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Abstract. We use tools from Baker’s linear forms theory to solve the
two Diophantine equations Pk = Jn + Jm and Qk = Jn + Jm where
{Pk}k≥0, {Qk}k≥0 and {Jk}k≥0 are the sequences of Pell, Pell-Lucas
and Jacobsthal numbers, respectively. The strategy depends mainly on
the properties of the three sequences and Matveev’s inequality which is
an indispensable tool in the theory of linear forms. Also, we employ an
inequality due to A. Dujella and A. Pethö to reduce the too large bounds
obtained by Matveev’s theorem.
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1. INTRODUCTION

The Pell sequence is defined recursively by P0 = 0, P1 = 1 and Pn+1 = 2Pn + Pn−1

for n ≥ 1 . A few terms of this sequence are

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, ...

Pell-Lucas numbers are defined by Q0 = 2, Q1 = 2, and Qn+1 = 2Qn+Qn−1 for n ≥ 1.
Its first terms are

2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, ...

For some recent works related to Diophantine equations which includes Pell and Pell-Lucas
numbers, see [1], [2], [5], [9] and [15].
Jacobsthal sequence is defined by J0 = 0, J1 = 1, and Jn+1 = Jn + 2Jn−1 for n ≥ 1. Its
initial terms are

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, ....

There is a vast variety of applications of these three sequences in mathematics and applied
sciences. We refer to [12] and [13] for a large number of these applications.
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This work is motivated by the following remark: with a cursory glance, it turns out that

P1 = J1 + J0, P2 = J1 + J1

and
Q0 = J1 + J1, Q1 = J1 + J1.

The problem of expressing terms of an integer sequence as the sum, difference and product
of terms of other integer sequences is an intensive research area. For instance, see [1], [8]
and [16]. This article is devoted to investigate the solutions of the Diophantine equations:

Pk = Jn + Jm (1. 1)

and
Qk = Jn + Jm. (1. 2)

The complete sets of solutions of the two equations are given in the following theorems.

Theorem 1.1. Let n ≥ m. Then the only non-negative triples (k, n,m) which satisfy
Eq.( 1. 1 ) are

(1, 1, 0), (2, 2, 1), (2, 2, 2), (3, 4, 0), (4, 5, 1), (4, 5, 2).

Theorem 1.2. Let n ≥ m. Then the only non-negative triples (k, n,m) which satisfy
Eq.( 1. 2 ) are

(0, 1, 1), (1, 1, 1), (1, 2, 1), (1, 2, 2), (2, 3, 3), (2, 4, 1), (2, 4, 2), (3, 5, 3), (0, 2, 1), (1, 2, 1).

The approach is to employ one of the best known variants of the Baker’s theory due
to Matveev to bound all the implied variables in terms of a single one. The upper bound
obtained by Matveev’s inequality is too large to be investigated. As a result, we consider
a reduction inequality of Dujella and Pethö to cut down this upper bound. At last, we run
Sage computations to determine all the solutions.

2. NUMBER THEORETIC BACKGROUNDS

2.1. Pell and Pell-Lucas sequences. The characteristic equation of Pell and Pell-Lucas
sequences is

Ψ(x) := x2 − 2x− 1 = 0,

and their Binet formula is, assuming γ = 1 +
√
2 and δ = 1−

√
2,

Pk =
γk − δk

2
√
2

for all k ≥ 0. (2. 3)

and

Qk = γk + δk for all k ≥ 0. (2. 4)

It is straightforward to show that

γk−2 ≤ Pk ≤ γk−1 holds for all k ≥ 1. (2. 5)

and
γk−1 < Qk < γk+1 holds for all k ≥ 0. (2. 6)
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2.2. Jacobsthal sequence. The characteristic polynomial of the Jacobsthal sequence is

G(x) = x2 − x− 2.

Its Binet formula is

Jn =
2n − (−1)n

3
. (2. 7)

A direct induction argument shows that

2n−2 ≤ Jn ≤ 2n−1 for all n ≥ 1. (2. 8)

Basic properties of the Jacobsthal numbers can be found in [10] and [13].

