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Abstract. In this paper we provide a local convergence analysis for
multistep Newton-like method (1.3) in order to approximate a so-
lution of the nonlinear equation (1.1) in a Banach space setting. A
refined and more flexible than before local [4]-][7] local convergence
analysis of multistep simplified Newton-like methods for approxi-
mating solutions of nonlinear operator equations in Banach space is
provided, by approximating not only the differentiable (see [4]-[7])
but also the non differentiable part (see also [1],[2]). A numerical
example is used where our results compare favorably with earlier
ones [4]-[7].
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution of equation

F(r) = f(z) +9(z) =0, (1.1)

where f is a Fréchet-differentiable operator, g a continuous operator both defined
on an open convex subset D of a Banach space X with values in a Banach space Y.
Newton-like (single step) method of the form

2"t =g — A(x™) T F(2™) (n >0 (1.2)

has been used by several authors to approximate x* [1]-[6]. With the exception of
the works in [1]-[3] the authors take A(xz) € L(X,Y") (the space of bounded linear
operators from X into Y') to be a conscious approximation to the Fréchet-derivative
F’(x) of operator F. A survey of local and semilocal convergence results for method
(1.2) can be found in [2].

However as already stated in [1], [3] there are several advantages (see Remark 3)
if A is related not only to F’ but also to the difference g(x) — g(y). Here we extend
these advantages (in the local convergence case) following some ideas in [5].
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In order to compute each iterate in method (1.2) we solve the linear system
A(z™)z = —F(z") and then set 2"*! = 2™ + 2z (n > 0). The computation of A(x™)
may be very expensive or impossible in general (for every n > 0). In practice we
wish to use A(z™) instead of A(z™1),..., A(z"*™) to minimize the computational
cost. That is why in [5] the multistep simplified Newton-like method was introduced
for g € D in the form:

n,0 — an

x
o™t =g A™) TR (™), i=1,2,..,m (1.3)
"= g™ (n >0),
where m is a natural number. Note that for m = 1 method (1.3) reduces to (1.2)
which includes the so called simplified Newton-like method
" =2" — AR (") (n>0), (1.4)

with a constant linear operator A.

If m = +oo in (1.3) then the sequence {z%'} also coincides with the one gener-
ated by (1.4) with A = A(2°). That is why in this study we assume m is finite.
Local convergence results for method (1.3) were given in [5] for the interesting case
g # 0 and m > 1. Here we show that under weaker hypotheses and the same
computational cost the results in [5] can be improved (see more precisely Remark
3).

A numerical example is provided to justify the advantages of our approach over
the ones in [5].

2. LocAL CONVERGENCE ANALYSIS OF SIMPLIFIED NEWTON-LIKE METHOD
(1.3)

Suppose that equation (1.1) has a solution 2* € D. We assume that there exists
positive constants ro, K, g, n and nonnegative constants ¢, e and an invertible
linear operator L, such that for any

z,y eU(z",r) ={z e X|||lx —z"|| <mo} C D,
A, Ay e LY, X), A= Ay + A,
A(x)™t e L(X,Y)
such that
[A@) 'L < g,
[ A(z) " F ()| < n,
L7 (2) = Au(w))|| < K [lz = yll + ¢,
L7 g(2) = g(y) — Az(@)(z = p)]|| < ellz —yl|.
Define the scalar sequence {t,, ;} by
tno =0, thi=5n(tni-1), i=1,..,m+1,n>0
where
sn(t) =q(5t+c+e)t+mn,
M0 =1, M =tn—1,m+1 — tn—1,m 7 > L.
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Clearly s,(t) is an increasing function of ¢ > 0. Therefore we have t,; < t, ;41
Further, define

t* > min(max ty, m—_1, 2r9),
n

Kt*
b=gq 5 +ct+e),

21 —
= (1 b)’
qK

and
_ 4K
=5

We can state and show the local convergence theorem for Newton-like method (1.3).

a

Theorem 1. Under the above assumptions, set r* = min{rg,r1}. If b € [0,1), then
U(z*,r*) is a convergence ball for (1.3). Moreover the following estimate holds for
alln>0:

la"*! —a*|| < allla” = a*l| + )" [la" = "] <p™ " —a*|l.  (25)

where,

p:aHxO—x*H—i—bE [0,1).
Proof. Let 2° € U(x*,r*). Then we have
p<ar*+b<ari+b=1

We shall prove the first inequality in (2.5) using induction on k& > 0. We must
show

||ij,i _ xk,i—l” < tk,i — tk,i—l i=1..... m (26)
and
o = 0] < (ol = 0 [t = ot = L (2)
For k = 0, we have
[a%t = 20| = (|2 — 20| = [|A@®) T F(@%)]| <0 —toa = to1 —to
and
291 — 27| = [|—A@=) " (F(2°) — F(z*) — A2°)(2° — 2%)]|

