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Abstract. The well known contraction mapping principle or Banach’s
fixed point theorem asserts: The method for successive substitutions con-
verges only linearly to a fixed point of an operator equation in a Banach
space setting [5], [7]. In practice, if Newton’s method is used one ig-
nores the additional information about the contraction mapping informa-
tion. Werner in [9] provided a local analysis for a Newton-like method of
at least Q-order 3 which uses this information. Here we provide a finer
local convergence analysis for the same method under weaker hypotheses
which do not necessarily imply the contraction property of the mapping.
A numerical example is provided to show that our results compare favor-
ably with the ones in [9]. The semilocal convergence of the method not
considered in [9] is also examined.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique fixed
point x∗ of a Fréchet-differentiable operator F which is defined on a convex subset D of a
Banach space X with values in X.

The contraction mapping principle or Banach’s fixed point theorem [5], [7] asserts that
if

∥F ′(x)∥ < 1 for all x ∈ X (1.1)

then there exists a unique fixed x∗ of operator F on X. The method of succesive substitu-
tions or Picard’s iteration

yn+1 = F (yn) (y0 ∈ X) (n ≥ 0) (1.2)

converges only linearly to x∗ (the definition of Q order for an iterative method is well
known and can be found in [8, Definition 9.1.5, p. 284]). In order to increase the speed
of convergence to Q order at least two, and also use the contraction mapping property of
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operator F Werner in [9] introduced the Newton-like method

xn+1 = xn −M−1
n (xn − F (xn)) (x0 ∈ D), (x ≥ 0), γ ∈ [0, 1] (1.3)

where, Mn ∈ L(X) (n ≥ 0) the space of bounded linear operators on X , is given by

Mn = I − F ′(γxn + (1− γ)F (xn)) (n ≥ 0). (1.4)

If γ = 1, we obtain Newton’s method [4], [5]-[9], whereas if γ = 0 we obtain Stir-
ling’s method [1]-[3], [5]. Other choices are also possible [9]. Note that method (1.3) (as
Newton’s method does) requires one function evaluation and one evaluation of the Fréchet
derivative F ′ of F per step independent of γ.

The motivation for introducing method (1.3) is due to the fact that if (1.1) holds, then
F (xn) is a better approximation to x∗ than xn. Then, we can write:

xn − F (xn) = x∗ − F (x∗) +

∫ 1

0

[I − F ′(x∗ + t(xn − x∗))]dt(xn − x∗) (1.5)

or

x∗ = xn −
{∫ 1

0

[I − F ′(x∗ + t(xn − x∗))]dt

}−1

(xn − F (xn)). (1.6)

Werner noted that the choice γ =
1

2
is the most appropriate choice of the free parameter

γ in (1.3) leading to the midpoint rule. Werner provided a local convergence analysis for
method (1.3) (see Proposition 1 in [9]) under hypothesis (1.1) when D = X.

Here we refine Werner’s result by providing a local convergence analysis under weaker
hypotheses with the following advantages: finer error estimates on ∥xn − x∗∥ (n ≥ 0),
and a larger radius of convergence allowing for a wider choice of initial guesses x0. We
then provide a numerical example where our results compare favorably with the ones by
Werner in [9]. Finally the semilocal convergence of method (1.3) not considered in [9] is
studied.

2. LOCAL CONVERGENCE ANALYSIS OF NEWTON-LIKE METHOD (1.3)

We can show the main local convergence theorem for Newton-like method (1.3):

Theorem 1. Let x∗ be a fixed point of operator F such that ∥F ′(x∗)∥ < 1. Assume there
exist parameters α0 ∈ [0, 1] and L0 ≥ 0 such that

∥F (x)− F (x∗)∥ ≤ α0 ∥x− x∗∥ , (2.1)∥∥[I − F ′(x∗)]−1[F ′(F (x) + δ(x− F (x)))− F ′(x∗)]
∥∥ ≤ (2.2)

