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Abstract. The well known contraction mapping principle or Banach’s
fixed point theorem asserts: The method for successive substitutions con-
verges only linearly to a fixed point of an operator equation in a Banach
space setting [5], [7]. In practice, if Newton’s method is used one ig-
nores the additional information about the contraction mapping informa-
tion. Werner in [9] provided a local analysis for a Newton-like method of
at least Q-order 3 which uses this information. Here we provide a finer
local convergence analysis for the same method under weaker hypotheses
which do not necessarily imply the contraction property of the mapping.
A numerical example is provided to show that our results compare favor-
ably with the ones in [9]. The semilocal convergence of the method not
considered in [9] is also examined.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique fixed
point z* of a Fréchet-differentiable operator F' which is defined on a convex subset D of a
Banach space X with values in X.

The contraction mapping principle or Banach’s fixed point theorem [5], [7] asserts that
if

|F'(z)|| < 1forall z € X (1.1)

then there exists a unique fixed z* of operator F' on X. The method of succesive substitu-
tions or Picard’s iteration

Yn+1 = F(yn) (yO € X) (n > O) (1.2)

converges only linearly to x* (the definition of @) order for an iterative method is well

known and can be found in [8, Definition 9.1.5, p. 284]). In order to increase the speed

of convergence to () order at least two, and also use the contraction mapping property of
9
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operator I Werner in [9] introduced the Newton-like method
Tpy1 = an — My 2y — F(zn)) (z9€ D), (z>0),v€[0,1]  (1.3)
where, M,, € L(X) (n > 0) the space of bounded linear operators on X, is given by
M, =1—F'(yz,+ (1 —7)F(x,)) (n>0). (1.4)

If v = 1, we obtain Newton’s method [4], [5]-[9], whereas if v = 0 we obtain Stir-
ling’s method [1]-[3], [5]. Other choices are also possible [9]. Note that method (1.3) (as
Newton’s method does) requires one function evaluation and one evaluation of the Fréchet
derivative F’ of F per step independent of ~.

The motivation for introducing method (1.3) is due to the fact that if (1.1) holds, then
F(z,,) is a better approximation to z* than x,,. Then, we can write:

1
Tp — F(z,) = 2% — F(z™) Jr/o [I — F'(z* + t(x, — 2))]dt(z,, — %) (L.5)

or
-1

o =2y — {/01[1 — Fl(a* + t(a, — x*))]dt} (2 — Flzn)). (1.6)

. 1. . .
Werner noted that the choice v = 3 is the most appropriate choice of the free parameter

v in (1.3) leading to the midpoint rule. Werner provided a local convergence analysis for
method (1.3) (see Proposition 1 in [9]) under hypothesis (1.1) when D = X.

Here we refine Werner’s result by providing a local convergence analysis under weaker
hypotheses with the following advantages: finer error estimates on ||z, — z*|| (n > 0),
and a larger radius of convergence allowing for a wider choice of initial guesses zy. We
then provide a numerical example where our results compare favorably with the ones by
Werner in [9]. Finally the semilocal convergence of method (1.3) not considered in [9] is
studied.

2. LOCAL CONVERGENCE ANALYSIS OF NEWTON-LIKE METHOD (1.3)

We can show the main local convergence theorem for Newton-like method (1.3):

Theorem 1. Ler x* be a fixed point of operator F such that ||F'(z*)|| < 1. Assume there
exist parameters o € [0, 1] and Lo > 0 such that

[1F(z) = F(z7)|| < ao llz — 2™, 2.1)
1 = F/ (&) (F (@) + 6(z — F@)) — F'@)]]| < 22)
< Lo ||F(z+6(z — F(x)) — "
forallz € D, 6 € [0,1] and

U@*,r)={ze X :||z—z"||<r} CD, (2.3)
where,
1
r=-, 2.4)
c
c=a+b,
a= Lo[z + ap(1—7) + 3],
and
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Then sequence {x,} generated by Newton-like method (1.3) is well-defined, remains in
U(xz*,r) and converges to x* provided that xo € U(x*,r). Moreover the following error
bounds hold for all n > 0:

az, — 2*|*

|znt1 — 2| < T (2.5)

bllwn — ¥
Furthermore if ag € [0,1), x* is the unique fixed point of F in U(x*, 7).
Proof. Letx € U(a*,r). Then by (2.1) we have

IF(2) — o) = [1F(@) — F(e")]| < a0l — ")) < Jlz — 2] <7,
which implies that F'(x) € U(z*, r).Note also that F'(z) +y(xz — F(z)) € U(a*,r), since

[F(z) +v(z = F(z)) —2*|| < (1 =) [|[F(z) = F(@")[ + v llz — 27
<[ =mao+9] llz — 2"
< e —z*|| < r.