=1 H/ LTS (@ + t(a” — a™)) = Ay (2°))dt(2° — 27)
0
a1 90) — (") — Ax()(a® — 2°))|
K
oSl

< (a on —z*

—i—c—l—e) on—m*

+0b) on —z*|
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This implies that if m = 1, then (2.6) and (2.7) hold for k = 0. If m > 2, then we
have by induction on 4

i
on’i—xOH Smin{Z(to’j —to,j-1), ||z g 0 _ ¥ }

Jj=1

< min(tg;, 2r¢) < min(tom—1,2r0) < t*
H:L,O,i—l _ xo,z'H < HL—l (@) — A(20) (2% — 2%i~1) — F(wo’i_l))H

<q< /Ht + (1 =t)(x O’il—xo)}|dt+c—|—e>

x|l = 2]

<3Q( (to; — toi—1) +c+e) (to; —toi—1) = toi+1 — tos

and
%+t |—|} ~AE)HFE) — Fa) — A ~a7)
<q(5(]" P2+ ete) [l -2
(K( 0 *)+c+e)||x0’i
< (all2" - )' [ =2
:(a| 0

This proves (2.6) and (1.1) for the case k = 0.
Assume now that (2.6) and (1.1) hold for some k. Then we have

xk+1,0 _ l,kfl _ l,k,m c U($*,’I‘)
and

||$k+1’1 _ karl,O ||

— ||I,k+1'1 _ xk+1”

S ||A(:Ek+1)71L|| ||L71(F(£Ek’m) o A(ij)(zk’m o xk,mfl) o F(:Ck,mfl))H
<q (S (|25 = b 4 2t =2 et e) [Joh =2t )|

S q (%(tk,m + tk,mfl) +e+ C) (tk,m — tkymfl) = tk,m+1 — tk,m = Mk—1-

By the same argument as for £ = 0, we can prove that (2.6) and (2.7) hold for
k + 1. This completes the induction and the proof of the theorem. O

Setting L = A(x*) in Theorem 1, we obtain the following:

Corollary 2. Assume that A(z*) is nonsingular and for any x € D, the following
hold:

A (f (@) = A@)|| < Kz —yll + ¢
[A(z") 7 (A(z) — A@@)|| < Lz — 2™ +d
[A@*) " g(z) — g(a*) = Az(2)(z — 2")][| < ella — 27|
p=c+d+e<l1
Then
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(i) The ball U(z*,r*) with r* = 2(1 — p)/(3K + 2L) is a convergence ball for
the iterative method (1.3) with any m, provided that U(x*,r*) C D. The
speed of convergence is estimated as follows:

[t — || = [la™™ = 2*|| < (alla”™ = 2| +b)™ |2 — 2*|| < p™ [la" — 2|
where
_ 3K _
4= sa—Lr—ay b= 1%

p:aHmO—x*| +b<1
(ii) The ball U(z*,r*) with r* = 2(1 — p)/(K + 2L) is convergence ball for the
iteration (1.4) and

1

n+1 * K n * n *
Hac+ _HCHS—l—Lr—d(?”x —x||—|—c—|—e)||x — "
provided that U(z*,r*) C D.
Proof. (see Corollary 1 in [5, p.19]). O
Remark 3. If we set
A2 =0 and Al =A (28)

our results reduce to the corresponding ones in [4]. Otherwise our results have the
following advantages over the ones in [4]: more flexible choices of operator A (i.e A;
and Asz); finer error bounds on the distances Hx"‘“ — z*|| ;and a larger radius of r*.
That is we can obtain a desired error tolerance € with fewer computations, a larger
m can be used and there is a wider choice of initial guesses 2" available. Such an
information is important in computational mathematics and scientific computing
[1], [2]. In what follows we provide an example. For simplicity we take m = 1, and
A(x) = L.

Example 4. Let X =Y = (R?,|-[| ). Consider the system [3]:
3%y +y  — 14|z —1=0 (2.9)
oty — 14y =0.