≤ L0 ∥F (x+ δ(x− F (x))− x∗∥

for all x ∈ D, δ ∈ [0, 1] and

U(x∗, r) = {x ∈ X : ∥ x− x∗ ∥≤ r} ⊆ D, (2.3)

where,

r =
1

c
, (2.4)

c = a+ b,

a = L0[
1

2
+ α0(1− γ) + 3γ],

and
b = L0[(1− γ)α0 + γ].
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Then sequence {xn} generated by Newton-like method (1.3) is well-defined, remains in
U(x∗, r) and converges to x∗ provided that x0 ∈ U(x∗, r). Moreover the following error
bounds hold for all n ≥ 0:

∥xn+1 − x∗∥ ≤ a ∥xn − x∗∥2

1− b ∥xn − x∗∥
. (2.5)

Furthermore if α0 ∈ [0, 1), x∗ is the unique fixed point of F in U(x∗, r).

Proof. Let x ∈ U(x∗, r). Then by (2.1) we have

∥F (x)− x∗∥ = ∥F (x)− F (x∗)∥ ≤ α0 ∥x− x∗∥ ≤ ∥x− x∗∥ < r,

which implies that F (x) ∈ U(x∗, r).Note also that F (x)+γ(x−F (x)) ∈ U(x∗, r), since

∥F (x) + γ(x− F (x))− x∗∥ ≤ (1− γ) ∥F (x)− F (x∗)∥+ γ ∥x− x∗∥
≤ [(1− γ)α0 + γ] ∥x− x∗∥
≤ ∥x− x∗∥ < r.

By hypothesis x0 ∈ U(x∗, r). Let us assume xk ∈ U(x∗, r) for all k = 0, 1, ..., n. In view
of (2.1)-(2.4) we obtain in turn∥∥[I − F ′(F (x∗) + γ(x∗ − F (x∗)))]−1 · [I − F ′(F (x∗) + γ(x∗ − F (x∗)) (2.6)

−(I − F ′(F (xk) + γ(xk − F (xk)))]∥ ≤
≤ L0

∥∥I − F ′(x∗)]−1[F (xk) + γ(xk − F (xk))− F (x∗)− γ(x∗ − F (x∗))]
∥∥

≤ L0

∥∥[I − F ′(x∗)]−1[(1− γ)(F (xk)− F (x∗)) + γ(xk − x∗)]
∥∥

≤ L0[(1− γ)α0 + γ] ∥xk − x∗∥ ≤ br < 1.

It follows from (2.6) and the Banach Lemma on invertible operators [7] that [I−F ′(F (xk)+
γ(xk − F (xk))]

−1 exists, and∥∥[I − F ′(F (xk) + γ(xk − F (xk)))]
−1[I − F ′(x∗)]

∥∥ (2.7)

≤ [1− b ∥xk − x∗∥]−1 ≤ [1− br]−1.

We need the following estimates:∥∥∥∥[I − F ′(x∗)]−1

∫ 1

0

[F ′(x∗ + t(xk − x∗))− F ′(x∗ + γ(xk − x∗))]dt

∥∥∥∥ (2.8)

≤
∥∥∥∥[I − F ′(x∗)]−1

∫ 1

0

[F ′(x∗ + t(xk − x∗))− F ′(x∗)]dt

∥∥∥∥
+
∥∥I − F ′(x∗)]−1[F ′(x∗)− F ′(x∗ + γ(xk − x∗))]

∥∥
≤ L0

{∫ 1

0

∥x∗ + t(xk − x∗)− x∗∥ dt+ ∥x∗ − x∗ − γ(xk − x∗)∥
}

≤ L0

(
1

2
+ γ

)
∥xk − x∗∥ ,
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and ∥∥[I − F ′(x∗)]−1[F ′(x∗ + γ(xk − x∗))− F ′(F (xk) + γ(xk − F (xk)))]
∥∥ (2.9)

≤
∥∥[I − F ′(x∗)]−1[F ′(x∗ + γ(xk − x∗))− F ′(x∗)]

∥∥
+
∥∥[I − F ′(x∗)]−1[F ′(x∗)− F ′(F (xk) + γ(xk − F (xk)))]

∥∥
≤ L0{∥x∗ − x∗ − γ(xk − x∗)∥+
∥F (xk) + γ(xk − F (xk))− F (x∗)− γ(x∗ − F (x∗))∥}
≤ L0[γ + α0(1− γ) + γ] ∥xk − x∗∥ .