2.3. Linear forms in logarithms. Consider an algebraic number κ. Suppose the minimal
polynomial (over Z) of κ has degree m and let κ(i)’s be the conjugates of κ. Then the
minimal polynomial of κ can be written as

c0x
m + c1x

m−1 + ...+ cm = c0

m∏
i=1

(x− κ(i)),

where c0 is a positive integer . The logarithmic Weil height (over an algebraic real field) of
κ is given by

h(α) :=
1

m

(
log c0 +

m∑
i=1

log
(
max

{∣∣∣κ(i)
∣∣∣ , 1}))

The function h of logarithmic height satisfies the following properties (see [3] for proofs):

h (κ1 ± κ2) ≤ h (κ1) + h (κ2) + log 2;

h
(
κ1κ

±1
2

)
≤ h (κ1) + h (κ1) ;

h (κs) = |s|h (κ) (s ∈ Z) .

The next inequality of linear forms is fundamental. Bugeaud, Mignotte and Siksek deduced
it, see [4], from Matveev’s theorem [14].

Theorem 2.4. (Matveev) Let A be a real algebraic number field of degree dA and
κ1, ..., κr be positive real algebraic numbers in A. Suppose that t1, ..., tr are non zero
integers such that the quantity

Λ1 := κt1
1 κt2

2 ...κtr
r − 1 ̸= 0.

Then,

log |Λ| > −1.4 · 30r+3 · r4.5 · d2A · (1 + log dA) · (1 + logB)A1...Ar, (2. 9)

where

B ≥ max{|t1| , ..., |tr|},

and

Ai ≥ max{dAh (κi) , |log κi| , 0.16}, for all i = 1, ..., r.
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2.5. Dujella and Pethö reduction lemma. Let λ be a real number. Set
||λ| | := min{|λ− n| : n ∈ Z}. A. Dujella and A. Pethö proved, in[7], the following result
. It plays a basic rule in reducing the upper bound obtained in many Diophantine equations.

Lemma 2.6. Let M > 0 be an integer. Let τ, µ,A > 0, B > 1 be given real numbers.
Suppose p

q is a convergent of τ with q > 6M and ϵ := ||µq|| −M ||τq|| > 0. If (n,m, ω)
is to

0 < |nτ −m+ µ| < A

Bω

with n,m, ω > 0, n ≤ M, then

ω <
log
(

Aq
ϵ

)
logB

.

Example 2.7. In solving the problem of determining all the balancing numbers which are
expressible as the sum of two Jacobsthal numbers (Bk = Jn + Jm.) we arrive at the
inequality

0 <

∣∣∣∣∣ log(
3

2
√
8
)

log 2
− n+ k

(
log ρ

log 2

)∣∣∣∣∣ < 8

2n−m log 2
<

12

2n−m
, (2. 10)

where ρ = 3 +
√
8. We apply the reduction lemma with M = 6 × 1029 (M > 2n > k) ,

τ = log ρ
log 2 , µ =

log( 3
2
√

8
)

log 2 , A = 12, B = 2. Writing τ as a continued fraction [a0, a1, ...],
we see that q61 = 6332847229674209482244367144203 > 6M . Computing

ϵ = ||µq61| | −M ||τq61| | > 0.4.

It follows that n−m < 108.

2.8. Legendre theorem. The following theorem is due to Legendre and will be used in
some cases of our investigation. Further details can be found in [6].

Theorem 2.9. Let x be a real number, let p, q ∈ Z and let x = [a0, a1, ...]. If∣∣∣∣pq − x

∣∣∣∣ < 1

2q2
,

then p
q is a convergent continued fraction of x. Furthermore, let M and n be non-negative

integers with qn > M . Put b = max{ai : i = 0, 1, 2, .., n}, then

1

(b+ 2) q2
<

∣∣∣∣pq − x

∣∣∣∣ .
Example 2.10. Suppose that we have the inequality

ρk2−(m+3) − 1 <
1

2m
,

with ρ = 3 +
√
8, m < 3× 1029 and k < 2m. This gives, for m ≥ 3, that∣∣∣∣k log ρlog 2

− (m+ 3)

∣∣∣∣ < 4

2m
<

1

4
.
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Employing that 16m < 2m for m ≥ 7, we deduce that 4
2m < 1

2k2 . Then
∣∣∣ log ρ
log 2 − m+3

k

∣∣∣ <
1

2k2 . So, by Legendre’s theorem, m+3
k is a convergent of log ρ

log 2 . If k < M = 6× 1029, then
some computations show that

q58 < M < q59 and b := max{ai : i = 0, 1, 2, ..., 59} = 200.