It can easily be seen that the solution of (2.9) is given by
x* = (.8946553334687, .327826521746298) (2.10)
Set for v = (v1,02), ||vlloo = [[(v1,v2)llo = max{|vi], |val}, F(v) = f(v) + g(v),

f()=(f1,f2), g(v) = (91,92) -
Define

fi(v) =3vivy + 03 — 1, folv) = vf +v105 — 1,
g1(v) = |v1 — 1], g2 (v) = |va].
We shall take divided differences of order one [x,y; f], [, y; 9] € Max2(R) to be for
w = (w1, ws):
filwy, wa) — fi(v1, wa)
w1 — V1
Jilvi,wa) — fi(vi,v2)

w2 — V2

[Ua'LU;f]m =

[U7 w; f]i,2 =
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provided that wy # vy and wy # va. If w1 = v or we = vy replace [x,y, f] by f'.
Similarly we define

gi(w1, w2) — gi(vi, wa)

[v,w;9];, = —
gi\V1,W2) — gi(V1, V2
[o,wig],, = S 2) i1, t2)
’ w9 — V2

for wy # v1 and wy # ve. If wy = vy or wy = ve replace [x,y; g] by the zero 2 x 2
matriz in Maxo(R). We consider a possible choice for operator A as suggested by
the hypotheses in [5]:

A(v) = A1(v) = F'(v), and Ay = 0.

Then, using Newton’s method (1.2) in this case for z° = (1,0), we obtain Table
1. Moreover, if we choose: A(v,w) = Aj(v,w) = [v,w;g|, and As = 0, i.e. the
method of Chord or Secant method (1.2), we obtain Table 2, for x=—! = (5,5), and
2% = (1,0). Purthermore if we choose: A = Ay + As, where A;(v,v) = F'(v) =
[v,v; f], and Ax(v,w) = [v,w;g] for x=1 = (5,5), and 2° = (1,0) our method
(1.2) provides Table 3. Tables 2 and 3 show the superiority of the results obtained
here, over the results in [5] using Table 1. Finally, although the superiority of our
results over the ones in [5] has already been established, we note that if e.g., we let

1

x71 = 27, 2° = ag (chosen from Table 3), then hypotheses of Theorem 1 hold for

K=qgq=1,e=.25c=0,n=1r9=1.07TTE — 14,rv* = ry, and t* = 2rg.

TABLE 1.

n_ oz ) |z — a1
0 1 0

11 0.333333333333333  3.333E-1
2 0.906550218340611  0.354002911208151  9.344E-2
3 0.885328400663412  0.338027276361322 2.122E-2
4 0.891329556832800  0.326613976593566 1.141E-2
5 0.895238815463844  0.326406852843625 3.909E-3
6  0.8951546711372635 0.327730334045043 1.323E-3
7 0.894673743471137  0.327979154372032 4.809E-4
8 0.894598908977448  0.327865059348755 1.140E-4
9 0.894643228355865  0.327815039208286 5.002E-5
10 0.894659993615645  0.327819889264891 1.676E-5
11 0.894657640195329  0.327826728208560 6.838E-6
12 0.894655219565091  0.327827351826856  2.420E-6
13 0.894655074977661  0.327826643198819 7.086E-7
39 0.89455373334687  0.327826521746298 5.149E-19
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TABLE 2.

3

€3]

In

Y

[Zn — Tn-1l|

1
—_

© 00O Ui Wi+~ O

)

1

0.989800874210782
0.921814765493287
0.900073765669214
0.894939851625105
0.894658420586013
0.894655375077418
0.894655373334698
0.894655373334687
0.894655373334687

)

0

0.021627489072365
0.307939916152262
0.325927010697792
0.327725437396226
0.327825363500783
0.327826521051833
0.327826521746293
0.327826521746298
0.327826521746298

5.000E+00
1.262E-02
2.953E-01
2.174E-02
5.133E-03
2.814E-04
3.045E-04
1.742E-09
1.076E-14
5.421E-20

TABLE 3.

0

@)

In

|Zn — Zn—1l|

ST W N~ O

)

1

0.909090909090909
0.894886945874111
0.894655531991499
0.894655373334793
0.894655373334687
0.894655373334687

5

0

0.363636363636364
0.329098638203090
0.327827544745569
0.327826521746906
0.327826521746298
0.327826521746298

5

3.636E-01
3.453E-02
1.271E-03
1.022E-06
6.089E-13
2.710E-E20
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