By hypothesis 2o € U(x*,r). Let us assume xj, € U(z*,r) forall k =0, 1, ..., n. In view
of (2.1)-(2.4) we obtain in turn

Il = F'(F@) 4 = P - [T = F(PE) + 4~ F*) 26)
(I~ F(F(ax) + (e~ F@))]| <
< Lo |[1 — F'(@*)] " [F(ax) + A{ex — Flan)) — F@) —(a” — F(a))]|

< Lo|[lI = F'(a)] 7@ = N(F(ar) — Fz7)) +y(zx — 2]
< Lo[(1 —y)ag + 9] ||z — 2| < br < 1.

It follows from (2.6) and the Banach Lemma on invertible operators [7] that [ —F’ (F (z) )+
y(zp — F(xy))] ! exists, and

[ = F'(F(xx) + (@, = Flar)) T = F'(2)]] 2.7)
= e | e T

We need the following estimates:
1
H[I - F'(x*)]_l/ [F'(z* +t(xg — %)) — F'(z" + y(xp — x*))]dtH (2.8)
0

<= ren [+t - - e
+ [T = F/ @) [F (") = F'(@” + 5(an — 2°))]]

1
<1, {/ la* + tlax — 2%) — 2| dt + le* — 2* — y(ox - x*)ll}
0

1 *
< Lo (5+7) low =27l
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and
Huff%ﬁn*w%ﬁ+wwkfﬁ»ff%F@w+v@k7Fwwmn 2.9)
<7 = F'@)] 7 F (2 + (e - a) Bl
([ = F' (@) F' (=) - F/(F(l’k) + ’Y(Ik — F(z)))]|
< Lo{llz” — ™ — y(zp — %) +
1F(zx) +v(zp — F(zx)) — F(z") —v(z" = F(2"))[|}
< Loly + ao(1 = %) +] llog = .

Let us define, A (t) = F'(z* 4+ t(xp — %)) and By (t) = F'(F(zy) + t(xg — F(xp))),
t € [0,1]. In view of (1.3) we get

s — 2" = [[ = By(y)] I = F(@")][I - F'(a")] " (2.10)
{F(zx) — F(z") — Br(y)(zk — z%)}
Using (2.1), (2.2), (2.8) and (2.9) we get
[[— F'(z")] 7 [F(2x) — F(2*) = Bi(y)(wr — )] (2.11)

— H[I — F'(z)]™! /Ol(Ak(t) — By(y)) (@ — x*)dtH

1
sHU—F%ﬁMlL(Auw—Auwuk—fmﬂ
T = P () — Bu() (e — o)

<aay — |
By (2.8), (2.10) and (2.11) we obtain (2.5). It follows by (2.5) and the definition of r that
[ [ s
which shows that zx11 € U(z*,r) and khj& z, = z*.To show uniqueness, let y* be a
fixed point of F'in U (z*,r) with * # y*. Using (2.1) we get
2% = y*ll = |1F(z%) = F(y")|| < ao [l” =y [ < =" = y7I,
which contradicts x* # y*.That completes the proof of the theorem. (]
Remark 2. The conclusions of the theorem hold under the stronger conditions
|l = F' ()] [F'(a* + t(x — %)) — F'(a* + y(z — 2%))]]| (2.12)
< Lijt -7l llz — 2"
and
[ = F' (@) F (2" + (2 = 2")) = F'(F(2) +7(z = F(2)))]] (2.13)
< Ly(1 =) flz— 27|

for all z € D (together with (2.2) and (2.3)). It follows from the proof of Theorem 1 that
the conclusions hold provided that a is replaced by @ given by

