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1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of the equation

F (x) = 0, (1. 1)

where F is a Fréchet-differentiable operator mapping a convex subsetD of a Banach
space X into a Banach space Y .

The most popular methods for generating sequences approximating x∗ are un-
doubtedly Newton’s method

yn+1 = yn − F ′(yn)
−1F (yn) (n ≥ 0), (y0 ∈ D), (1. 2)

and the Secant method

xn+1 = xn − [xn−1, xn]
−1F (xn) (n ≥ 0), (x−1, x0 ∈ D). (1. 3)

The advantages and disadvantages of using the Secant method over Newton’s
method are well known [1]–[14].
Here, F ′(x), [x, y] ∈ L(X,Y ) the space of bounded linear operators, by [x, y] we
mean [x, y;F ], and the divided difference of order one at (x, y) satisfying

[x, y](x− y) = F (x)− F (y) (1. 4)

for all x, y ∈ D with x 6= y [4], [6], [9].
1
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There is an extensive literature on methods (1.2) and (1.3). A survey of such
results can be found in [1]–[9], [14], and the references there.

It turns out that so far there are two ways of studying method (1.2): Newton–
Kantorovich-type local and semilocal convergence results depending on a domain
containing the initial guess x0 and Lipschitz conditions on F ′(x) [4], [6], [9]; Smale-
type theorems that require information only at x0 and the analyticity of F [11]–[14].

Moreover, Wang [12] introduced the weaker than Smale’s gamma γ-condition
and successfully applied it to Newton and Newton-type methods. Yakoubson [14]
extended Smale’s work for the Secant method using a strong analyticity assumption
on operator F .

The results mentioned above are based on the assumption that the sequence

∥

∥

∥

∥

F ′(x0)
−1F (n)(x0)

n!

∥

∥

∥

∥

(n ≥ 2), (1. 5)

is bounded above by

γ(F, x0) = sup
k≥2

∥

∥

∥

∥

F ′(x0)
−1F (n)(x0)

n!

∥

∥

∥

∥

1
n−1

. (1. 6)

However, this kind of assumption may not be reasonable. Particularly, for some
concrete and special operators appearing in connection with the Durand–Kerner
method, it is really so [8].

Here we provide a convergence analysis for the Secant method using an even
weaker version of Wang’s gamma condition (see (2.1)). It turns out that even in the
special case when method (1.3) reduces to (1.2) our error bounds on the distances
‖xn+1 − xn‖, ‖xn − x∗‖ are finer than the ones in [12] and the information on the
location of the solution x∗ at least as precise. Note also that these advantages
are obtained under the same computational cost. Numerical examples are also
provided.

2. Semilocal Convergence Analysis of Method (1.3)

Let x0 ∈ X and r > 0. We denote by U(x0, r) = {x ∈ X: ‖x− x0‖ < r}.
We introduce the (γ0, γ) condition:

Definition 2.1. Suppose:

0 < γ0 ≤ γ. (2. 1)

We say F satisfies the gamma (γ0, γ) condition at x0 ∈ D in U(x0, r) ⊆ D if
operator F is Fréchet-differentiable at x = x0, F

′(x0)
−1 ∈ L(Y,X) such that for all

r <
(

1−
√

2
2

)

1
γ0
, x, y, w ∈ U(x0, r)

‖F ′(x0)
−1([x, y]− [y, w])‖

≤
∫ 1

0

∫ 1

0

2γ[t‖x− y‖+ (1− t)‖y − w‖]dsdt
[1− γ‖s(tx+ (1− t)y) + (1− s)(ty + (1− t)w)− x0‖]3

,

(2. 2)
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and

‖F ′(x0)
−1([x, y]− F ′(x0))‖

≤
∫ 1

0

∫ 1

0

2γ0‖x0 − tx− (1− t)y‖dsdt
[1− sγ0‖x0 − tx− (1− t)y‖]3

=

∫ 1

0

[1− γ0‖x0 − txk−1 − (1− t)xk‖]−2 − 1. (2. 3)

