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Abstract. In this paper we provide a local convergence analysis for
multistep Newton-like method (1.3) in order to approximate a so-
lution of the nonlinear equation (1.1) in a Banach space setting. A
refined and more flexible than before local [4]-[7] local convergence
analysis of multistep simplified Newton-like methods for approxi-
mating solutions of nonlinear operator equations in Banach space is
provided, by approximating not only the differentiable (see [4]-[7])
but also the non differentiable part (see also [1],[2]). A numerical
example is used where our results compare favorably with earlier
ones [4]-[7].
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1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution of equation

F (x) = f(x) + g(x) = 0, (1.1)

where f is a Fréchet-differentiable operator, g a continuous operator both defined
on an open convex subset D of a Banach space X with values in a Banach space Y.

Newton-like (single step) method of the form

xn+1 = xn −A(xn)−1F (xn) (n ≥ 0 (1.2)

has been used by several authors to approximate x∗ [1]-[6]. With the exception of
the works in [1]-[3] the authors take A(x) ∈ L(X,Y ) (the space of bounded linear
operators from X into Y ) to be a conscious approximation to the Fréchet-derivative
F ′(x) of operator F. A survey of local and semilocal convergence results for method
(1.2) can be found in [2].

However as already stated in [1], [3] there are several advantages (see Remark 3)
if A is related not only to F ′ but also to the difference g(x)− g(y). Here we extend
these advantages (in the local convergence case) following some ideas in [5].
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In order to compute each iterate in method (1.2) we solve the linear system
A(xn)z = −F (xn) and then set xn+1 = xn + z (n ≥ 0). The computation of A(xn)
may be very expensive or impossible in general (for every n ≥ 0). In practice we
wish to use A(xn) instead of A(xn−1), ..., A(xn+m) to minimize the computational
cost. That is why in [5] the multistep simplified Newton-like method was introduced
for x0 ∈ D in the form:

xn,0 = xn

xn,i = xn,i−1 −A(xn)−1F (xn,i−1), i = 1, 2, ...,m (1.3)

xn+1 = xn,m (n ≥ 0),

where m is a natural number. Note that for m = 1 method (1.3) reduces to (1.2)
which includes the so called simplified Newton-like method

xn+1 = xn −A−1F (xn) (n ≥ 0), (1.4)

with a constant linear operator A.
If m = +∞ in (1.3) then the sequence {x0,i} also coincides with the one gener-

ated by (1.4) with A = A(x0). That is why in this study we assume m is finite.
Local convergence results for method (1.3) were given in [5] for the interesting case
g 6= 0 and m > 1. Here we show that under weaker hypotheses and the same
computational cost the results in [5] can be improved (see more precisely Remark
3).

A numerical example is provided to justify the advantages of our approach over
the ones in [5].

2. Local Convergence Analysis Of Simplified Newton-Like Method
(1.3)

Suppose that equation (1.1) has a solution x∗ ∈ D. We assume that there exists
positive constants r0, K, q, η and nonnegative constants c, e and an invertible
linear operator L, such that for any

x, y ∈ U(x∗, r0) = {x ∈ X |‖x− x∗‖ < r0} ⊆ D,

A1, A2 ∈ L(Y,X), A = A1 +A2,

A(x)−1 ∈ L(X,Y )

such that
∥

∥A(x)−1L
∥

∥ ≤ q,
∥

∥A(x)−1F (x)
∥

∥ ≤ η,
∥

∥L−1(f ′(x)−A1(y))
∥

∥ ≤ K ‖x− y‖+ c,
∥

∥L−1[g(x)− g(y)−A2(x)(x− y)]
∥

∥ ≤ e ‖x− y‖ .

Define the scalar sequence {tn,i} by

tn,0 = 0, tn,i = sn(tn,i−1), i = 1, ...,m+ 1, n ≥ 0

where

sn(t) = q
(

K
2 t+ c+ e

)

t+ ηn,

η0 = η, ηn = tn−1,m+1 − tn−1,m n ≥ 1.
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Clearly sn(t) is an increasing function of t ≥ 0. Therefore we have tn,i ≤ tn,i+1.
Further, define

t∗ ≥ min(max
n

tn,m−1, 2r0),

b = q

(

Kt∗

2
+ c+ e

)

,

r1 =
2(1− b)

qK
,

and

a =
qK

2
.

