Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 40 (2008) pp. 1-7

Local Convergence for Multistep Simplified Newton-like Methods

Ioannis K. Argyros
Department of Mathematical Sciences
Cameron University
Lawton, OK 73505, USA
E-mail: iargyros@cameron.edu.

Abstract. In this paper we provide a local convergence analysis for multistep Newton-like method (1.3) in order to approximate a solution of the nonlinear equation (1.1) in a Banach space setting. A refined and more flexible than before local [4]-[7] local convergence analysis of multistep simplified Newton-like methods for approximating solutions of nonlinear operator equations in Banach space is provided, by approximating not only the differentiable (see [4]-[7]) but also the non differentiable part (see also [1],[2]). A numerical example is used where our results compare favorably with earlier ones [4]-[7].

AMS (MOS) Subject Classification Codes: 65H10, 65J15, 47H17, 49M15.

Key Words: Local convergence, Banach space, radius of convergence, Fréchet derivative, Multi-step simplified Newton-like method.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution of equation

$$F(x) = f(x) + g(x) = 0, (1.1)$$

where f is a Fréchet-differentiable operator, g a continuous operator both defined on an open convex subset D of a Banach space X with values in a Banach space Y. Newton-like (single step) method of the form

$$x^{n+1} = x^n - A(x^n)^{-1} F(x^n) \quad (n > 0$$
(1.2)

has been used by several authors to approximate x^* [1]-[6]. With the exception of the works in [1]-[3] the authors take $A(x) \in L(X,Y)$ (the space of bounded linear operators from X into Y) to be a conscious approximation to the Fréchet-derivative F'(x) of operator F. A survey of local and semilocal convergence results for method (1.2) can be found in [2].

However as already stated in [1], [3] there are several advantages (see Remark 3) if A is related not only to F' but also to the difference g(x) - g(y). Here we extend these advantages (in the local convergence case) following some ideas in [5].

1

2 Ioannis K. Argyros

In order to compute each iterate in method (1.2) we solve the linear system $A(x^n)z = -F(x^n)$ and then set $x^{n+1} = x^n + z$ $(n \ge 0)$. The computation of $A(x^n)$ may be very expensive or impossible in general (for every $n \ge 0$). In practice we wish to use $A(x^n)$ instead of $A(x^{n-1}), ..., A(x^{n+m})$ to minimize the computational cost. That is why in [5] the multistep simplified Newton-like method was introduced for $x_0 \in D$ in the form:

$$x^{n,0} = x^{n}$$

$$x^{n,i} = x^{n,i-1} - A(x^{n})^{-1} F(x^{n,i-1}), \quad i = 1, 2, ..., m$$

$$x^{n+1} = x^{n,m} \quad (n \ge 0),$$
(1.3)

where m is a natural number. Note that for m = 1 method (1.3) reduces to (1.2) which includes the so called simplified Newton-like method

$$x^{n+1} = x^n - A^{-1}F(x^n) \quad (n \ge 0), \tag{1.4}$$

with a constant linear operator A.

If $m=+\infty$ in (1.3) then the sequence $\{x^{0,i}\}$ also coincides with the one generated by (1.4) with $A=A(x^0)$. That is why in this study we assume m is finite. Local convergence results for method (1.3) were given in [5] for the interesting case $g\neq 0$ and m>1. Here we show that under weaker hypotheses and the same computational cost the results in [5] can be improved (see more precisely Remark 3).

A numerical example is provided to justify the advantages of our approach over the ones in [5].

