E(Id(Zρ)). For all
the adjacent vertices,Υ(σ, ς) = 1. Hence,

H(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

1

2
+

∑

(σ,ς)∈E(Id(Zρ))

1.

According to Theorem 3.3,

H(Id(Zρ)) = (
1

2
(
(ρ− 3)2

2
)) + (

(3ρ− 7)

2
)

=
1

4
(ρ2 − 5).

�

Theorem 3.10.TheHold(Id(Z1)) = 0,Hold(Id(Z2)) = 1, and for allρ ≥ 3,Hold(Id(Zρ)) =
1
4 (3ρ+

1
2 (ρ

2 − 19)).

Proof. Hold(Id(Z1)) = 0 because there is no pair of distinct vertices in(Id(Z1)). Hold(Id(Z2)) =
1 because there is only one pair of vertices in(Id(Z2)), and both vertices are adjacent to
each other. Forρ ≥ 3, we have

Hold(Id(Zρ)) =
∑

{σ,ς}⊂V (Id(Zρ))

1

Υ(σ, ς)2

=
∑

(σ,ς) 6∈E(Id(Zρ))

1

Υ(σ, ς)2
+

∑

(σ,ς)∈E(Id(Zρ))

1

Υ(σ, ς)2
.

Since all the vertices are adjacent to1, soΥ(σ, ς) = 2 for all (σ, ς) 6∈ E(Id(Zρ)). For all
the adjacent vertices,Υ(σ, ς) = 1. Hence,

Hold(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

1

4
+

∑

(σ,ς)∈E(Id(Zρ))

1.

According to Theorem 3.3,

Hold(Id(Zρ)) = (
1

4
(
(ρ− 3)2

2
)) + (

(3ρ− 7)

2
)

=
1

4
(3ρ+

1

2
(ρ2 − 19)).

�
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Theorem 3.11.TheDD(Id(Z1)) = 0,DD(Id(Z2)) = 2, and for allρ ≥ 3,DD(Id(Zρ)) =
5ρ2 − 25ρ+ 33.

Proof. DD(Id(Z1)) = 0 because there is no pair of distinct vertices in(Id(Z1)). DD(Id(Z2)) =
2 since there is only one pair of vertices in(Id(Z2)) and both vertices are adjacent to each
other. Forρ ≥ 3, we have,

DD(Id(Zρ)) =
∑

σ 6=ς

(̟(σ) +̟(ς))Υ(σ, ς)

=
∑

(σ,ς)∈E((Id(Zρ))

(̟(σ) +̟(ς))Υ(σ, ς) +
∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ) +̟(ς))Υ(σ, ς).

(3. 7)

As η, Ω, and{(1, ρ− 1)} form a partition ofE(Id(Zρ)), we have
∑

(σ,ς)∈E((Id(Zρ))

(̟(σ) +̟(ς))Υ(σ, ς) =(̟(1) +̟(ρ− 1)) +
∑

(σ,ς)∈Ω

(̟(σ) +̟(ς))Υ(σ, ς)

+
∑

(σ,ς)∈η

(̟(σ) +̟(ς))Υ(σ, ς).

By Theorem 3.4,
∑

(σ,ς)∈E((Id(Zρ))

(̟(σ) +̟(ς))Υ(σ, ς) = (ρ− 1 + 1) + (ρ− 3)(ρ− 1 + 2) + ((
ρ− 3

2
)4)

= ρ+ (ρ− 3)(ρ+ 1) + (2(ρ− 3)).
(3. 8)

∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ) +̟(ς))Υ(σ, ς) =
∑

(σ,ς)∈β

(̟(σ) +̟(ς))Υ(σ, ς).

As β − γ andγ form a partition ofβ, we have
∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ)+̟(ς))Υ(σ, ς) =
∑

(σ,ς)∈γ

(̟(σ)+̟(ς))Υ(σ, ς)+
∑

(σ,ς)∈β−γ

(̟(σ)+̟(ς))Υ(σ, ς).

By Theorem 3.3,
∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ) +̟(ς))Υ(σ, ς) = (ρ− 3)(3)(2) +
(ρ− 5)(ρ− 3)

2
(4)(2)

= 6(ρ− 3) + 4(ρ− 5)(ρ− 3).

(3. 9)

Substituting the values of equations 3. 8 and 3. 9 into equation 3. 7 , we get

DD(Id(Zρ)) = 5ρ2 − 25ρ+ 33.