We can state and show the local convergence theorem for Newton-like method (1.3).

Theorem 1. Under the above assumptions, set r∗ = min{r0, r1}. If b ∈ [0, 1), then
U(x∗, r∗) is a convergence ball for (1.3). Moreover the following estimate holds for
all n ≥ 0 :

∥

∥xn+1 − x∗
∥

∥ ≤ a(‖xn − x∗‖+ b)m ‖xn − x∗‖ ≤ pm ‖xn − x∗‖ , (2.5)

where,

p = a
∥

∥x0 − x∗
∥

∥+ b ∈ [0, 1).

Proof. Let x0 ∈ U(x∗, r∗). Then we have

p < ar∗ + b ≤ ar1 + b = 1

We shall prove the first inequality in (2.5) using induction on k ≥ 0. We must
show

∥

∥xk,i − xk,i−1
∥

∥ ≤ tk,i − tk,i−1 i = 1.....m (2.6)

and
∥

∥xk,i − x∗
∥

∥ ≤ (a
∥

∥xk − x∗
∥

∥+ b)i
∥

∥xk − x∗
∥

∥ , i = 1.....m (2.7)

For k = 0, we have

∥

∥x0,1 − x0,0
∥

∥ =
∥

∥x0,1 − x0
∥

∥ =
∥

∥A(x0)−1F (x0)
∥

∥ ≤ η − t0,1 = t0,1 − t0,0

and

∥

∥x0,1 − x∗
∥

∥ =
∥

∥−A(x0)−1(F (x0)− F (x∗)−A(x0)(x0 − x∗))
∥

∥

≤ q

∥

∥

∥

∥

∫ 1

0

L−1(f ′(x∗ + t(x0 − x∗))−A1(x
0))dt(x0 − x∗)

∥

∥

∥

∥

+ q
∥

∥L−1(g(x0)− g(x∗)−A2(x
0)(x0 − x∗))

∥

∥

≤ q

(

K

2

∥

∥x0 − x∗
∥

∥+ c+ e

)

∥

∥x0 − x∗
∥

∥

≤ (a
∥

∥x0 − x∗
∥

∥+ b)
∥

∥x0 − x∗
∥

∥
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This implies that if m = 1, then (2.6) and (2.7) hold for k = 0. If m ≥ 2, then we
have by induction on i

∥

∥x0,i − x0
∥

∥ ≤ min







i
∑

j=1

(t0,j − t0,j−1),
∥

∥x0,i − x∗
∥

∥+
∥

∥x0 − x∗
∥

∥







≤ min(t0,i, 2r0) ≤ min(t0,m−1,2r0) ≤ t∗
∥

∥x0,i−1 − x0,i
∥

∥ ≤
∥

∥L−1(F (x0,i)−A(x0)(x0,i − x0,i−1)− F (x0,i−1))
∥

∥

≤ q

(

K

∫ 1

0

∥

∥t(x0,i − x0) + (1− t)(x0,i−1 − x0)
∥

∥ dt+ c+ e

)

×
∥

∥x0,i − x0,i−1
∥

∥

≤ q
(

K
2 (t0,i − t0,i−1) + c+ e

)

(t0,i − t0,i−1) = t0,i+1 − t0,i

and
∥

∥x0,i+1 − x∗
∥

∥ =
∥

∥−A(x0)−1(F (x0,i)− F (x∗)−A(x0)(x0,i − x∗))
∥

∥

≤ q
(

K
2 (
∥

∥x0 − x∗
∥

∥+
∥

∥x0,i − x0
∥

∥) + c+ e
) ∥

∥x0,i − x∗
∥

∥

≤ q
(

K
2 (
∥

∥x0 − x∗
∥

∥+ t∗) + c+ e
) ∥

∥x0,i − x∗
∥

∥

≤ (a
∥

∥x0 − x∗
∥

∥+ b)(a
∥

∥x0 − x∗
∥

∥+ b)i
∥

∥x0 − x∗
∥

∥

= (a
∥

∥x0 − x∗
∥

∥+ b)i−1
∥

∥x0 − x∗
∥

∥ .