Example 2.2. Let us provide a class of operators that satisfies both (2.2) and

(2.3). For simplicity, we set γ0 = γ, and assume F is twice Fréchet-differentiable
on U(x0, r) satisfying:

‖F ′(x0)
−1F ′′(x)‖ ≤ 2γ

(1− γ‖x− x0‖)3
. (2. 4)

Note that condition (2.4) used in [12] requires the existence of the second Fréchet-
derivative, whereas we only require the existence of the first derivative. It is known
that γ(F, x0) ≤ γ [11], [13], [14], which is the γ-motivation for our study. Moreover,
assume divided difference [x, y] is given by

[x, y] =

∫ 1

0

F ′[y + t(x− y)]dt (2. 5)

for all x, y ∈ U(x0, r) ⊆ D, which holds in many interesting cases [7], [8]. Then
using (2.4), we can have in turn:

‖F ′(x0)
−1([x, y]− [y, w])(y − w)‖

=

∥

∥

∥

∥

∫ 1

0

∫ 1

0

F ′′[s(tx+ (1− t)y) + (1− s)(ty + (1− t)w]ds

· [t(x− y) + (1− t)(y − w)]dt(y − w)

∥

∥

∥

∥

≤
∫ 1

0

∫ 1

0

2γ(t‖x− y‖+ (1− t)‖y − w‖)‖y − w‖dsdt
[1− γ‖s(tx+ (1− t)y) + (1− s)(ty + (1− t)w)− x0‖]3

,

(2. 6)

which justifies condition (2.2). Moreover using again (2.4) we can obtain

‖F ′(x0)
−1([x, y]− F ′(x0)) =

∥

∥

∥

∥

F ′(x0)
−1

∫ 1

0

[F ′(tx+ (1− t)y)− F ′(x0)]dt

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ 1

0

∫ 1

0

F ′(x0)
−1F ′′[((1− s)x0

+ s(tx+ (1− t)y))][x0 − ty − (1− t)x]dsdt

∥

∥

∥

∥

≤
∫ 1

0

∫ 1

0

2γ‖x0 − tx− (1− t)y‖dsdt
[1− sγ‖x0 − tx− (1− t)y‖]3 , (2. 7)

which justifies condition (2.3).
It is convenient for us to define scalar function f , and scalar sequences {rn}, {sn},
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{tn}, for some α ≥ 0, a ≥ 0, b ≥ 0 by

f(t) =
α

γ
− t+

γt2

1− γt
, t 6= 1

γ
, (2. 8)

r−1 = −a, r0 = 0, r1 = b,

rn+1 = rn −
∫ 1

0

∫ 1

0

2γ[t(rn−1 − rn−2) + (1− t)(rn − rn−1)]dsdt

[1− γs(trn−2 + (1− t)rn−1)− γ(1− s)(trn−1 + (1− t))rn]3

× (1− t)rn]
−2
}

g(rn−1, rn)(rn − rn−1)dt (n ≥ 1), (2. 9)

s−1 = −a, s0 = 0, s1 = b,

sn+1 = sn − f(sn)g(sn−1, sn) (n ≥ 0), (2. 10)

and

t−1 = −a, t0 = 0,

tn+1 = tn −
tn − tn−1

f(tn)− f(tn−1)
f(tn), (2. 11)

where, function g is given by:

g(r, s) =
(1− γ0r)(1− γ0s)

2(1− γ0r)(1− γ0s)− 1
for all r, s ∈

[

0,

(

1−
√
2

2

)

1

γ0

)

. (2. 12)

We need the following lemma on majorizing sequence {tn}.
Lemma 2.3. Assume:

α = bγ
1 + 2aγ

1 + aγ
≤ 3− 2

√
2. (2. 13)

