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Abstract. We approximate a locally unique solution of a gener-
alized equations in a Banach space setting using a new midpoint
methods (see (1.2) and (3.10)). An existence–convergence theo-
rem and a radius of convergence are given under Lipschitz and
center–Lipschitz conditions on the first order Fréchet derivative
and Lipschitz–like continuity property of set–valued mappings. We
show that our method (1.2) is locally quadratically convergent using
a fixed points theorem [10]. Motivated by optimization consider-
ations [3], [4] related to the resolution on nonlinear equations, a
smaller ratio and a larger radius of convergence are also provided.
Our methods extend the midpoint method related to the resolution
of nonlinear equations [7].
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1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of the generalized equation

0 ∈ F (x) +G(x), (1.1)

where F is a continuous function defined in a neighborhood V of the solution x∗

included in a Banach space X with values in itself, and G is a set–valued map from
X to its subsets with closed graph.
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Many problems in mathematical economics, variational inequalities and other
fields can be formulated as in equation (1.1) [14]–[17].
We consider a new midpoint method for x0 ∈ V being the initial guess and all k ≥ 0

{

0 ∈ F (xk) +∇F (xk) (yk − xk) +G(yk)

0 ∈ F (yk) +∇F (
xk + yk

2
) (xk+1 − yk) +G(xk+1),

(1.2)

where ∇F (x) is the first order Fréchet derivative of F at x.

For G = {0}, the mildpoint method was introduced in [1]–[5], [7] to solve non-
linear equations:







yk = xk − (∇F (xk))
−1 F (xk)

xk+1 = xk −

(

∇F (
xk + yk

2
)

)−1

F (xk).
(1.3)

In [7] the convergence of order three of iterative method (1.3) is studied un-
der Kantorovich–type assumptions. A special Lipschitz–type condition on ∇F is
used in [1] to obtain a Kantorovich–type convergence theorem. In [5] a midpoint
two–step method is introduced to solve nonlinear equations under mild Newton–
Kantorovich–type assumptions; the obtained results are extended the case in wich
the underlying operator may be differentiable. Ezquerro et al. [11] presented a
convergence result of method (1.3) using a new type of recurrence relations for this
method. Hernández and Salanova [12] investigated a modified midpoint method by

changing an evaluation of ∇F at zk =
xk + yk

2
in method (1.3) by an evaluation of

operator F at the same point.

The purpose of this paper is to study the convergence analysis of method (1.2)
under Lipschitz–type conditions on the first order Fréchet derivative and Lipschitz–
like continuity of set–valued mappings.

The structure of this paper is the following. In section 2, we collect a number of
basic definitions and recall a fixed points theorem for set–valued maps. In section
3, we show the existence and the quadratically convergence of the sequence defined
by (1.2). Finally, we give some remarks on our method using some ideas related to
nonlinear equations [3], [4].

2. Preliminaries and assumptions

In order to make the paper as self–contained as possible we reintroduce some
results on fixed point theorem [3]–[10]. We let Z be a metric space equipped with
the metric ρ. For A ⊂ Z, we denote by dist (x,A) = inf {ρ(x, y), y ∈ A} the
distance from a point x to A. The excess e from A to the set C ⊂ Z is given
by e(C,A) = sup {dist (x,A), x ∈ C}. Let Λ : X ⇒ Y be a set–valued map, we
denote by gphΛ = {(x, y) ∈ X × Y, y ∈ Λ(x)} and Λ−1(y) = {x ∈ X, y ∈ Λ(x)} is
the inverse of Λ. We call Br(x) the closed ball centered at x with radius r.

Definition 1. (see [6], [13], [16]) A set–valued Λ is said to be pseudo–Lipschitz
around (x0, y0) ∈ gphΛ with modulus M if there exist constants a and b such that

e(Λ(y′) ∩Ba(y0),Λ(y
′′)) ≤M ‖ y′ − y′′ ‖, for all y′ and y′′ in Bb(x0). (2.4)
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We need the following fixed point theorems.