Let us define, Ak(t) = F ′(x∗ + t(xk − x∗)) and Bk(t) = F ′(F (xk) + t(xk − F (xk))),
t ∈ [0, 1]. In view of (1.3) we get

xk+1 − x∗ = [I −Bk(γ)]
−1[I − F ′(x∗)][I − F ′(x∗)]−1 (2.10)

{F (xk)− F (x∗)−Bk(γ)(xk − x∗)}.
Using (2.1), (2.2), (2.8) and (2.9) we get∥∥[I − F ′(x∗)]−1[F (xk)− F (x∗)−Bk(γ)(xk − x∗)]

∥∥ (2.11)

=

∥∥∥∥[I − F ′(x∗)]−1

∫ 1

0

(Ak(t)−Bk(γ))(xk − x∗)dt

∥∥∥∥
≤

∥∥∥∥[I − F ′(x∗)]−1

∫ 1

0

(Ak(t)−Ak(γ)(xk − x∗)dt

∥∥∥∥
+
∥∥{I − F ′(x∗)]−1(Ak(γ)−Bk(γ))(xk − x∗)

∥∥
≤ a ∥xk − x∗∥2 .

By (2.8), (2.10) and (2.11) we obtain (2.5). It follows by (2.5) and the definition of r that

∥xk+1 − x∗∥ < ∥xk − x∗∥ < r,

which shows that xk+1 ∈ U(x∗, r) and lim
k→∞

xk = x∗.To show uniqueness, let y∗ be a

fixed point of F in U(x∗, r) with x∗ ̸= y∗. Using (2.1) we get

∥x∗ − y∗∥ = ∥F (x∗)− F (y∗)∥ ≤ α0 ∥x∗ − y∗∥ < ∥x∗ − y∗∥ ,
which contradicts x∗ ̸= y∗.That completes the proof of the theorem. �

Remark 2. The conclusions of the theorem hold under the stronger conditions∥∥[I − F ′(x∗)]−1[F ′(x∗ + t(x− x∗))− F ′(x∗ + γ(x− x∗))]
∥∥ (2.12)

≤ L1 |t− γ| ∥x− x∗∥
and ∥∥[I − F ′(x∗)]−1[F ′(x∗ + γ(x− x∗))− F ′(F (x) + γ(x− F (x)))]

∥∥ (2.13)

≤ L2(1− γ) ∥x− x∗∥
for all x ∈ D (together with (2.2) and (2.3)). It follows from the proof of Theorem 1 that
the conclusions hold provided that a is replaced by a given by

a = L1(γ
2 − γ +

1

2
) + L2α0(1− γ). (2.14)

Werner in [9] used the stronger conditions (1.1) and∥∥[I − F ′(x∗)]−1(F ′(x)− F ′(y))
∥∥ ≤ L ∥x− y∥ (2.15)
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for all x, y ∈ D . To arrive at (2.5) with a, b being replaced by a, b given by

a =
L

1− α
[
1

2
+ α− (1 + α)γ + γ2] and 0, (2.16)

respectively.
Clearly

L0 ≤ L, α0 ≤ α (2.17)

hold in general, and
L

L0
,
α

α0
can be arbitrarily large [4], [5]. Hence the error bounds are

finer, and the radius of convergence larger under our (weaker) conditions. Note also that
condition (2.2) can be replaced by∥∥[I − F ′(x∗)]−1[F ′(x)− F ′(x∗)]

∥∥ ≤ L
′

0 ∥x− x∗∥ (2.18)
for all x ∈ D.