�

Theorem 3.12.TheGut(Id(Z1)) = 0,Gut(Id(Z2)) = 1, and for allρ ≥ 3,Gut(Id(Zρ)) =
6ρ2 − 33ρ+ 47.
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Proof. Gut(Id(Z1)) = 0 because there is no pair of distinct vertices inId(Z1). Gut(Id(Z2)) =
1 since there is only one pair of vertices in(Id(Z2)) and both vertices are adjacent to each
other. Forρ ≥ 3, we have

Gut(Id(Zρ)) =
∑

σ 6=ς

(̟(σ)̟(ς))Υ(σ, ς)

=
∑

(σ,ς)∈E((Id(Zρ))

(̟(σ)̟(ς))Υ(σ, ς) +
∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ)̟(ς))Υ(σ, ς).

(3. 10)

As η, Ω, and{(1, ρ− 1)} form a partition ofE(Id(Zρ)), we have

∑

(σ,ς)∈E((Id(Zρ))

(̟(σ)̟(ς))Υ(σ, ς) = (̟(1)̟(ρ− 1)) +
∑

(σ,ς)∈Ω

(̟(σ)̟(ς))Υ(σ, ς)

+
∑

(σ,ς)∈η

(̟(σ)̟(ς))Υ(σ, ς).

By Theorem 3.4,

∑

(σ,ς)∈E((Id(Zρ))

(̟(σ)̟(ς))Υ(σ, ς) = (ρ− 1) + (ρ− 3)(ρ− 1)2 + (4(
ρ− 3

2
))

= (ρ− 1) + (ρ− 3)(ρ− 1)2 + (2(ρ− 3)).

(3. 11)

∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ)̟(ς))Υ(σ, ς) =
∑

(σ,ς)∈β

(̟(σ)̟(ς))Υ(σ, ς).

As β − γ andγ form a partition ofβ, we have

∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ)̟(ς))Υ(σ, ς) =
∑

(σ,ς)∈γ

(̟(σ)̟(ς))Υ(σ, ς)+
∑

(σ,ς)∈β−γ

(̟(σ)̟(ς))Υ(σ, ς).

By Theorem 3.3,

∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ)̟(ς))Υ(σ, ς) = (ρ− 3)4 +
(ρ− 5)(ρ− 3)

2
(4)(2)

= 4(ρ− 3) + 4(ρ− 5)(ρ− 3).

(3. 12)

Substituting the values of equations 3. 11 and 3. 12 into equation 3. 10 , we get

Gut(Id(Zρ)) = 6ρ2 − 33ρ+ 47.

�

Theorem 3.13.TheHM (Id(Z1)) = 0,HM (Id(Z2)) = 1, and for allρ ≥ 3,HM (Id(Zρ)) =
3ρ2 − 12ρ+ 11.
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Proof. HM (Id(Z1)) = 0 because there is no pair of distinct vertices in(Id(Z1)). HM (Id(Z2)) =
1 because there is only one pair of vertices in(Id(Z2)) and both vertices are adjacent to
each other. Forρ ≥ 3, we have

HM (Id(Zρ)) =
∑

σ 6=ς

(̟(σ)̟(ς))

Υ(σ, ς)

=
∑

(σ,ς)∈E((Id(Zρ))

(̟(σ)̟(ς))

Υ(σ, ς)
+

∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ)̟(ς))

Υ(σ, ς)
.

(3. 13)

As η, Ω, and{(1, ρ− 1)} form a partition ofE(Id(Zρ)), we have

∑

(σ,ς)∈E((Id(Zρ))

(̟(σ)̟(ς))

Υ(σ, ς)
= (̟(1)̟(ρ−1))+

∑

(σ,ς)∈Ω

(̟(σ)̟(ς))

Υ(σ, ς)
+

∑

(σ,ς)∈η

(̟(σ)̟(ς))

Υ(σ, ς)
.

By Theorem 3.4,

∑

(σ,ς)∈E((Id(Zρ))

(̟(σ)̟(ς))

Υ(σ, ς)
= (ρ− 1) + (ρ− 3)(ρ− 1)2 + (4(

ρ− 3

2
))

= (ρ− 1) + (ρ− 3)(ρ− 1)2 + (2(ρ− 3)).