Consequently,
1

202k
<

4

2m
.

3. SOLUTION OF Pk = Jn + Jm

3.1. Bounding the variables. Applying the inequalities ( 2. 8 ) and ( 2. 5 ) to establish
the relationship between k and n, we get

γk−2 ≤ Pk ≤ 2n and 2n−2 ≤ Pk ≤ γk−1. (3. 11)

These imply that

(n− 2)
log 2

log γ
+ 1 ≤ k ≤ n

log 2

log γ
+ 2. (3. 12)

We can consider k < 2n. Using the Binet formulas of the Pell and Jacobsthal sequences in
Eq.( 1. 1 ), we obtain

γk − δk

2
√
2

=
2n − (−1)n

3
+

2m − (−1)m

3
. (3. 13)

Then ∣∣∣∣ γk

2
√
2
− 2n

3

∣∣∣∣ = ∣∣∣∣2m3 − ((−1)n + (−1)m)

3
+

δk

2
√
2

∣∣∣∣ . (3. 14)

It follows that ∣∣∣∣ γk

2
√
2
− 2n

3

∣∣∣∣ < 4 · 2m

3
. (3. 15)

Thus, ∣∣∣∣3γk2−n

2
√
2

− 1

∣∣∣∣ < 4

2n−m
. (3. 16)

Let

Λ1 =
3γk2−n

2
√
2

−1, r = 3, κ1 =
3

2
√
2
, κ2 = γ, κ3 = 2, t1 = 1, t2 = k, t3 = −n.

If Λ1 = 0, then 3γk = 2n.2
√
2. Consider the automorphism σ such that σ(γ) = δ. Then∣∣3δk∣∣ = 2n.2

√
2. But

∣∣3δk∣∣ < 3, then 2n.2
√
2 < 3 which is a contradiction. So, Λ1 ̸= 0.

Take A = Q(γ). Then dA = 2. The logarithmic heights are

h(κ1) ≤ h(3) + h(2
√
2) ≤ log 3 +

3

2
log 2;

h(κ2) =
1

2
log γ;

h(κ3) = log 2.

Taking
A1 = 2 log 3 + 3 log 2, A2 = log γ, and A3 = 2 log 2, B = 2n
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we obtain

log |Λ1| > −1.4×306×34.5×4× (1+log 2)(1+log 2n)(2 log 3+3 log 2)(2 log 2 log γ).

Then
log |Λ1| > −6× 1012(1 + log 2n). (3. 17)

Also, from Eq.( 3. 16 ) we have,

log |Λ1| < log 4 + (m− n) log 2. (3. 18)

Comparing inequalities in ( 3. 17 ) and ( 3. 18 )gives

(n−m) log 2− log 4 < 6× 1012(1 + log 2n). (3. 19)

Hence,
m log 2 > n log 2− 6× 1012(1 + log 2n)− log 4. (3. 20)

Eq.( 3. 13 ) is the same as

γk

2
√
2
− 2n(1 + 2m−n)

3
=

δk

2
√
2
− (−1)n − (−1)m

3
, (3. 21)

Therefore∣∣∣∣ 3γk2−n

2
√
2(1 + 2m−n)

− 1

∣∣∣∣ = ∣∣∣∣ 3 · 2−n

1 + 2m−n

(
δk

2
√
2
− (−1)n − (−1)m

3

)∣∣∣∣ . (3. 22)

Hence, ∣∣∣∣ 3γk2−n

2
√
2(1 + 2m−n)

− 1

∣∣∣∣ < 5

2m
. (3. 23)

Let Λ2 = 3γk2−n

2
√
2(1+2m−n)

− 1. Then

log |Λ2| < log 5−m log 2. (3. 24)

Let

κ1 =
3

2
√
2(1 + 2m−n)

, κ2 = γ, κ3 = 2, r = 3, t1 = 1, t2 = k, t3 = −n,B = 2n.