Note also that
L

′

0 ≤ L (2.19)

holds in general and
L

L
′
0

can be arbitrarily large [4], [5].

Let us provide a numerical example, where our results compare favorably with the ones
given by Werner in [9].

Example 1. Let X = C[0, 1], the space of continuous functions defined on interval [0, 1],
equipped with the max–norm and let D = U(0, 1).

Define function F on D by

F (x)(s) = Ax(s) +B s

∫ 1

0

θ x3(θ) dθ (2.20)

for some given real constants A ̸= 1 and B. Then the Fréchet–derivative F ′ of function F
is given by

F ′(x(w))s = AI w(s) + 3B s

∫ 1

0

θ x2(θ)w(θ) dθ for all w ∈ D. (2.21)

We have x∗ = x∗(s) = 0 is a fixed point of function F . Using (2.20) and (2.21), we can
set

α0 = |A|+ 1

2
|B|, α = |A|+ 3

2
|B|,

L0 =
3

2
|B (1−A)−1| and L = 3 |B (1−A)−1|.

Let δ = γ = 1.

Case 1: A = B =
1

2
. We get

α0 =
3

4
< 1, L0 = L′

0 =
3

2
, L = 3 and α =

5

4
> 1.

Hence, contraction hypothesis (1.1) used by Werner in [9] is violated. That is,
there is no guarantee that sequence {xn} converges to x∗(s) = 0.

However, by Theorem 1, we have

a =
21

4
, b =

3

2
, r =

4

27
and

sequence {xn} converges to x∗(s) provided that x0 = x0(s) ∈ U(0, r).
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Case 2: A =
1

2
and B =

1

4
. This time, we have

α0 =
5

6
, L0 = L′

0 =
3

4
, L =

3

2
, α =

7

8
,

a =
21

8
, b =

3

4
, a = 6

and
rW =

1

6
< rA =

8

27
.

That is our radius of convergence is larger which allows a wider choice of
initial guesses x0. Moreover, our error bounds (2.5) are tighter, since a ≤ a.

3. SEMILOCAL CONVERGENCE ANALYSIS OF NEWTON-LIKE METHOD (1.3)

We can show the following semilocal convergence result for Newton-like method (1.3):

Theorem 3. Let F be a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in X. Assume: there exist positive parameters p0, p, l0 and
l such that for some x0 ∈ D, γ ∈ [0, 1] M−1

0 ∈ L(X) and for all x, y ∈ D:

∥F (x)− F (x0)∥ ≤ p0 ∥x− x0∥ (3.1)∥∥M−1
0 F ′(x)

∥∥ ≤ p, (3.2)∥∥M−1
0 [F ′(z)− F ′(w)]

∥∥ ≤ l0 ∥z − w∥ (3.3)
for z = z(γ, x) = γx+ (1− γ)F (x), w = w(γ) = γx0 + (1− γ)F (x0),∥∥M−1

0 [F ′(z)− F ′(v)]
∥∥ ≤ l ∥z − v∥ (3.4)

for v = v(t) = x+ t(y − x) for all t∈ [0, 1]; for r0, r1,r2, and r3 given by

r0 =
∥x0 − F (x0)∥

1− p0
, r1 =

1− (p0 + p) +
√
D1

2q0
,

r2 =
1− l(1− γ) ∥x0 − F (x0)∥+

√
D2

2[q0 + l(p0(1− γ) + γ2 − γ + 1
2 )]

,

D1 = [1− (p0 + p)]− 4q0 ∥x0 − F (x0)∥ ,

r3 =
1

q0

[
1− 3

√
q ∥x0 − F (x0∥

]
,

where, q0 = l0[γ + (1− γ)p0],

q1 = l(γ2 − γ +
1

2
), q2 = l(1− γ), q = q1 + q2p

the following hold:
r0 < min{r1, r3}, (3.5)