(3. 14)

∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ)̟(ς))

Υ(σ, ς)
=

∑

(σ,ς)∈β

(̟(σ)̟(ς))

Υ(σ, ς)
.

As β − γ andγ form a partition ofβ, we have

∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ)̟(ς))

Υ(σ, ς)
=

∑

(σ,ς)∈γ

(̟(σ)̟(ς))

Υ(σ, ς)
+

∑

(σ,ς)∈β−γ

(̟(σ)̟(ς))

Υ(σ, ς)
.

By Theorem 3.3,

∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ)̟(ς))

Υ(σ, ς)
= (ρ− 3) + (ρ− 5)(ρ− 3). (3. 15)

Substituting the values of equations 3. 14 and 3. 15 into equation 3. 13 , we get

HM (Id(Zρ)) = 3ρ2 − 12ρ+ 11.

�

Theorem 3.14.TheHA(Id(Z1)) = 0,HA(Id(Z2)) = 1, and for allρ ≥ 3,HA(Id(Zρ)) =
(4ρ−9)(ρ−1)

2 .

Proof. HA(Id(Z1)) = 0 because there is no pair of distinct vertices in(Id(Z1)). HA(Id(Z2)) =
1 because there is only one pair of vertices in(Id(Z2)), and both vertices are adjacent to
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each other. Forρ ≥ 3, we have

HA(Id(Zρ)) =
∑

σ 6=ς

(̟(σ) +̟(ς))

Υ(σ, ς)

=
∑

(σ,ς)∈E((Id(Zρ))

(̟(σ) +̟(ς))

Υ(σ, ς)
+

∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ) +̟(ς))

Υ(σ, ς)
.

(3. 16)

As η, Ω, and{(1, ρ− 1)} form a partition ofE(Id(Zρ)), we have
∑

(σ,ς)∈E((Id(Zρ))

(̟(σ) +̟(ς))

Υ(σ, ς)
= (̟(1)+̟(ρ−1))+

∑

(σ,ς)∈Ω

(̟(σ) +̟(ς))

Υ(σ, ς)
+

∑

(σ,ς)∈η

(̟(σ) +̟(ς))

Υ(σ, ς)
.

By Theorem 3.4,
∑

(σ,ς)∈E((Id(Zρ))

(̟(σ) +̟(ς))

Υ(σ, ς)
= (ρ− 1 + 1) + (ρ− 3)(ρ− 1 + 2) + ((

ρ− 3

2
)4)

=
(4ρ− 9)(ρ− 1)

2
.

(3. 17)

∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ) +̟(ς))

Υ(σ, ς)
=

∑

(σ,ς)∈β

(̟(σ) +̟(ς))

Υ(σ, ς)
.

As β − γ andγ form a partition ofβ, we have
∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ) +̟(ς))

Υ(σ, ς)
=

∑

(σ,ς)∈γ

(̟(σ) +̟(ς))

Υ(σ, ς)
+

∑

(σ,ς)∈β−γ

(̟(σ) +̟(ς))

Υ(σ, ς)
.

By Theorem 3.3,
∑

(σ,ς) 6∈E((Id(Zρ))

(̟(σ) +̟(ς))

Υ(σ, ς)
=

(ρ− 3)

2
+ (ρ− 5)(ρ− 3). (3. 18)

Putting the values of equation 3. 17 and equation 3. 18 in equation 3. 16 , we get

HA(Id(Zρ)) =
(4ρ− 9)(ρ− 1)

2
.

�

3.15. The topological co-indices.Topological co-indices are commonly defined based on
nonadjacent pairings of vertices. The first Zagreb co-index, as presented in references [49]
and [54], is defined as:

M1(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

[̟(σ) +̟(ς)]. (3. 19)

In reference [49], a lower bound on the first Zagreb co-index of trees is proposed. Mov-
ing on, the second Zagreb co-index, likewise defined in references [49] and [54], is given
by:
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TABLE 2. Mixed topological indices based on the distance between ver-
tices and degrees of vertices

Name of the Index Polynomial for index

Wiener index [21] W (Id(Zρ)) = ρ2 − 1
2 (9ρ+ 11

Old Harary index [63] Hold(Id(Zρ)) =
1
4 (3ρ+

1
2 (ρ

2 − 19)