First we show that Λ2 ̸= 0. If Λ2 = 0, then 3γk = 2
√
2(2n + 2m). Consider the auto-

morphism σ such that σ(γ) = δ. Then
∣∣3δk∣∣ = 2

√
2(2n + 2m). But

∣∣3δk∣∣ < 3, which is
a contradiction. Then we take A = Q(γ), for which dA = 2. The logarithmic heights are
computed as follows:

h(κ1) ≤ h(3) + h(2) + h(2
√
2) + h(1 + 2m−n) ≤ log 3 +

5

2
log 2 + (n−m) log 2;

h(κ2) =
1

2
log γ;

h(κ3) = log 2.

We take

A1 = 2 log 3 + 2(n−m) log 2 + 5 log 2, A2 = log γ, and A3 = 2 log 2.

By Matveev’s inequality, we get

log |Λ2| > c(1 + log 2n)(2 log 3 + 2(n−m) log 2 + 5 log 2)(2 log 2 log γ),
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where c = −1.4× 306 × 34.5 × 4× (1 + log 2). Using Eqs.( 3. 19 ),( 3. 20 ),( 3. 24 ) and
some simple manipulations, we find

n log 2 < 6× 1013(1 + log 2n) + 24× 1027(1 + log 2n)2 + 3. (3. 25)

A Mathematica computation reveals that

n < 2× 1029. (3. 26)

3.2. Reducing the upper bound. Now, we use the inequality of A. Dujella and A. Pethö
to cut down the previous on n. Let

Γ1 = log(
3

2
√
2
) + k log γ − n log 2.

Eq.( 3. 16 ) entails that

|Λ1| =
∣∣eΓ1 − 1

∣∣ < 4

2n−m
<

1

4
, n−m > 4. (3. 27)

This implies that

|Γ1| <
1

2
. (3. 28)

Then |Γ1| < 2
∣∣eΓ1 − 1

∣∣ . Therefore we get

|Γ1| <
8

2n−m
. (3. 29)

We observe that Γ1 ̸= 0. Then

0 <

∣∣∣∣∣ log(
3

2
√
2
)

log 2
− n+ k

(
log γ

log 2

)∣∣∣∣∣ < 8

2n−m log 2
<

12

2n−m
. (3. 30)

Let M = 4× 1029 (M > 2n > k) , τ = logα
log 2 , µ =

log( 3
2
√

2
)

log 2 , A = 12, B = 2. Writing τ

as a continued fraction , we get q65 = 2427228558134035529638808203392547 > 6M .
We compute

ϵ = ||µq65| | −M ||τq65| | > 0.1.

Thus n−m < 118. Now we let

Γ2 = log

(
3

2
√
2(1 + 2m−n)

)
+ k log γ − n log 2.

Then we have from Eq.( 3. 23 ) that, for m ≥ 5,

|Λ2| =
∣∣eΓ2 − 1

∣∣ < 5

2m
<

1

4
. (3. 31)

Consequently,

|Γ2| <
1

2
. (3. 32)

Then |Γ2| < 2
∣∣eΓ2 − 1

∣∣ . Therefore

|Γ2| <
10

2m
. (3. 33)
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We observe that Γ2 ̸= 0 since Λ2 ̸= 0. Then

0 <

∣∣∣∣∣∣
log
(

3
2
√
2(1+2m−n)

)
log 2

− n+ k

(
log γ

log 2

)∣∣∣∣∣∣ < 15

2m
. (3. 34)

We apply lemma 2.6 with M = 4×1029 (M > 2n > k), τ = log γ
log 2 , µ =

log( 3

2
√

2(1+2m−n)
)

log 2 ,
A = 15 and B = 2. It can be shown that q65 = 2427228558134035529638808203392547 >
6M . Using Sage to investigate all the values of ϵ such that n−m < 118, we see that

ϵ = ||µq65| | −M ||τq65| | > 0.01.

Thus ,by Lemma 2.6, it follows that m < 122. So, n < 240 and k < 480 . Solving
Eq.( 1. 1 ) for m < 122, n < 240 and k < 480, we get the results in Theorem (1.1).

4. SOLUTION OF Qk = Jn + Jm

By symmetry of Eq.( 1. 2 ), we assume that n ≥ m.