Then sequence {tn} generated by (2.11) is monotonically increasing and converges
to the smallest root

t∗ =
1 + α−

√

(1 + α)2 − 8α

4γ
(2. 14)

of equation f(t) = 0, with the largest root being

t∗∗ =
1 + α+

√

(1 + α)2 − 8α

4γ
. (2. 15)

Moreover, the following estimate holds for

q =
1− γt∗∗

1− γt∗
, q0 = λ

t∗

t∗∗
, q1 = q

t∗ − b

t∗∗ − b
,

and pn be the Fibonacci sequence:

t∗ − tn =







en(t
∗∗ − t∗), α < 3− 2

√
2

(n ≥ 0),

h−1
n , α = 3− 2

√
2,

(2. 16)

where,

en =
q
pn−2

0 q
pn−1

1

q − q
pn−2

0 q
pn−1

1

, (2. 17)

and

hn =
γpn−1

1− γt∗
+

pn−1

t∗ − b
+
pn−2

t∗
. (2. 18)
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Proof. We shall show estimates:

tk < tk+1, (2. 19)

and

tk < t∗ (2. 20)

hold true for all k ≥ 0. Estimates (2.19) and (2.20) hold true by the initial condi-
tions for k = 0. Let us assume that they hold true for k = 0, 1, . . . , n− 1 for n ≥ 1
a fixed natural number.

In view of the induction hypotheses and (2.11), we can obtain in turn for [s, t] =
[s, t; f ]:

t∗ − tn = t∗ − tn−1 + [tn−2, tn−1, f ]
−1(f(tn−1)− f(t∗))

= [tn−2, tn−1]
−1([tn−2, tn−1]− [tn−1, t

∗])(t∗ − tn−1)

= −[tn−2, tn−1]
−1(t∗ − tn−1)(t

∗ − tn−2)[tn−1, tn−2, t
∗], (2. 21)

where by [s, t, u] we mean [s, t, u; f ] the divided difference of order two of scalar
function f at the points s, t and u.

It follows that there exist β0 ∈ (tn−2, tn−1), and β ∈ (tn−2, t
∗)

[tn−2, tn−1] = f ′(β0) < 0 (2. 22)

and

[tn−1, tn−2, t
∗] =

f ′′(β)

2
> 0, (2. 23)

since

−1 < f ′(t) < 0, (2. 24)

and

f ′′(t) =
2γ

(1− γt)3
> 0, (2. 25)

for t ∈
[

0,
(

1−
√

2
2

)

1
γ

)

, which together with (2.21) imply (2.20) for n = k.

Using (2.11) we can write

tn+1 − tn = (t∗ − tn)[tn−1, tn]
−1[t∗, tn] > 0, (2. 26)

which implies (2.19) for n = k. That completes the induction for estimates (2.19)
and (2.20). It follows that sequence {tn} converges to t∗.

In view of (2.14), (2.15) and (2.21), we can easily see that

q
t∗ − tn+1

t∗∗ − tn+1
= q

t∗ − tn

t∗∗ − tn
q
t∗ − tn−1

t∗∗ − tn−1

= q
pn−1

0 q
pn

1 (n ≥ 0). (2. 27)

Clearly, if α < 3 − 2
√
2, then t∗ 6= t∗∗. It then follows from (2.28) that the first

part of estimate (2.16) holds true. Otherwise, set λn = γ(t∗ − tn) and µn =
√
2λn.

It then follows from (2.21) that

t∗ − tn+1 =
γ(t∗ − tn)(t

∗ − tn−1)

[1− 2(1− γtn−1)(1− γtn)](1− γt∗)
(n ≥ 0), (2. 28)

from which it follows that

λn+1 =
λnλn−1

λn−1 + λn +
√
2λn−1λn

(n ≥ 0), (2. 29)
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and
µn+1 =

µnµn−1

µn−1 + µn + µn−1µn
(n ≥ 0), (2. 30)

or
1

µn
=
pn−2

µ0
+
pn−1

µ1
+ pn − 1 (n ≥ 0), (2. 31)

by the definition of the Fibonacci sequence (p−2 = 1, p−1 = 0, pn+1 = pn + pn−1

(n ≥ −1)). It then follows by the definition of λn that the second part of estimate
(2.16) also holds true.