Hyper Wiener index [41] WW (Id(Zρ)) =
3ρ2

2 − 15ρ
2 + 10

The Harary index [56],[17] H(Id(Zρ)) =
1
4 (ρ

2 − 5)
The degree distance index

or Schultz index [54] DD(Id(Zρ)) = 5ρ2 − 25ρ+ 33
The reciprocal degree distance index

or additively weighted Harary index[8] Hα(Id(Zρ)) =
(4ρ−9)(ρ−1)

2

The multiplicatively weighted Harary
index [19],[57],[9] HM (Id(Zρ)) = 3ρ2 − 12ρ+ 11

M2(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

[̟(σ)̟(ς)]. (3. 20)

The general Randic co-index, alternatively known as the product-connectivity index, is
defined as:

Rα(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

[̟(σ)̟(ς)]α. (3. 21)

whereα is a real number. In reference [32], generalized formulations for the generic
Randic co-index for line graphs and the subdivision graph are offered.

Furthermore, the universal sum-connectivity co-index, defined in reference [48], is stated
as:

SCIα(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

[̟(σ) +̟(ς)]α. (3. 22)

whereα is a real number. In reference [48], generalized formulas for numerous graph
structures, including wheel graphs, star graphs, broom graphs, lollipop graphs, double star
graphs, multi-star graphs, and friendship graphs (also known as fan graphs), are introduced.

Theorem 3.16.TheM1(Id(Z1)) = 0,M1(Id(Z2)) = 0, and for allρ ≥ 3,M1(Id(Zρ)) =
2ρ2 − 13ρ+ 21.
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TABLE 3. The topological co-indices

Name of the Index Formula for index

The first Zagreb co-index [49],[54] M1(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))
[̟(σ) +̟(ς)]

The 2nd co-index [49],[54] M2(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))
[̟(σ)̟(ς)]

The general Randic co-index [32] Rα(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))
[̟(σ)̟(ς)]α

The general sum-connectivity co-index [48]SCIα(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))
[̟(σ) +̟(ς)]α

Proof. M1(Id(Z1)) = 0 andM1(Id(Z2)) = 0 because there are no non-adjacent vertices
in M1(Id(Z1)) andM1(Id(Z2)). Forρ ≥ 3, we have

M1(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

[̟(σ) +̟(ς)]

=
∑

(σ,ς)∈β

[̟(σ) +̟(ς)]

=
∑

(σ,ς)∈γ

[̟(σ) +̟(ς)] +
∑

(σ,ς)∈β−γ

[̟(σ) +̟(ς)].

By theorem 3.5(c) and(d),

M1(Id(Zρ)) =
∑

(σ,ς)∈γ

[1 + 2] +
∑

(σ,ς)∈β−γ

[2 + 2]

= 3(ρ− 3) + 4(
(ρ− 5)(ρ− 3)

2
)

= 2ρ2 − 13ρ+ 21.

�

Theorem 3.17.TheM1(Id(Z1)) = 0,M1(Id(Z2)) = 0, and for allρ ≥ 3,M1(Id(Zρ)) =
2ρ2 − 13ρ+ 21.

Proof. M1(Id(Z1)) = 0 andM1(Id(Z2)) = 0 because there are no non-adjacent vertices
in M1(Id(Z1)) andM1(Id(Z2)). Forρ ≥ 3, we have

M1(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

[̟(σ) +̟(ς)]

=
∑

(σ,ς)∈β

[̟(σ) +̟(ς)]

=
∑

(σ,ς)∈γ

[̟(σ) +̟(ς)] +
∑

(σ,ς)∈β−γ

[̟(σ) +̟(ς)].
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By Theorem 3.5(c) and(d),

M1(Id(Zρ)) =
∑

(σ,ς)∈γ

[1 + 2] +
∑

(σ,ς)∈β−γ

[2 + 2]

= 3(ρ− 3) + 4(
(ρ− 5)(ρ− 3)

2
)

= 2ρ2 − 13ρ+ 21.

�

Theorem 3.18.TheM2(Id(Z1)) = 0,M2(Id(Z2)) = 0 and for allρ ≥ 3M2(Id(Zρ)) =
2(ρ− 3)(ρ− 4).