2. Local Convergence Analysis Of Simplified Newton-Like Method (1.3)

Suppose that equation (1.1) has a solution $x^* \in D$. We assume that there exists positive constants r_0 , K, q, η and nonnegative constants c, e and an invertible linear operator L, such that for any

$$x, y \in U(x^*, r_0) = \{x \in X | ||x - x^*|| < r_0\} \subseteq D,$$

 $A_1, A_2 \in L(Y, X), A = A_1 + A_2,$
 $A(x)^{-1} \in L(X, Y)$

 $A(x) \in L(\Lambda, Y)$

such that

$$||A(x)^{-1}L|| \le q,$$

$$||A(x)^{-1}F(x)|| \le \eta,$$

$$||L^{-1}(f'(x) - A_1(y))|| \le K ||x - y|| + c,$$

$$||L^{-1}[g(x) - g(y) - A_2(x)(x - y)]|| \le e ||x - y||.$$

Define the scalar sequence $\{t_{n,i}\}$ by

$$t_{n,0} = 0, \ t_{n,i} = s_n(t_{n,i-1}), \ i = 1, ..., m+1, n \ge 0$$

where

$$s_n(t) = q\left(\frac{K}{2}t + c + e\right)t + \eta_n,$$

$$\eta_0 = \eta, \ \eta_n = t_{n-1,m+1} - t_{n-1,m} \ n \ge 1.$$

Clearly $s_n(t)$ is an increasing function of $t \geq 0$. Therefore we have $t_{n,i} \leq t_{n,i+1}$. Further, define

$$t^* \ge \min(\max_n t_{n,m-1}, 2r_0),$$

$$b = q\left(\frac{Kt^*}{2} + c + e\right),$$

$$r_1 = \frac{2(1-b)}{qK},$$

and

$$a = \frac{qK}{2}$$
.

We can state and show the local convergence theorem for Newton-like method (1.3).

Theorem 1. Under the above assumptions, set $r^* = \min\{r_0, r_1\}$. If $b \in [0, 1)$, then $U(x^*, r^*)$ is a convergence ball for (1.3). Moreover the following estimate holds for all n > 0:

$$||x^{n+1} - x^*|| \le a(||x^n - x^*|| + b)^m ||x^n - x^*|| \le p^m ||x^n - x^*||,$$
 (2.5)

where,

$$p = a ||x^0 - x^*|| + b \in [0, 1).$$

Proof. Let $x^0 \in U(x^*, r^*)$. Then we have

$$p < ar^* + b \le ar_1 + b = 1$$

We shall prove the first inequality in (2.5) using induction on $k \geq 0$. We must show

$$||x^{k,i} - x^{k,i-1}|| \le t_{k,i} - t_{k,i-1} \ i = 1....m$$
 (2.6)

and

$$||x^{k,i} - x^*|| \le (a ||x^k - x^*|| + b)^i ||x^k - x^*||, i = 1....m$$
 (2.7)

For k = 0, we have

$$||x^{0,1} - x^{0,0}|| = ||x^{0,1} - x^0|| = ||A(x^0)^{-1}F(x^0)|| \le \eta - t_{0,1} = t_{0,1} - t_{0,0}$$

and

$$\begin{aligned} \left\| x^{0,1} - x^* \right\| &= \left\| -A(x^0)^{-1} (F(x^0) - F(x^*) - A(x^0)(x^0 - x^*)) \right\| \\ &\leq q \left\| \int_0^1 L^{-1} (f'(x^* + t(x^0 - x^*)) - A_1(x^0)) dt(x^0 - x^*) \right\| \\ &+ q \left\| L^{-1} (g(x^0) - g(x^*) - A_2(x^0)(x^0 - x^*)) \right\| \\ &\leq q \left(\frac{K}{2} \left\| x^0 - x^* \right\| + c + e \right) \left\| x^0 - x^* \right\| \\ &\leq (a \left\| x^0 - x^* \right\| + b) \left\| x^0 - x^* \right\| \end{aligned}$$