That completes the proof of Lemma 2.3.

Corollary 2.4. If:

(a) a < 3− 2
√
2, then for all n ≥ 0

0 ≤ t∗ − tn ≤
q
pn

0

q − q
pn

0

(t∗∗ − t∗) ≤ t∗∗ − t∗

q − q0

(

q
1√
5

0

)

(

1+
√

5
2

)n

. (2. 32)

(b) a = 3− 2
√
2, then for all n ≥ 1

0 ≤ t∗ − tn ≤
t∗ − b

pn−1
≤
√
5(t∗ − b)

(

2

1 +
√
5

)n−1

. (2. 33)

Proof. The result follows immediately from estimate (2.16) and the fact that

pn ≥
√
5

5

(

1 +
√
5

2

)n

(n ≥ 0). (2. 34)

Remark 2.5. (a) For F = f , D =
(

−∞, 1
γ

)

, γ = γ0, and X = Y = R, xn becomes

tn and x∗ is t∗. That is estimate (2.16) is sharp. Note also that f satisfies (2.5).
(b) In the special case when x−1 = x0 condition (2.13) reduces to Wang’s [12]

sufficient convergence condition for Newton’s method

α = bγ ≤ 3− 2
√
2. (2. 35)

(c) If we set X = Y = R, then it can easily be seen that condition (2.5) is
satisfied. Other examples which satisfy (2.5) can be found in [7], [8].

Using induction on n it follows immediately from the definitions of sequences
{rn}, {sn}, {tn} that the following relationship holds between them:

Lemma 2.6. If γ0 < γ, and (2.13) holds true, then

rn < sn < tn (n > 1), (2. 36)

0 < rn+1 − rn < sn+1 − sn < tn+1 − tn (n > 1), (2. 37)

0 ≤ r∗ − rn ≤ s∗ − sn ≤ t∗ − tn (n ≥ −1), (2. 38)

and
r∗ ≤ s∗ ≤ t∗, (2. 39)

where, r∗ = lim
n→∞

rn, and s
∗ = lim

n→∞
sn.

Note that if γ0 = γ (2.37)–(2.40) hold true as equalities.

Remark 2.6. In view of (2.37)–(2.40), one hopes that sequences {rn} and {sn}
may converge under conditions weaker than (2.14). Such conditions already exist
in the literature. We refer the reader to [5, 4, 6] where we provided sufficient
convergence conditions for sequences more general than {rn} and {sn}.
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However, we do not pursue this here. Instead we provide the main semilocal
convergence theorem for the Secant method (1.3), under the (γ0, γ) condition:

Theorem 2.7. Let operator F satisfy the (γ0, γ) condition at x0 ∈ D in

U

(

x0,

(

1−
√
2

2

)

1

γ0

)

⊆ D,

let x−1, x0 ∈ D with ‖x0 − x−1‖ ≤ a, and

‖[x−1, x0]
−1F (x0)‖ ≤ b. (2. 40)

Furthere, assume condition (2.13) holds true.
Then, sequence {xn} generated by Secant method (1.3) is well defined, remains in

U(x0, r
∗) for all n ≥ 0, and converges to a unique solution x∗ of equation F (x) = 0

in U(x0, r
∗).

Moreover, the following estimates hold for all n ≥ −1

‖xn+1 − xn‖ ≤ rn+1 − rn, (2. 41)

and

‖xn − x∗‖ ≤ r∗ − rn. (2. 42)

Furthermore, if there exists R ∈
(

r∗,
(

1−
√

2
2

)

1
γ0

]

satisfying

∫ 1

0

[1− γ(tR+ (1− t)r∗)]−2dt = 2, (2. 43)

then the solution x∗ is unique in U(x0, R).