Proof. M2(Id(Z1)),M2(Id(Z2)) = 0 because there are no nonadjacent vertices inM2(Id(Z1))
andM2(Id(Z1)) . Forρ ≥ 3 we have

M2(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

[̟(σ)̟(ς)]

=
∑

(σ,ς)∈β

[̟(σ)̟(ς)]

=
∑

(σ,ς)∈γ

[̟(σ)̟(ς)] +
∑

(σ,ς)∈β−γ

[̟(σ)̟(ς)].

By Theorem 3.5(c) and(d) ,

M2(Id(Zρ)) =
∑

(σ,ς)∈γ

[1× 2] +
∑

(σ,ς)∈β−γ

[2× 2]

= 2(ρ− 3) + 4(
(ρ− 5)(ρ− 3)

2
)

= 2(ρ− 3)(ρ− 4).

�

Theorem 3.19.TheRα(Id(Z1)) = 0,Rα(Id(Z1)) = 0, and for allρ ≥ 3,Rα(Id(Zρ)) =
1
2 (ρ− 3)(4αρ+ 2.2α − 5.4α).

Proof. Rα(Id(Z1)) = 0 andRα(Id(Z2)) = 0 because there are no non-adjacent vertices
in (Id(Z1)). Forρ ≥ 3, we have

Rα(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

[̟(σ)̟(ς)]α

=
∑

(σ,ς)∈β

[̟(σ)̟(ς)]α

=
∑

(σ,ς)∈γ

[̟(σ)̟(ς)]α +
∑

(σ,ς)∈β−γ

[̟(σ)̟(ς)]α.
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By Theorem 3.5(c) and(d),

Rα(Id(Zρ)) =
∑

(σ,ς)∈γ

[1× 2]α +
∑

(σ,ς)∈β−γ

[2× 2]α

= 2α(ρ− 3) + 4α(
(ρ− 5)(ρ− 3)

2
)

=
1

2
(ρ− 3)(4αρ+ 2.2α − 5.4α).

�

Theorem 3.20. The SCIα(Id(Z1)) = 0, SCIα(Id(Z1)) = 0, and for all ρ ≥ 3,
SCIα(Id(Zρ)) =

1
2 (ρ− 3)(4αρ+ 2.3α − 5.4α).

Proof. SCIα(Id(Z1)) = 0 andSCIα(Id(Z1)) = 0 parts of this theorem are obvious as
there are no nonadjacent vertices in(Id(Z1)) and(Id(Z1)). Forρ > 3, we have

SCIα(Id(Zρ)) =
∑

(σ,ς) 6∈E(Id(Zρ))

[̟(σ) +̟(ς)]α

=
∑

(σ,ς)∈β

[̟(σ) +̟(ς)]α

=
∑

(σ,ς)∈γ

[̟(σ) +̟(ς)]α +
∑

(σ,ς)∈β−γ

[̟(σ) +̟(ς)]α.

By Theorem 3.5(c) and(d),

SCIα(Id(Zρ)) =
∑

(σ,ς)∈γ

[1 + 2]α +
∑

(σ,ς)∈β−γ

[2 + 2]α

= 3α(ρ− 3) + 4α(
(ρ− 5)(ρ− 3)

2
)

=
1

2
(ρ− 3)(4αρ+ 2.3α − 5.4α).

�

TABLE 4. The topological co-indices

Name of the Index Formula for index

The first Zagreb co-index [49],[54] M1(Id(Zρ)) = 2ρ2 − 13ρ+ 21
The 2nd co-index [49],[54] M2(Id(Zρ)) = 2(ρ− 3)(ρ− 4)

The general Randic co-index [32] Rα(Id(Zρ)) =
1
2 (ρ− 3)(4αρ+ 2.2α − 5.4α)

The general sum-connectivity co-index [48]SCIα(Id(Zρ)) =
1
2 (ρ− 3)(4αρ+ 2.3α − 5.4α)
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3.21. Mixed topological indices based on total distances eccentricities and degrees of
vertices. The total distance of a vertexσ ∈ V (Id(Zρ)) is represented byD(σ) and is
defined asD(σ) =

∑
ς∈V (Id(Zρ))

d(σ, ς). Gupta Singh introduced the eccentric distance
sum index (EDSI) for the first time in 2012 in reference [27], defining it as:

Ed(G) =
∑

x∈V (G)

(e(x) +D(x)). (3. 23)

EDSI belongs to the first generation of topological indices addressing the total distance
of vertices. In reference [27], EDSI was applied to evaluate the anti-HIV capabilities of
dehydrogenation and was found to be substantially more efficient than the Wiener index.
In the same year, Sardana and Mardan invented the neighboring eccentric distance sum
index, which is defined as:

SV (G) =
∑

x∈V (G)

e(x)D(x)

̟(x)
. (3. 24)

In reference [2], both of these indices were applied to algebraic structures, notably to the
complement of the subgroup graph of dihedral groups. We extend this work to the context
of rings and apply both these indices toId(Zρ).