This proves (2.6) and (1.1) for the case k = 0.
Assume now that (2.6) and (1.1) hold for some k. Then we have

xk+1,0 = xk−1 = xk,m ∈ U(x∗, r)

and
∥

∥xk+1,1 − xk+1,0
∥

∥

=
∥

∥xk+1.1 − xk+1
∥

∥

≤
∥

∥A(xk+1)−1L
∥

∥

∥

∥L−1(F (xk,m)−A(xk)(xk,m − xk,m−1)− F (xk,m−1))
∥

∥

≤ q
(

K
2 (
∥

∥xk,m − xk
∥

∥+
∥

∥xk,m−1 − xk
∥

∥) + c+ e
)
∥

∥xk,m − xk,m−1))
∥

∥

≤ q
(

K
2 (tk,m + tk,m−1) + e+ c

)

(tk,m − tk,m−1) = tk,m+1 − tk,m = ηk−1.

By the same argument as for k = 0, we can prove that (2.6) and (2.7) hold for
k + 1. This completes the induction and the proof of the theorem. ¤

Setting L = A(x∗) in Theorem 1, we obtain the following:

Corollary 2. Assume that A(x∗) is nonsingular and for any x ∈ D, the following
hold:

∥

∥A(x∗)−1(f ′(x)−A1(y))
∥

∥ ≤ K ‖x− y‖+ c
∥

∥A(x∗)−1(A(x)−A(x∗))
∥

∥ ≤ L ‖x− x∗‖+ d
∥

∥A(x∗)−1[g(x)− g(x∗)−A2(x)(x− x∗)]
∥

∥ ≤ e ‖x− x∗‖

p = c+ d+ e < 1

Then
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(i) The ball U(x∗, r∗) with r∗ = 2(1 − p)/(3K + 2L) is a convergence ball for
the iterative method (1.3) with any m, provided that U(x∗, r∗) ⊂ D. The
speed of convergence is estimated as follows:

∥

∥xn+1 − x∗
∥

∥ = ‖xn,m − x∗‖ ≤ (a ‖xn − x∗‖+ b)m ‖xn − x∗‖ ≤ pm ‖xn − x∗‖

where

a = 3K
2(1−Lr−d) , b = c+e

1−Lr−d

p = a
∥

∥x0 − x∗
∥

∥+ b < 1

(ii) The ball U(x∗, r∗) with r∗ = 2(1− p)/(K + 2L) is convergence ball for the
iteration (1.4) and

∥

∥xn+1 − x∗
∥

∥ ≤
1

1− Lr − d

(

K
2 ‖x

n − x∗‖+ c+ e
)

‖xn − x∗‖

provided that U(x∗, r∗) ⊂ D.

Proof. (see Corollary 1 in [5, p.19]). ¤

Remark 3. If we set

A2 = 0 and A1 = A (2.8)

our results reduce to the corresponding ones in [4]. Otherwise our results have the
following advantages over the ones in [4]: more flexible choices of operator A (i.e A1

and A2); finer error bounds on the distances
∥

∥xn+1 − x∗
∥

∥ ;and a larger radius of r∗.
That is we can obtain a desired error tolerance ε with fewer computations, a larger
m can be used and there is a wider choice of initial guesses x0 available. Such an
information is important in computational mathematics and scientific computing
[1], [2]. In what follows we provide an example. For simplicity we take m = 1, and
A(x) = L.

Example 4. Let X = Y = (R2, ‖·‖∞). Consider the system [3]:

3x2y + y2 − 1 + |x− 1| = 0 (2.9)

x4 + xy3 − 1 + |y| = 0.

It can easily be seen that the solution of (2.9) is given by

x∗ = (.8946553334687, .327826521746298) (2.10)

Set for v = (v1, v2), ‖v‖∞ = ‖(v1, v2)‖∞ = max{|v1| , |v2|}, F (v) = f(v) + g(v),
f(v) = (f1, f2) , g (v) = (g1, g2) .

Define

f1(v) = 3v21v2 + v22 − 1, f2(v) = v41 + v1v
3
2 − 1,

g1(v) = |v1 − 1| , g2 (v) = |v2| .