∥x0 − F (x0)∥ ≤ 1

q
,
∥∥M−1

0 [x0 − F (x0)]
∥∥ <

[1− (p0 + p)]2

4q0
, 0 ≤ p0 + p < 1 (3.6)

or
r0 < min{r2, r3}, (3.7)

∥x0 − F (x0)∥ ≤ 1

q
,
∥∥M−1

0 [x0 − F (x0)]
∥∥ < min{ 1

ℓ(1− γ)
, r4} (3.8)

where, r4 is the smallest root of equation

c2r
2 + c1r + c0 = 0, (3.9)
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c2 = ℓ2(1− γ)2, c1 = −2[1− γ + 2(q0 + ℓ(p0(1− γ) + γ2 − γ +
1

2
))],

c0 = 1,

c21 ≥ 4c0c1; (3.10)

and
U(x0, r) ⊆ D (3.11)

for some {r ∈ [r0,min{r1,r3}) if (3.5) and (3.6) hold or r ∈ [r0,min{r2, r3}) if (3.7)-
(3.10) hold.

Then sequence {xn} generated by Newton-like method (1.3) is well defined, remains
in U(x0, r) for all n ≥ 0 and converges to a fixed point x∗ ∈ U(x0, r) of operator F.
Moreover the following estimates hold:

∥xn+1 − F (xn+1)∥ ≤ [q1 ∥xn+1 − xn∥+ q2 ∥xn+1 − F (xn)∥] ∥xn+1 − xn∥
1− q0 ∥xn+1 − x0∥

(3.12)

≤ εn ∥xn − F (xn)∥2 , (n ≥ 0)

and
∥xn+1 − xn∥ ≤ εn ∥xn−1 − F (xn−1)∥2 (n ≥ 1), (3.13)

where,
εn =

q

(1− q0 ∥xn − x0∥)2(1− q0 ∥xn+1 − x0∥)
(n ≥ 0),

and
εn =

εn−1

1− q0 ∥xn − x0∥
(n ≥ 1).

Furthermore if
r ∈ [r0, r4), (3.14)

where,

r4 =

{
q0 + ℓ

[
γ2 − γ +

1

2
+ (1− γ)p0

]}−1

,

then the fixed point x∗ is unique in U(x0, r). Finally the following estimate holds:

∥xn+1 − x∗∥ ≤
ℓ
[
γ2 − γ + 1

2 + (1− γ)p0
]

1− q0 ∥xn − x0∥
∥xn − y∗∥2 (n ≥ 0). (3.15)

Proof. We shall first show that for all γ ∈ [0, 1], x ∈ U(x0, r) and γx + (1 − γ)F (x) ∈
U(x0, r).

We can have

γx+ (1− γ)F (x)− x0 = γ(x− x0) + (1− γ)(F (x)− F (x0)) (3.16)

+ (1− γ)(F (x0)− x0).

In view of (3.1), (3.16) and the choice of r ≥ r0 we get

∥γx+ (1− γ)F (x)− x0∥ ≤ γ ∥x− x0∥+ (1− γ) ∥F (x)− F (x0)∥ (3.17)

+ (1− γ) ∥F (x0)− x0∥
≤ [γ + (1− γ)p0] r + (1− γ) ∥F (x0)− x0∥ ≤ r,

which implies γx+ (1− γ)F (x) is in U(x0, r).
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We shall next show M(x)−1 ∈ L(X) for all x ∈ U(x0, r). Using (3.1), (3.3) and the
choice of r ≤ r3 we get in turn∥∥M(0)−1 [M(0)−M(x)]

∥∥ (3.18)

≤
∥∥M−1

0 [F ′(γx+ (1− γ)F (x))− F ′(γx0 + (1− γ)F (x0))]
∥∥

≤ ℓ0 ∥γx− γx0 + (1− γ)(F (x)− F (x0))∥
≤ ℓ0[γ ∥x− x0∥+ (1− γ)p0 ∥x− x0∥]
= q0 ∥x− x0∥ ≤ q0r < 1.