TABLE 5. Mixed topological indices based on total distances eccentric-
ities and degrees of vertices

Name of the Index Polynomials for index

The eccentric distance sum index [27] Ed(G) =
∑

xεV (G)(e(x) +D(x))

The adjacent eccentric distance sum index [27] SV (G) =
∑

xεV (G)
e(x)D(x)

̟(x)

Theorem 3.22.For ρ ≥ 5
(a)

Ed(Id(Zρ)) =
∑

σεV (G)

(e(σ) +D(σ)) = 4ρ2 − 19ρ+ 24.

(b)

SV (Id(Zρ)) =
∑

σεV (G)

e(σ)D(σ)

̟(σ)
= 6ρ− 15.

Proof. (a)

Ed(Id(Zρ)) =
∑

σεV (G)

(e(σ) +D(σ))

=
∑

σεA

(e(x) +D(x)) +
∑

σεB

(e(σ) +D(σ)) +
∑

σεC

(e(σ) +D(σ))

= (1)(2)(2ρ− 5) + 1(1)(ρ− 2) + (ρ− 3)(2)(2ρ− 6)

= 4ρ2 − 19ρ+ 24.
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(b)

SV (Id(Zρ)) =
∑

xεV (G)

e(σ)D(σ)

̟(σ)

=
∑

σεA

e(σ)D(σ)

̟(σ)
+

∑

σεB

e(σ)D(σ)

̟(v)
+

∑

σεC

e(σ)D(σ)

̟(σ)

=
2(2ρ− 5)

1
+

(1)(ρ− 2)

ρ− 2
+

2(2ρ− 6)

2

= 4ρ− 10 + 1 + 2ρ− 6

= 6ρ− 15.

�

TABLE 6. Mixed topological indices based on total distances eccentric-
ities and degrees of vertices

Name of the Index Polynomials for index

The eccentric distance sum index [27] Ed(G) = 4ρ2 − 19ρ+ 24
The adjacent eccentric distance sum index [27] SV (G) = 6ρ− 15

4. CONCLUSIONS AND RECOMMENDATIONS

The employment of graphs to depict interactions inside algebraic structures is an en-
gaging and new method. Graphs provide a visual depiction of the complicated connec-
tions between many features of these structures. This hypothesis is particularly noteworthy
because of the essential role that topological indices play in sciences like chemistry and
biology. These indices serve as crucial instruments in identifying chemicals, enabling the
categorization and characterization of molecular compounds based on their structural prop-
erties.

Moreover, the applicability of topological indices extends beyond the sphere of natural
sciences. In the realm of mathematics, notably in algebra, these indices offer a valuable
technique of reducing complicated arithmetic operations on structures likeZρ. Algebraic
structures are a key aspect of mathematical study, and their features and behaviors have
been widely examined in the current literature. However, even with the quantity of knowl-
edge accessible, there remain unknown territories, particularly in the comprehension of
basic groups and rings.

Herein lies the potential of graph theory. It acts as a powerful tool to expose hidden link-
ages and connections within algebraic structures. By modeling these structures as graphs,
we may visualize how individual parts of a group or ring are interrelated. This depiction
goes beyond the standard mathematical notation, providing insights into the structural and
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relational properties of these algebraic structures.

Furthermore, whereas topological indices have been well-established in domains like
chemistry and biology, there exists an intriguing possibility to create algebraic topological
indices customized exclusively for algebraic structures. These specific indices would pro-
mote a greater understanding of the relationships inside these structures and give a means
of simplifying algebraic computations and manipulations.

The union of graph theory and algebraic structures provides us an intriguing area for
investigation. It allows us to utilize the power of visualization to obtain better insights
into the links between elements and characteristics within algebraic entities. By creating
algebraic topological indices, we can better our understanding and streamline arithmetic
operations within these structures, ultimately enhancing our comprehension of fundamental
mathematical topics.
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