We shall take divided differences of order one [x, y; f ] , [x, y; g] ∈M2×2(R) to be for
w = (w1, w2):

[v, w; f ]i,1 =
fi(w1, w2)− fi(v1, w2)

w1 − v1

[v, w; f ]i,2 =
fi(v1, w2)− fi(v1, v2)

w2 − v2
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provided that w1 6= v1 and w2 6= v2. If w1 = v1 or w2 = v2 replace [x, y, f ] by f ′.
Similarly we define

[v, w; g]i,1 =
gi(w1, w2)− gi(v1, w2)

w1 − v1

[v, w; g]i,2 =
gi(v1, w2)− gi(v1, v2)

w2 − v2

for w1 6= v1 and w2 6= v2. If w1 = v1 or w2 = v2 replace [x, y; g] by the zero 2 × 2
matrix in M2×2(R). We consider a possible choice for operator A as suggested by
the hypotheses in [5]:

A(v) = A1(v) = F ′(v), and A2 = 0.

Then, using Newton’s method (1.2) in this case for x0 = (1, 0), we obtain Table
1. Moreover, if we choose: A(v, w) = A1(v, w) = [v, w; g], and A2 = 0, i.e. the
method of Chord or Secant method (1.2), we obtain Table 2, for x−1 = (5, 5), and
x0 = (1, 0). Furthermore if we choose: A = A1 + A2, where A1(v, v) = F ′(v) =
[v, v; f ], and A2(v, w) = [v, w; g] for x−1 = (5, 5), and x0 = (1, 0) our method
(1.2) provides Table 3. Tables 2 and 3 show the superiority of the results obtained
here, over the results in [5] using Table 1. Finally, although the superiority of our
results over the ones in [5] has already been established, we note that if e.g., we let
x−1 = x7, x

0 = x8 (chosen from Table 3), then hypotheses of Theorem 1 hold for
K = q = 1, e = .25, c = 0, η = r0 = 1.077E − 14, r∗ = r0, and t∗ = 2r0.

Table 1.

n x
(1)
n x

(2)
n ‖xn − xn−1‖

0 1 0
1 1 0.333333333333333 3.333E-1
2 0.906550218340611 0.354002911208151 9.344E-2
3 0.885328400663412 0.338027276361322 2.122E-2
4 0.891329556832800 0.326613976593566 1.141E-2
5 0.895238815463844 0.326406852843625 3.909E-3
6 0.8951546711372635 0.327730334045043 1.323E-3
7 0.894673743471137 0.327979154372032 4.809E-4
8 0.894598908977448 0.327865059348755 1.140E-4
9 0.894643228355865 0.327815039208286 5.002E-5
10 0.894659993615645 0.327819889264891 1.676E-5
11 0.894657640195329 0.327826728208560 6.838E-6
12 0.894655219565091 0.327827351826856 2.420E-6
13 0.894655074977661 0.327826643198819 7.086E-7
...
39 0.89455373334687 0.327826521746298 5.149E-19
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Table 2.

n x
(1)
n x

(2)
n ‖xn − xn−1‖

-1 5 5
0 1 0 5.000E+00
1 0.989800874210782 0.021627489072365 1.262E-02
2 0.921814765493287 0.307939916152262 2.953E-01
3 0.900073765669214 0.325927010697792 2.174E-02
4 0.894939851625105 0.327725437396226 5.133E-03
5 0.894658420586013 0.327825363500783 2.814E-04
6 0.894655375077418 0.327826521051833 3.045E-04
7 0.894655373334698 0.327826521746293 1.742E-09
8 0.894655373334687 0.327826521746298 1.076E-14
9 0.894655373334687 0.327826521746298 5.421E-20

Table 3.

n x
(1)
n x

(2)
n ‖xn − xn−1‖

-1 5 5
0 1 0 5
1 0.909090909090909 0.363636363636364 3.636E-01
2 0.894886945874111 0.329098638203090 3.453E-02
3 0.894655531991499 0.327827544745569 1.271E-03
4 0.894655373334793 0.327826521746906 1.022E-06
5 0.894655373334687 0.327826521746298 6.089E-13
6 0.894655373334687 0.327826521746298 2.710E-E20
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