Proof. We shall show:

‖xk+1 − xk‖ ≤ rk+1 − rk, (2. 44)

and

U(xk+1, r
∗ − rk+1) ⊆ U(xk, r

∗ − rk) (2. 45)

hold for all k ≥ −1.
For every z ∈ U(x1, r

∗ − r1)

‖z − x0‖ ≤ ‖x− x1‖+ ‖x1 − x0‖ ≤ r∗ − r1 + r1 = r∗ − r0

implies z ∈ U(x0, r
∗ − r0). We also have that (2.41) holds, and

‖x1 − x0‖ = ‖[x−1, x0]
−1F (x0)‖ = b.

Therefore (2.45) and (2.46) hold for k = −1, 0. Let us assume x1, x2, . . . , xk are
well defined and (2.45), (2.46) hold true for n = 0, 1, . . . , k − 1, where k ≥ 1 is a
fixed natural number.

We shall establish the existence of [xk−1, xk]
−1 which will also imply that xk+1

is well defined. Using condition (2.3) for x = xk−1 and y = xk, and the induction



8 Ioannis K. Argyros

hypotheses we obtain

‖F ′(x0)
−1(F ′(x0)− [xk−1, xk])‖

≤
∫ 1

0

∫ 1

0

2γ0‖x0 − txn−1 − (1− t)xk‖dsdt
[1− sγ0‖x0 − txk−1 − (1− t)xk‖]3

=

∫ 1

0

[1− γ0‖x0 − txk−1 − (1− t)xk‖]−2dt− 1

≤
∫ 1

0

[1− γ0(rk + t(rk−1 − rk))]
−2dt− 1

=
1

(1− γ0rk−1)(1− γ0rk)
− 1 <

1

(1− γ0r∗)2
− 1 ≤ 1. (2. 46)

It follows from (2.46) and the Banach Lemma on invertible operators [5], [9] that
[xk−1, xk]

−1 exists, and

‖[xk−1, xk]
−1F ′(x0)‖ ≤

[

1−
(

1

(1− γ0rk−1)(1− γ0rk)
− 1

)

]−1

=
(1− γ0rk−1)(1− γ0rk)

2(1− γ0rk−1)(1− γ0rk)− 1
= g(rk−1, rk).

(2. 47)

In view of (1.3), condition (2.2) for x = xk−2, y = xk−1, and w = xk gives:

‖F ′(x0)
−1F (xk)‖ = ‖F ′(x0)

−1([xk−2, xk−1]− [xk−1, xk])(xk−1 − xk)‖

≤
∫ 1

0

∫ 1

0

2γ[t‖xk−2 − xk−1‖+ (1− t)‖xk−1 − xk‖]‖xk − xk−1‖dsdt
[1− γ‖s(txk−2 + (1− t)xk−1) + (1− s)(txk−1 + (1− t)xk)− x0‖]3

≤
∫ 1

0

∫ 1

0

2γ[t(rk−1 − tk−2) + (1− t)(rk − rk−1)](rk − rk−1)dsdt

[1− γs(trk−2 + (1− t)rk−1)− γ(1− s)(trk−1 + (1− t)rk]3

= h(rk−1, rk). (2. 48)

By (1.3), (2.10), (2.47) and (2.48) we get:

‖xk+1 − xk‖ ≤ ‖[xk−1, xk]
−1F ′(x0)‖ ‖F ′(x0)

−1F (xk)‖
≤ g(rk−1, rk)h(rk−1, rk) = rk+1 − rk, (2. 49)

which shows (2.45) for all k ≥ −1.
We also have that for every z ∈ U(xk+1, x

∗ − rk+1) we get

‖z − xk‖ ≤ ‖z − xk+1‖+ ‖xk+1 − xk‖ ≤ r∗ − rk+1 + rk+1 − rk = r∗ − rk.