Ioannis K. Argyros

This implies that if m = 1, then (2.6) and (2.7) hold for k = 0. If $m \ge 2$, then we have by induction on i

$$\begin{aligned} \|x^{0,i} - x^0\| &\leq \min \left\{ \sum_{j=1}^{i} (t_{0,j} - t_{0,j-1}), \|x^{0,i} - x^*\| + \|x^0 - x^*\| \right\} \\ &\leq \min(t_{0,i}, 2r_0) \leq \min(t_{0,m-1}, 2r_0) \leq t^* \\ \|x^{0,i-1} - x^{0,i}\| &\leq \|L^{-1}(F(x^{0,i}) - A(x^0)(x^{0,i} - x^{0,i-1}) - F(x^{0,i-1}))\| \\ &\leq q \left(K \int_0^1 \|t(x^{0,i} - x^0) + (1-t)(x^{0,i-1} - x^0)\| dt + c + e \right) \\ &\times \|x^{0,i} - x^{0,i-1}\| \\ &\leq q \left(\frac{K}{2} \left(t_{0,i} - t_{0,i-1} \right) + c + e \right) \left(t_{0,i} - t_{0,i-1} \right) = t_{0,i+1} - t_{0,i} \end{aligned}$$

and

$$\begin{split} \left\| x^{0,i+1} - x^* \right\| &= \left\| -A(x^0)^{-1} (F(x^{0,i}) - F(x^*) - A(x^0)(x^{0,i} - x^*)) \right\| \\ &\leq q \left(\frac{K}{2} (\left\| x^0 - x^* \right\| + \left\| x^{0,i} - x^0 \right\|) + c + e \right) \left\| x^{0,i} - x^* \right\| \\ &\leq q \left(\frac{K}{2} (\left\| x^0 - x^* \right\| + t^*) + c + e \right) \left\| x^{0,i} - x^* \right\| \\ &\leq (a \left\| x^0 - x^* \right\| + b)(a \left\| x^0 - x^* \right\| + b)^i \left\| x^0 - x^* \right\| \\ &= (a \left\| x^0 - x^* \right\| + b)^{i-1} \left\| x^0 - x^* \right\| \,. \end{split}$$

This proves (2.6) and (1.1) for the case k = 0.

Assume now that (2.6) and (1.1) hold for some k. Then we have

$$x^{k+1,0} = x^{k-1} = x^{k,m} \in U(x^*, r)$$

and

$$\begin{aligned} & \left\| x^{k+1,1} - x^{k+1,0} \right\| \\ &= \left\| x^{k+1,1} - x^{k+1} \right\| \\ &\leq \left\| A(x^{k+1})^{-1} L \right\| \left\| L^{-1} (F(x^{k,m}) - A(x^k)(x^{k,m} - x^{k,m-1}) - F(x^{k,m-1})) \right\| \\ &\leq q \left(\frac{K}{2} (\left\| x^{k,m} - x^k \right\| + \left\| x^{k,m-1} - x^k \right\|) + c + e \right) \left\| x^{k,m} - x^{k,m-1} \right)) \right\| \\ &\leq q \left(\frac{K}{2} (t_{k,m} + t_{k,m-1}) + e + c \right) (t_{k,m} - t_{k,m-1}) = t_{k,m+1} - t_{k,m} = \eta_{k-1}. \end{aligned}$$

By the same argument as for k = 0, we can prove that (2.6) and (2.7) hold for k + 1. This completes the induction and the proof of the theorem.

Setting $L = A(x^*)$ in Theorem 1, we obtain the following:

Corollary 2. Assume that $A(x^*)$ is nonsingular and for any $x \in D$, the following hold:

$$||A(x^*)^{-1}(f'(x) - A_1(y))|| \le K ||x - y|| + c$$

$$||A(x^*)^{-1}(A(x) - A(x^*))|| \le L ||x - x^*|| + d$$

$$||A(x^*)^{-1}[g(x) - g(x^*) - A_2(x)(x - x^*)]|| \le e ||x - x^*||$$

$$p = c + d + e < 1$$

Then

(i) The ball $U(x^*, r^*)$ with $r^* = 2(1-p)/(3K+2L)$ is a convergence ball for the iterative method (1.3) with any m, provided that $U(x^*, r^*) \subset D$. The speed of convergence is estimated as follows:

$$||x^{n+1} - x^*|| = ||x^{n,m} - x^*|| \le (a ||x^n - x^*|| + b)^m ||x^n - x^*|| \le p^m ||x^n - x^*||$$
where

$$a = \frac{3K}{2(1-Lr-d)}, \quad b = \frac{c+e}{1-Lr-d}$$

 $p = a \|x^0 - x^*\| + b < 1$

(ii) The ball $U(x^*, r^*)$ with $r^* = 2(1-p)/(K+2L)$ is convergence ball for the iteration (1.4) and

$$||x^{n+1} - x^*|| \le \frac{1}{1 - Lr - d} \left(\frac{K}{2} ||x^n - x^*|| + c + e\right) ||x^n - x^*||$$

provided that $U(x^*, r^*) \subset D$.