It follows from (3.18), and the Banach Lemma on invertible operators that M(x)−1 ∈
L(X) with ∥∥M(x)−1M(0)

∥∥ ≤ 1

1− q0 ∥x− x0∥
. (3.19)

Let us assume xk ∈ U(x0, r) for k = 0, 1, ..., n. We shall show (3.12), (3.13) and xk+1 ∈
U(x0, r) hold true.

Using (1.3) we get the identity

xk+1 − F (xk+1) = (3.20)

= xk+1 − F (xn+1)−Mk(xk+1 − xk)− (xk − F (xk))

= F (xk)− F (xk+1) + F ′(γxk + (1− γ)F (xk))(xk+1 − xk)

=

∫ 1

0

[F ′(xk+1 + t(xk − xk+1))− F ′(γxk + (1− γ)F (xk))] (xk − xk+1)dt

By (1.3), (3.4) and (3.19) (for x = xn+1) and (3.20) we obtain in turn:

∥xk+1 − F (xk+1)∥ (3.21)

≤
ℓ
∫ 1

0
∥xk+1 + t(xk − xk+1)− γxk − (1− γF (xk)∥ ∥xk+1 − xk∥ dt

1− q0 ∥xk+1 − x0∥

≤
ℓ
[∫ 1

0
|t− γ| ∥xk+1 − xk∥ dt+ (1− γ) ∥xk+1 − F (xk)∥

]
∥xk+1 − xk∥

1− q0 ∥xk+1 − x0∥

≤ [q1 ∥xk+1 − xk∥+ q2 ∥xk+1 − F (xk)∥] ∥xk+1 − xk∥
1− q0 ∥xk+1 − x0∥

.

We need an upper bound on the ∥xk+1 − F (xk)∥ . In view of (1.3) we obtain the identity

xk+1 − F (xk) (3.22)

= xk − F (xk)−M−1
k (xk − F (xk))

= M−1
k {[I − F ′(γxk + (1− γ)F (xk))](xk − F (xk))− (xk − F (xk))}

= [M−1
k M0][M

−1
0 F ′(γxk + (1− γ)F (xk))](xk − F (xk)).

Using (3.2), (3.19) (for x = xk) and (3.21) we obtain

∥xk+1 − F (xk)∥ ≤ p ∥xk − F (xk)∥
1− q0 ∥xk − x0∥

. (3.23)

In view of (1.3) we get

∥xk+1 − xk∥ ≤ ∥xk − F (xk)∥
1− q0 ∥xk − x0∥

. (3.24)

By combining (3.23) and (3.24) in (3.21) we obtain (3.12) and (3.13).
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We must show ∥xn − F (xn)∥ → 0 as n → ∞, which will then imply that ∥xn+1 − xn∥ →
0 and ∥xn − x∗∥ → 0 as n → ∞. By (3.12) is suffices to show

εn ∥xn − F (xn)∥ < 1 (3.25)

or
q ∥x0 − F (x0)∥

(1− q0r)3
< 1 (3.26)

which is true by the choice of r ≤ r3 and the choice of ∥x0 − F (x0)∥ < 1
q . We must also

show xk+1 ∈ U(x0, r). Two estimates for ∥xk+1 − x0∥ will be given.
Estimate 1. Using (3.1), (3.2), (3.5), (3.6), and (3.19). By (1.3) we get in turn

xk+1 − x0 (3.27)

= xk − x0 −M−1
k (xk − F (xk))

= [M−1
k M0]M

−1
0 [F (xk)− F (x0)− F ′(γ(xk + (1− γ)F (xk))(xk − x0)

+ (F (x0)− F (x0))]

and

∥xk+1 − x0∥ ≤ [∥F (x0)− x0∥+ (p0 + p)r]

1− q0r
≤ r, (3.28)

by the choice of r ≤ 1 and the choice of∥∥M−1
0 [x0 − F (x0)]

∥∥ ≤ [10p0 + p)]2

4q0
, 0 ≤ p0 + p < 1.