That is,

z ∈ U(xk, r
∗ − rk), (2. 50)

which implies (2.46). The induction for (2.45) and (2.46) is now complete.
Lemma 2.6 imply that sequence {xn} is Cauchy (since {rn} is Cauchy (since

{rn} is a Cauchy sequence) in a Banach space X and as such it converges to some
x∗ ∈ U(x0, r

∗) (since U(x0, r
∗) is a closed set). By letting n → ∞ in (1.3) (or

k →∞ in (2.48)) we obtain F (x∗) = 0.
We shall show uniqueness of the solution x∗ first in U(x0, r

∗). Let y∗ be a
solution of equation F (x) = 0 in U(x0, r

∗). Set L = [x∗, y∗]. In view of (2.3), we
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get

‖F ′(x0)
−1(F ′(x0)− L)‖

≤
∫ 1

0

[1− γ0(t‖x0 − y∗‖+ (1− t)‖x∗ − x0‖)]−2dt− 1 (2. 51)

≤
∫ 1

0

[1− γ0(tr
∗ + (1− t)r∗)]−2dt− 1

= (1− γ0r
∗)−2 − 1 < 1. (2. 52)

It follows from (2.52) and the Banach Lemma on invertible operators that L−1

exists. Thus from the identity

F (x∗)− F (y∗) = [x∗, y∗](x∗ − y∗), (2. 53)

we deduce x∗ = y∗.

If R ∈
(

r∗,
(

1−
√

2
2

)

1
γ0

]

satisfies (2.44) and y∗ is a solution of equation F (x) = 0

in U(x0, R), then as in (2.51) we get

‖F ′(x0)
−1[F ′(x0)− L]‖ <

∫ 1

0

[1− γ0(tR+ (1− t)r∗]−2dt− 1 = 1. (2. 54)

Hence, again we deduce x∗ = y∗.
That completes the proof of the theorem.

Remark 2.8. In view of Lemma 2.6 {sn}, s∗ or {tn}, t∗ can replace {rn}, r∗
respectively in Theorem 2.7. Note that we could have used easier {tn}, t∗ in The-
orem 2.7 but we wanted to leave the results as uncluttered as possible using the
finer possible majorizing sequence {rn}.

We now complete this study with numerical examples.

Example 2.9. Let X = Y = R, γ0 = γ = α > 0, D =
[

0, 1
γ

)

, and define function

f on D by

f(t) = 1− t+
γt2

1− γt
. (2. 55)

We shall use the Secant method (1.3) to find the smallest positive zero of equation
f(t) = 0. Let t−1 = −.000001, and t0 = 0. Using (2.17) we can have for α =
1
2 (3 − 2

√
2) = .0857864 = α0 and α = 3

4 (3 − 2
√
2) = .1286797 = α1 the following

table:

Table 1: Numerical Values for t∗ − tn

n α0 α1

0 1.119 1.232
1 1.188× 10−1 2.322× 10−1

2 1.522× 10−2 5.891× 10−2

3 2.618× 10−4 4.362× 10−3

4 5.937× 10−7 9.145× 10−5

5 2.324× 10−11 1.463× 10−7

Example 2.10. Let X = C[0, 1], the space of all functions v, continuous on the
interval [0, 1], with norm

‖v‖ = max
0≤s≤1

|v(s)|, D = U(0, 1), λ ∈ R, K(s, t)
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a continuous function of two variables s, t ∈ [0, 1], and h(s) a continuous function
on [0, 1]. Consider nonlinear integral equation

v(s) = λv(s)

∫ 1

0

K(s, t)v(t)dt+ h(s). (2. 56)

Equations like (2.56) appear in connection with radiative transfer, neutron trans-
port, and in the kinetic theory of gasses [2], [3], [10].