1
a=L(7? =7+ 5)+ Laag(1 = 7). (2.14)
Werner in [9] used the stronger conditions (1.1) and

|7 = F'@™) (F'(@) - F'(9)]| < LIz — ] 2.15)
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for all z,y € D . To arrive at (2.5) with a, b being replaced by @, b given by

L 1 ,
1_a[§+a—(1+a)’y+'y]and0, (2.16)

a=

respectively.
Clearly
LQ < L, (6 7)) S « (217)
L
hold in general, and L—,g can be arbitrarily large [4], [S]. Hence the error bounds are
0 Qo
finer, and the radius of convergence larger under our (weaker) conditions. Note also that
condition (2.2) can be replaced by

I~ F' () [F (@) F )| < Lo llz — o] (2.18)
forall z € D.
Note also that
Ly <L (2.19)

L
holds in general and I can be arbitrarily large [4], [5].
0

Let us provide a numerical example, where our results compare favorably with the ones
given by Werner in [9].

Example 1. Let X = C[0, 1], the space of continuous functions defined on interval [0, 1],
equipped with the max—norm and let D = U(0,1).
Define function F on D by

F(z)(s) = Axz(s)+ Bs /01 0.23(0)do (2.20)

for some given real constants A # 1 and B. Then the Fréchet—derivative F' of function F
is given by

1
F'(z(w))s=ATw(s)+3Bs / 022(0)w(h)dd for all w € D. (2.21)
0

We have x* = x*(s) = 0 is a fixed point of function F. Using (2.20) and (2.21), we can
set

1 3
a0 =[]+ 5|Bl, a=|A]+5|B|

3
Lo=3 IB(1—A)"Y and L=3|B(1-A)7"
Letd§ =y =1
1
Casel: A=B= 3 We get

3 3 )
Ol(]:i<]., L(]:Lézﬁ, L=3 and O[:Z>1.
Hence, contraction hypothesis (1.1) used by Werner in [9] is violated. That is,
there is no guarantee that sequence {x,,} converges to x*(s) = 0.

However, by Theorem 1, we have
_n, 3 4
=y PTy TT o

sequence {x,,} converges to x*(s) provided that o = zo(s) € U(0, 7).

and
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1 1
CaseZ:AziandB:Z This time, we have
5 3 3 7
== Lyo=L,= L=—- = -
(&7s] 6’ 0 0 47 27 « 87
21 3 =
= — b:—, 7:6
a g a
and
NS DS |
W= ST o

That is our radius of convergence is larger which allows a wider choice of
initial guesses xo. Moreover, our error bounds (2.5) are tighter, since a < a.

3. SEMILOCAL CONVERGENCE ANALYSIS OF NEWTON-LIKE METHOD (1.3)
We can show the following semilocal convergence result for Newton-like method (1.3):

Theorem 3. Let F' be a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in X. Assume: there exist positive parameters pg, p, lo and
[ such that for some xg € D,y € [0, 1] M(;1 € L(X) and for all z,y € D:

[ () — F(xo)|| < po[lz — zol| (3.1)
| My F' () < p, 3.2)
| Mg ! (2) = F'(w)]|| <o ||z —wl (3.3)
forz=z(v,x) =yz + (1 = 7)F(z),w = w(y) = yzo + (1 — 7)F(20),
[ Mg '[! (2) = F'(0)]]| < ]|z = o]l (34

forv=o(t) =z +t(y — x) forall te [0, 1]; for ro, 1,72, and r3 given by

ro = Hwo—F(xo)H’ = 1—(P0+P)+\/D717
1—=po 2q0
_ 111 =) [lwo — F(zo)|l + VD2
2[qo + Upo(1 =) + 72 =7+ 3)]
Dy =[1—(po+p)| —4qo [|[xo — F (o),

1
rs=— [1= {/qllwo — F(ao]l|
d0

where, go = lo[y + (1 — v¥)po],

1
a=lV-7v+3) @=11-7),9=q +q@p

2
the following hold:
ro < min{ry,r3}, (3.5)
1 _ 1 — (po + p)]?
oo = Plao)l < 1, 1045 oo — Flao)]] < EREPE 0 <y s p <t )
or
ro < min{re, r3}, (3.7)