4.1. Bounding the variables. By ( 2. 6 ) and ( 2. 8 ), we have

αk−2 ≤ Rk ≤ 2n and 2n−2 ≤ Rk ≤ αk+1. (4. 35)

We conclude that

(n− 2)
log 2

log γ
− 1 ≤ k ≤ (n− 1)

log 2

logα
+ 1. (4. 36)

We can take k < 2n. Replacing the Pell-Lucas and Jacobsthal sequences in Eq.( 1. 2 ) by
their Binet formulas, we get

γk + δk =
2n − (−1)n

3
+

2m − (−1)m

3
. (4. 37)

Then ∣∣∣∣γk − 2n

3

∣∣∣∣ = ∣∣∣∣2m3 − ((−1)n + (−1)m)

3
− δk

∣∣∣∣ . (4. 38)

Easily, it follows that ∣∣∣∣γk − 2n

3

∣∣∣∣ ≤ 2m

3
+

2

3
+
∣∣δk∣∣ .

Then ∣∣∣∣γk − 2n

3

∣∣∣∣ < 4 · 2m

3
(4. 39)

So ∣∣∣∣3γk

2n
− 1

∣∣∣∣ < 4

2n−m
. (4. 40)

Consider the following:

Λ3 = 3γk2−n − 1, r = 3, κ1 = 3, κ2 = γ, κ3 = 2, t1 = 1, t2 = k, t3 = −n.

Again Λ3 ̸= 0. Let A = Q(γ). Then

h(κ1) = log 3;

h(κ2) =
1

2
log γ;
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h(κ3) = log 2.

We take,
A1 = 2 log 3, A2 = log γ, and A3 = 2 log 2.

Let B = 2n. Then Theorem(2.4) shows that

log |Λ3| > −1.4× 306 × 34.5 × 4× (1 + log 2)(1 + log 2n)(2 log 3)(2 log 2 log γ).

Consequently,
log |Λ3| > −3× 1012(1 + log 2n). (4. 41)

Then also from ( 4. 40 ) we have

log |Λ3| < log 4 + (m− n) log 2. (4. 42)

Thus by comparing inequalities in ( 4. 41 ) and ( 4. 42 ) we get

(n−m) log 2− log 6 < 3× 1012(1 + log 2n). (4. 43)

Hence,
m log 2 > n log 2− 3× 1012(1 + log 2n)− log 4. (4. 44)

Eq.( 4. 37 ) is equivalent to

γk − 2n(1 + 2m−n)

3
= −δk − (−1)n − (−1)m

3
. (4. 45)

So ∣∣∣∣ 3γk2−n

1 + 2m−n
− 1

∣∣∣∣ = ∣∣∣∣ 3 · 2−n

1 + 2m−n

(
−δk − (−1)n − (−1)m

3

)∣∣∣∣ . (4. 46)

Then ∣∣∣∣ 3γk2−n

1 + 2m−n
− 1

∣∣∣∣ < 5

2m
. (4. 47)

Let Λ4 = 3
1+2m−n γ

k2−n − 1. Hence,

log |Λ4| < log 5−m log 2. (4. 48)

Set

η1 =
3

1 + 2m−n
, η2 = γ, η3 = 2, r = 3, t1 = 1, t2 = k, t3 = −n.

As before we can show that Λ4 ̸= 0. Let A = Q(γ). Then,

h(κ1) ≤ log 3 + (n−m) log 2 + log 2;

h(κ2) =
1

2
log γ;

h(κ3) = log 2.

Taking

A1 = 2 log 3 + 2(n−m) log 2 + 2 log 2, A2 = log γ, and A3 = 2 log 2 and B = 2n,

we obtain

log |Λ4| > −1.4×306×34.5×4×(1+log 2)(1+log 2n)(2 log 3+2 log 2+2(n−m) log 2)(2 log 2 log γ),

Eqs.( 4. 43 ), ( 4. 44 ) and ( 4. 48 ) with routine computations give

n log 2 < 11× 1012(1 + log 2n) + 12× 1024(1 + log 2n)2 + 3. (4. 49)
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Hence,
n < 3× 1028. (4. 50)

4.2. Reducing the upper bound. Assume that n−m ≥ 5. Let

Γ3 = log(3) + k log γ − n log 2.