Estimate 2. Using (3.1), (3.4), (3.19) and (3.27). We obtain that the expression inside the
bracket in (3.27) composed by M−1

0 is bounded above (in norm) by∥∥∥∥M−1
0

∫ 1

0

F ′(x0 + t(xk − x0))− F ′(γxk + (1− γ)F (xk))]

∥∥∥∥ ∥xk − x0∥ dt (3.29)

+
∥∥M−1

0 (F (x0)− x0)
∥∥

≤
∫ 1

0

ℓ ∥x0 + t(xk − x0)− γxk − (1− γ)F (xk)∥ ∥xk − x0∥ dt

+
∥∥M−1

0 (F (x0)− x0

∥∥
≤ [∥x0 − F (x0)∥ (1− γ) + p0(1− γ) ∥xk − x0∥+ (γ2 − γ +

1

2
)

∥xk − x0∥] · ∥xk − x0∥+
∥∥M−1

0 (x0 − F (x0))
∥∥

That is it suffices to show

∥xk+1 − x0∥ (3.30)

≤ ℓ∥x0−F (x0)∥(1−γ)r+ℓ[γ2−γ+ 1
2+p0(1−γ)]r2+∥M−1

0 (x0−F (x0))∥
1−q0r

≤ r,

which is true by the choice of r ≤ r2 and the choice of∥∥M−1
0 (x0 − F (x0))

∥∥ ≤ min

{
1

ℓ(1− γ)
, r4

}
.
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Finally to show uniqueness, let us assume y∗ ∈ U(x0, r) is a fixed point of F. Using (1.3)
we obtain the identity

xk+1 − y∗ (3.31)

= xk − y∗ −M−1
k (xk − F (xk))

= M−1
k [(I − F ′(γxk + (1− γ)F (xk)))] (xk − y∗ − (xk − F (xk))]

= [M−1
k M0]M

−1
0

∫ 1

0

[F ′(y∗ + t(xk − y∗))− F ′(γxk + (1− γ)F (xk))](xk − y∗)dt.

Using (3.4), (3.19), (3.31) and the choice of r ∈ [r0, r4) we obtain in turn

∥xk+1 − y∗∥ (3.32)

≤
ℓ
[∫ 1

0
|t− γ| ∥xk − y∗∥ dt+ (1− γ)(F (xk)− F (y∗)) ∥xk − y∗∥

]
1− q0r

≤
ℓ
[
γ2 − γ + 1

2 + (1− γ)p0
]
∥xk − y∗∥2

1− q0r

< ∥xk − y∗∥ ,
which shows (3.15), and lim

k→∞
xk = y∗. However, we showed lim

k→∞
xk = x∗. Hence, we

deduce
x∗ = y∗. (3.33)

That completes the proof of the theorem. �
Remark 4. It follows from theorem 3 that the Q-order of convergence for Newton-like
method (1.3) is at least quadratic. Conditions (3.3) and (3.4) can be replaced by the usual
stronger Lipschitz conditions where z and v are simply in D. Note also that

p0 ≤ p and ℓ0 ≤ ℓ, (3.34)

hold in general, and
p

p0
,
ℓ

ℓ0
can be arbitrarily large [4], [5].
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[6] J.M. Gutiérrez, M.A. Hernàndez, M.A. Salanova, Accesibility of solutions by Newton’s method, Intern. J.

Comput. Math., 57 (1995), 239–247.
[7] L.V. Kantorovich, G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.
[8] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic

press, New York, 1970.
[9] W. Werner, Newton-like method for the computation of fixed points, Comput. and Math. with Appl., 10

(1984), 77–84.