1
|0 = Fxo)|l < " HM(;l[xo — F(x0)]| < min{é T4} (3.8)

1
(1—=7)
where, 14 is the smallest root of equation

027"2 +c1r+cog =0, 3.9)
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1
co=0P1-7)% c=-2[1-v+2(g+po(l =) +7* -7+ UL

C():l,

cf > 4dcpeq; (3.10)

and

U(zo,m) C D (3.11)
for some {r € [ro,min{rq rs}) if (3.5) and (3.6) hold or r € [ro,min{rq,r3}) if (3.7)-
(3.10) hold.
Then sequence {x,,} generated by Newton-like method (1.3) is well defined, remains
in U(xg,r) for all n > 0 and converges to a fixed point x* € U(xg,r) of operator F.
Moreover the following estimates hold:

g1 |01 = Znll + g2 2041 = F(@n) ] 2041 — 20|

Tyt — Flx, < (3.12)
H +1 ( +1)H 1_ P ||mn+1 — :CO”
< enllzn = F(@n)l*, (n>0)
and
||1'n+1 - In” S gn ||In—1 - F(xn—l)”Q (TL Z ]-)a (313)
where,
q
Ep = n > 0),
(= a0 7w — 20l — o llomss —zal) " =)
and -
— n—1
gp=——"-—"——(n>1).
1 —qo[|zn — 20| ( )
Furthermore if
r € [ro,74), (3.14)
where,
1 -1
Ty = {QO+£[V2—7+2+(1—"/)P0]} )
then the fixed point x* is unique in U(xo, 7). Finally the following estimate holds:
|1 — 2" < [ 2 ] lzn = y7* (n>0). (3.15)

1 —qo[|zn — 20|

Proof. We shall first show that for all v € [0, 1], z € U(zo,7) and vz + (1 — 7)F(z) €

Ul(zo, 7).
We can have
yr+ (1 —7)F(x) —x0 =v(x —x¢) + (1 — ) (F(x) — F(x0)) (3.16)
+ (1 = 7)(F (o) — o).
In view of (3.1), (3.16) and the choice of » > ry we get
vz + (1 =) F(z) — zoll < vl — ol + (1 —7) [|F(z) — F(zo)] (3.17)
+ (1 =) [[F(z0) — @0
<[v+ Q@ =po]r+ (1 =) [F(xo) — 2o <,

which implies yz + (1 — ) F () is in U(xo, 7).
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We shall next show M (z)~! € L(X) for all z € U(xg,7). Using (3.1), (3.3) and the
choice of r < r3 we get in turn

| M(0)~ [M(0) — M ()] (3.18)
<My F (v + (1 =) F(x)) — F'(yz0 + (1 — ) F(x0))]

< Lo |[yz —yzo + (1 = 7)(F(z) — F(20))||

< Loly |z — ol + (1 — ¥)po |z — o]

=qo ||z — zo|| < qor < 1.

It follows from (3.18), and the Banach Lemma on invertible operators that M (z)~! €
L(X) with
1

. (3.19)
|z — 20|

[ar@) 21 0)] <

Let us assume 3, € U(xg,r) for k = 0,1, ..., n. We shall show (3.12), (3.13) and 21,41 €

U(zo,7) hold true.
Using (1.3) we get the identity

Tpy1 — Fxpgr) = (3.20)
= 21 — F(@nt1) — Mi(@h41 — 2x) — (2 — F(2k))
= F(zp) — F(ops1) + F' (o + (L= ) F (k) (@1 — z5)

1
- /O [F'(@p41 + t(xg — 2p41)) = F' (v + (1= ) F(2x))] (v — Tp41)dt

By (1.3), (3.4) and (3.19) (for x = z,,+1) and (3.20) we obtain in turn:
[ze41 — F@i) |l (3.21)
= U i + tlen = i) =y = (1= yF (@) o — i) de
- 1 —qo[|zk+1 — o]

o £ =2 lns =l dt + (1= ) lzsn = F@el] o — 2

1—qo [kt — ol

< L llzren = 2l + @2 [|2ir = Flan) [} |2re1 — ull
- 1 —qo [|zk+1 — o

We need an upper bound on the ||z;11 — F(xx)] . In view of (1.3) we obtain the identity
Try1 — F(xr) (3.22)
= a5, — F(wg) — My, H(og — F(zy))
= M H{[I = F'(yay + (L= ) F (i) (@ — F(ar) — (25 — Flay))}
= (M ' Mo)[Mg ' F' (yark + (L = 7) F ()] (2 — F ()