By Eq.( 4. 40 ), we have

|Λ3| =
∣∣eΓ3 − 1

∣∣ < 4

2n−m
<

1

4
, (4. 51)

So
|Γ3| <

1

2
. (4. 52)

Then, |Γ3| < 2
∣∣eΓ3 − 1

∣∣ . So

|Γ3| <
8

2n−m
. (4. 53)

We observe that Γ3 ̸= 0. It follows that

0 <

∣∣∣∣ log 3log 2
− n+ k

(
log γ

log 2

)∣∣∣∣ < 8

2n−m log 2
<

12

2n−m
. (4. 54)

Let M = 6 × 1028 (M > 2n > k) , τ = log γ
log 2 , µ = log 3

log 2 , A = 12, B = 2. Considering
the continued fraction of τ , we find that q65 > 6M . We compute

ϵ = ||µq65| | −M ||τq65| | > 0.3.

Thus, by Lemma 2.6, we get n−m < 117. Set

Γ4 = log

(
3

1 + 2m−n

)
+ k log γ − n log 2.

and let m > 5. Then we have from Eq.( 4. 47 ) that

|Λ4| =
∣∣eΓ4 − 1

∣∣ < 5

2m
<

1

4
. (4. 55)

We conclude that
|Γ4| <

1

2
. (4. 56)

Thus |Γ4| < 2
∣∣eΓ4 − 1

∣∣ . Therefore we get

|Γ4| <
10

2m
. (4. 57)

We observe that Γ4 ̸= 0. So

0 <

∣∣∣∣∣∣
log
(

3
1+2m−n

)
log 2

− n+ k

(
log γ

log 2

)∣∣∣∣∣∣ < 15

2m
. (4. 58)

Let M = 6 × 1028 (M > 2n > k), τ = log γ
log 2 , µ =

log
(

3

1+2m−n

)
log 2 , A = 15, B = 2. We

have
q65 > 6M . We consider the values of ϵ in the following two cases
Case I: if n−m < 117 and n−m ̸= 1, we find that
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ϵ = ||µq65| | −M ||τq65| | > 0.01.

Thus by Lemma 2.6, we get m < 122. Then n < 239 and k < 478 .

Case II: for n−m = 1 we get ϵ always negative. So, we solve Eq.( 1. 2 ) if n−m = 1.
In this case, Eq.( 1. 2 ) can be written as

Qk = 2m. (4. 59)

Then k < 2m and from Eq.( 4. 50 ) we get m < 3× 1028. As before, We can prove that

αk2−m − 1 <
1

2m
,

This gives, for m ≥ 3, that ∣∣∣∣k log γlog 2
−m

∣∣∣∣ < 4

2m
<

1

4
.

Using the relation 16m < 2m for m ≥ 7, we deduce that 4
2m < 1

2k2 . Then
∣∣∣ log γ
log 2 − m

k

∣∣∣ <
1

2k2 . So, by Legendre’s theorem, m
k is a convergent of log γ

log 2 . Using k < M and some Sage
computations we find that

q53 < M < q54 and b := max{ai : i = 0, 1, 2, ..., 54} = 100.

Consequently,
1

(2 + 100) k
<

4

2m
.

Thus

2m < 3 · 1031.

Then m ≤ 104. Solutions of Eq.( 4. 59 ) for m ≤ 104. and Eq.( 1. 2 ) for m < 122,
n < 239 and k < 478 give the results in Theorem (1.2).

5. CONCLUSION

The present paper is a contribution to the broad area of the theory of Diophantine equa-
tions through the solutions of the two equations Pk = Jn + Jm and Qk = Jn + Jm. We
revealed all the Pell and Pell-Lucas numbers that are sums of two Jacobsthal numbers. The
approach we used is mainly dependent on Matveev’s theorem which is a basic technique
in the theory of linear forms in logarithms of algebraic numbers. Also, we employed a
reduction lemma due to Dujella and Pethö to greatly decrease the obtained upper bound.
We found that there are six Pell numbers and ten Pell-Lucas numbers which are expressible
as the sum of two Jacobsthal numbers. It opens the door to the investigation of expressing
other integer sequences (Balancing, Co-balancing, k-Fibonacci, k-Lucs, ...) as sums of
Jacobsthal numbers.
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