In order for us to solve equation (2.56), we define operator T on D by

T (v(s)) = λv(s)

∫ 1

0

K(s, t)v(t)dt+ h(s)− x(s). (2. 57)

Let us consider some special cases of interest:

Case 1 (Chandrasekhar’s equation [2], [3], [10]). Set λ = 1
4 , K(s, t) = s

s+t
,

s + t 6= 0, and h(s) = 1. Choose v0(s) = 1, and v−1(s) = 1.0000001. Let us also
denote by δ an upper bound on ‖T ′(v0(s))−1‖. That is,

‖T ′(v0(s))−1‖ ≤ δ. (2. 58)

We can have:

‖T ′(v0(s))−1T (v0(s))‖ ≤ δ‖T (v0(s))‖ ≤ δ|λ| ln 2 = b, (2. 59)

and

‖T ′′(v(s))‖ ≤ 2|λ| max
0≤s≤1

∣

∣

∣

∣

∫ 1

0

s

s+ t
dt

∣

∣

∣

∣

≤ 2|λ| ln 2, (2. 60)

since,

max
0≤s≤1

∣

∣

∣

∣

∫ 1

0

s

s+ t
dt

∣

∣

∣

∣

= ln 2. (2. 61)

Condition (2.4) certainly holds if

2δ|λ| ln 2 ≤ 2γ.

Hence, we can set γ = δ|λ| ln 2. Using the choices above we get

b = γ = .265197108.

Hypothesis (2.13) is satisfied, since

α = .070329508 < 3.2
√
2 = .17157287.

Hence, the conclusions of Theorem 2.7 can apply, since any solution v∗(s) of equa-
tion F (v(s)) = 0, satisfies (2.56).

Case 2. Let D = U(0, 1 − c) for some c ∈ [0, 1), set h(s) = v3(s) − c + 1, and
v0(s) = 1. As above it can easily be seen that we can set for

d = max
0≤s≤1

∣

∣

∣

∣

∫ 1

0

K(s, t)dt

∣

∣

∣

∣

<∞ :

b = [1− c+ d|λ|]δ, γ = [2− c+ d|λ|]δ, (2. 62)

and

γ0 =
1

2
[3− c+ 2d|λ|]δ. (2. 63)

In view of (2.62), and (2.63) we have:

γ0 < γ for all d, δ, λ ∈ R and c ∈ [0, 1). (2. 64)
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It also follows from the above choices of b and γ that for v−1, c close enough to v0,
1 respectively, and λ sufficiently small condition (2.13) holds true. That is as in
Case 1, the conclusions of Theorem 2.7 apply. Note however that in this case finer
sequence {sn} than {tn} can be used as a majorizing sequence for Secant method
(1.3) (see also Lemma 2.6).
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uous, Appl. Math. Comput. 15 (2001), 139–149.

8. M.A. Herńandez and M.J. Rubio, A uniparametric family of iterative processes for solving
non-differentiable equations, J. Math. Anal. Appl. 275 (2005), 821–834.

9. L.V. Kantorovich and G.P. Akilov, Functional analysis in normed spaces, Pergamon Press,
Oxford, 1982.

10. Chandrasekhar S., Radiative transfer, Dover Publ., New York, U.S.A, 1960.
11. S. Smale, Newton’s method estimate from data at one point, in: The merging of disci-

plines: New directions in pure, applied and computational mathematics (eds., ewing, r. et
al.), Springer-Verlag, New York, 1986.

12. D. Wang and F. Zhao, The theory of smale’s point estimation and its applications, J. Comput.

Appl. Math. 60 (1995), 253–269.
13. X.H. Wang, Convergence of iteration of halley family in weak conditions, Chinese Science

Bulletin 42 (1997), 552–555.
14. J.C. Yakoubsohn, Finding zeros of analytic functions: α theory for the secant type methods,

J. Complexity 15 (1999), 239–281.