Using (3.2), (3.19) (for z = ) and (3.21) we obtain

pllze — F(z)|

14
<

T — F(x < . 3.23
ks = Fln)ll < 1= qollzr — @0 429
In view of (1.3) we get
|ze — ()|l
T —rl < ————"F (3.24)
H k+1 k” 1— P ||37k: — 3?0||

By combining (3.23) and (3.24) in (3.21) we obtain (3.12) and (3.13).
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We must show ||, — F(x,)|| — 0asn — oo, which will then imply that ||z, 11 — =, | —
0 and ||z, — z*|| — 0 as n — oo. By (3.12) is suffices to show

enl|Tn — F(z,)|| <1 (3.25)
or
q|lxo — F (o)l
— =<1 3.26
(1 —qor)? (3.26)

which is true by the choice of r < r3 and the choice of ||zg — F'(zo)| < %. We must also

show zj 41 € U(zo, 7). Two estimates for ||zx11 — 7o will be given.
Estimate 1. Using (3.1), (3.2), (3.5), (3.6), and (3.19). By (1.3) we get in turn

Tkl — To (3.27)

+ (F(z0) — F(x0))]

and
F _
i — ol < WL = z0ll = o 22r] (3.28)
— qoT
by the choice of » < 1 and the choice of
_ 10po + p))?
HMO 1[£U0 - F(xo)]H < 7[ p(jlqo Pl , 0<po+p <1

Estimate 2. Using (3.1), (3.4), (3.19) and (3.27). We obtain that the expression inside the
bracket in (3.27) composed by M, ! is bounded above (in norm) by

1
HMol / F'(zo + t(zg — z0)) — F'(yop + (1 — 7)F(xk))}‘ lxr — zo||dt  (3.29)
0

+ ||Mo_1(F($o) 0l

< /Olf |wo + t(zk — x0) — K — (1 =) F(zp)| [|zx — 2ol dt
+ || Mg (F (o) — o

< llzo = F(zo)[ (1 =) + po(1 =) lzx — xoll + (7? — v + %)
[k = aoll] - llex — ol| + [ Mg *(z0 — F(x0))|

That is it suffices to show

l2k+1 — 2ol (3.30)
< Hzo=F(@0)|(1=)r+€0y° ~7+ 400 A=)+ || My (w0 — F(0)) |

= 1—qor

<r

3

which is true by the choice of < r5 and the choice of

1My (20 — Fa0))| < min{m,r4} ,
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Finally to show uniqueness, let us assume y* € U(x, ) is a fixed point of F. Using (1.3)
we obtain the identity

Thy1 — Y (3.31)
=xp—y" — Mk_l(a:k — F(xy))
=M (I = F'(yop + (1= ) F(z)] (2 — y* = (zx — F(az))]
1
= [My ' Mo) My /0 [F'(y" + t(xx — 7)) — F'(yog + (1 — ) F ()] (21 — y*)dt.

Using (3.4), (3.19), (3.31) and the choice of r € [rg,r4) we obtain in turn

zk+1 — 47| (3.32)
e o 1t = ok =yl dt + (L= ) (Flar) = F(y")) o = v°l]

- 1 —qor

N e 2+ (1= y)po] llzx — y*1?

- 1—qor

<lze =y,
which shows (3.15), and kli_)ngo xr = y*. However, we showed klingo x, = x*. Hence, we
deduce

z* =y*. (3.33)

That completes the proof of the theorem. (I

Remark 4. 1t follows from theorem 3 that the (Q-order of convergence for Newton-like
method (1.3) is at least quadratic. Conditions (3.3) and (3.4) can be replaced by the usual
stronger Lipschitz conditions where z and v are simply in D. Note also that

po <pandfy <V, (3.34)

/
hold in general, and 27 » can be arbitrarily large [4], [5].
Po *o
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