Proof. (see Corollary 1 in [5, p.19]).

Remark 3. If we set

$$A_2 = 0 \quad \text{and } A_1 = A \tag{2.8}$$

our results reduce to the corresponding ones in [4]. Otherwise our results have the following advantages over the ones in [4]: more flexible choices of operator A (i.e A_1 and A_2); finer error bounds on the distances $||x^{n+1} - x^*||$; and a larger radius of r^* . That is we can obtain a desired error tolerance ε with fewer computations, a larger m can be used and there is a wider choice of initial guesses x^0 available. Such an information is important in computational mathematics and scientific computing [1], [2]. In what follows we provide an example. For simplicity we take m = 1, and A(x) = L.

Example 4. Let $X = Y = (\mathbf{R}^2, \|\cdot\|_{\infty})$. Consider the system [3]:

$$3x^{2}y + y^{2} - 1 + |x - 1| = 0$$

$$x^{4} + xy^{3} - 1 + |y| = 0.$$
(2.9)

It can easily be seen that the solution of (2.9) is given by

$$x^* = (.8946553334687, .327826521746298)$$
 (2.10)

Set for $v = (v_1, v_2), ||v||_{\infty} = ||(v_1, v_2)||_{\infty} = \max\{|v_1|, |v_2|\}, F(v) = f(v) + g(v), f(v) = (f_1, f_2), g(v) = (g_1, g_2).$ Define

$$f_1(v) = 3v_1^2v_2 + v_2^2 - 1$$
, $f_2(v) = v_1^4 + v_1v_2^3 - 1$, $g_1(v) = |v_1 - 1|$, $g_2(v) = |v_2|$.

We shall take divided differences of order one [x, y; f], $[x, y; g] \in M_{2\times 2}(\mathbf{R})$ to be for $w = (w_1, w_2)$:

$$[v, w; f]_{i,1} = \frac{f_i(w_1, w_2) - f_i(v_1, w_2)}{w_1 - v_1}$$
$$[v, w; f]_{i,2} = \frac{f_i(v_1, w_2) - f_i(v_1, v_2)}{w_2 - v_2}$$

6 Ioannis K. Argyros

provided that $w_1 \neq v_1$ and $w_2 \neq v_2$. If $w_1 = v_1$ or $w_2 = v_2$ replace [x, y, f] by f'. Similarly we define

$$[v, w; g]_{i,1} = \frac{g_i(w_1, w_2) - g_i(v_1, w_2)}{w_1 - v_1}$$
$$[v, w; g]_{i,2} = \frac{g_i(v_1, w_2) - g_i(v_1, v_2)}{w_2 - v_2}$$

for $w_1 \neq v_1$ and $w_2 \neq v_2$. If $w_1 = v_1$ or $w_2 = v_2$ replace [x, y; g] by the zero 2×2 matrix in $M_{2\times 2}(\mathbf{R})$. We consider a possible choice for operator A as suggested by the hypotheses in [5]:

$$A(v) = A_1(v) = F'(v)$$
, and $A_2 = 0$.

Then, using Newton's method (1.2) in this case for $x^0 = (1,0)$, we obtain Table 1. Moreover, if we choose: $A(v,w) = A_1(v,w) = [v,w;g]$, and $A_2 = 0$, i.e. the method of Chord or Secant method (1.2), we obtain Table 2, for $x^{-1} = (5,5)$, and $x^0 = (1,0)$. Furthermore if we choose: $A = A_1 + A_2$, where $A_1(v,v) = F'(v) = [v,v;f]$, and $A_2(v,w) = [v,w;g]$ for $x^{-1} = (5,5)$, and $x^0 = (1,0)$ our method (1.2) provides Table 3. Tables 2 and 3 show the superiority of the results obtained here, over the results in [5] using Table 1. Finally, although the superiority of our results over the ones in [5] has already been established, we note that if e.g., we let $x^{-1} = x_7$, $x^0 = x_8$ (chosen from Table 3), then hypotheses of Theorem 1 hold for $K = q = 1, e = .25, c = 0, \eta = r_0 = 1.077E - 14, r^* = r_0$, and $t^* = 2r_0$.

Table 1.

\overline{n}	$x_n^{(1)}$	$x_n^{(2)}$	$ x_n - x_{n-1} $
0	1	0	
1	1	0.33333333333333333	3.333E-1
2	0.906550218340611	0.354002911208151	9.344E-2
3	0.885328400663412	0.338027276361322	2.122E-2
4	0.891329556832800	0.326613976593566	1.141E-2
5	0.895238815463844	0.326406852843625	3.909E-3
6	0.8951546711372635	0.327730334045043	1.323E-3
7	0.894673743471137	0.327979154372032	4.809E-4
8	0.894598908977448	0.327865059348755	1.140E-4
9	0.894643228355865	0.327815039208286	5.002E-5
10	0.894659993615645	0.327819889264891	1.676E-5
11	0.894657640195329	0.327826728208560	6.838E-6
12	0.894655219565091	0.327827351826856	2.420E-6
13	0.894655074977661	0.327826643198819	7.086E-7
39	0.89455373334687	0.327826521746298	5.149E-19

Table 2.

n	$x_{n}^{(1)}$	$x_n^{(2)}$	$ x_n - x_{n-1} $
-1	5	5	
0	1	0	5.000E+00
1	0.989800874210782	0.021627489072365	1.262 E-02
2	0.921814765493287	0.307939916152262	2.953E-01
3	0.900073765669214	0.325927010697792	2.174E-02
4	0.894939851625105	0.327725437396226	5.133E-03
5	0.894658420586013	0.327825363500783	2.814E-04
6	0.894655375077418	0.327826521051833	3.045E-04
7	0.894655373334698	0.327826521746293	1.742E-09
8	0.894655373334687	0.327826521746298	1.076E-14
9	0.894655373334687	0.327826521746298	5.421E-20

Table 3.

\overline{n}	$x_n^{(1)}$	$x_n^{(2)}$	$ x_n - x_{n-1} $
-1	5	5	
0	1	0	5
1	0.909090909090909	0.36363636363636364	3.636E-01
2	0.894886945874111	0.329098638203090	3.453E-02
3	0.894655531991499	0.327827544745569	1.271E-03
4	0.894655373334793	0.327826521746906	1.022E-06
5	0.894655373334687	0.327826521746298	6.089E-13
6	0.894655373334687	0.327826521746298	2.710E-E20

References

- [1] I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two point Newton-like methods in Banach space, J. Math. Anal. and Applic. 298, 2, (2004), 374-397.
- [2] I. K. Argyros, Newton Methods, Nova Science Publ. Corp., New York, 2005.
- [3] E. Cătinaș, On some iterative methods for solving nonlinear equations, Rev. Anal. Numer. Theor. Approx. 23, 1, (1994), 47-53.
- [4] X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. Optimiz. 10(1989), 37-48.
- [5] X. Chen and T. Yamamoto, A convergence ball for multistep Newton-like methods, Numer. Funct. Anal. Optim. 14, (1 and 2), (1993), 15-24.
- [6] J. E. Dennis Jr., Towards a unified convergence theory for Newton-like methods, In: Nonlinear Functional Analysis and Applications (Ed. L.B. Rall), Academic Press, New York 1971, 425-472.
- [7] P.P. Zabrejko and D. F. Nguen, The majorant method in the theory of Newton-Kantorovich method for an equation with a non-differentiable term, (Russian), Ukr. Math. Zhurn. 34, (1982), 365-369.