Lemma 2. (see [10]) Let (Z, ‖ . ‖) be a Banach space, let φ a set–valued map from
Z into the closed subsets of Z, let η0 ∈ Z and let r and λ be such that 0 ≤ λ < 1
and
(a) dist (η0, φ(η0)) ≤ r(1− λ),
(b) e(φ(x1) ∩Br(η0), φ(x2)) ≤ λ ‖ x1 − x2 ‖, ∀x1, x2 ∈ Br(η0),
then φ has a fixed–point in Br(η0). That is, there exists x ∈ Br(η0) such that
x ∈ φ(x). If φ is single–valued, then x is the unique fixed point of φ in Br(η0).

We suppose that, for every point x in a open convex neighborhood V of x∗,
∇F (x) exist. We will make the following assumptions:

(H0) The first order Fréchet derivative ∇F is L–Lipschitz on V . That is

‖ ∇F (x)−∇F (y) ‖≤ L ‖ x− y ‖ for all x, y ∈ V. (2.5)

It follows from (2.5) that there exists L0 ∈ [0, L] such that

‖ ∇F (x)−∇F (x∗) ‖≤ L0 ‖ x− x
∗ ‖ for all x ∈ V. (2.6)

(H1) [F (x∗) +∇F (x∗)(.− x∗) +G(.)]−1 is M–pseudo–Lipschitz around (0, x∗).

Before stating the main result on this study, we need to introduce some nota-
tions. First, for k ∈ IN and (yk), (xk) defined in (1.2), let us define the set–valued
mappings Q, ψk, φk : X ⇒ X by the following

Q(.) := F (x∗)+∇F (x∗)(.−x∗)+G(.); ψk(.) := Q−1(Zk(.)); φk(.) := Q−1(Wk(.))
(2.7)

where Zk and Wk are defined from X to X by

Zk(x) := F (x∗) +∇F (x∗)(x− x∗)− F (yk)−∇F (
xk + yk

2
) (x− yk)

Wk(x) := F (x∗) +∇F (x∗)(x− x∗)− F (xk)−∇F (xk) (x− xk)
(2.8)

3. Local convergence analysis for method (1.2)

We show the main local convergence result for method (1.2):

Theorem 3. We suppose that assumptions (H0) and (H1) are satisfied. For every

constant C > C0 =
3M L

2
, there exist δ > 0 such that for every starting point x0

in Bδ(x
∗) (x0 and x

∗ distinct), and a sequence (xk) defined by (1.2) which satisfies

‖ xk+1 − x
∗ ‖≤ C ‖ xk − x

∗ ‖2 . (3.9)

Remark 4. (a) Theorem 3 remains valid if one replaces the algorithm (1.2) by the
following method

{

0 ∈ F (xk) +∇F (xk) (yk − xk) +G(yk)

0 ∈ F (xk) +∇F (
xk + yk

2
) (xk+1 − xk) +G(xk+1).

(3.10)

(b) The results of this paper seem also true for a general assumption: F is defined
in a neghborhood V of the solution x∗ included in a Banach space X with values
in another Banach space Y , and G is a set–valued map from X to its subsets of Y
with closed graph.
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The proof of Theorem 3 is by induction on k. We need to give two results. In the
first, we prove the existence of starting point y0 for x0 in V . In the second, we state
a result which the starting point (x0, y0). Let us mention that y0 and x1 are a fixed
points of φ0 and ψ0 respectively if and only if 0 ∈ F (x0)+∇F (x0) (y0−x0)+G(y0)

and 0 ∈ F (y0) +∇F (
x0 + y0

2
) (x1 − y0) +G(x1) respectively.

Proposition 5. Under the assumptions of Theorem 3, there exists δ > 0 such that
for every starting point x0 in Bδ(x

∗) (x0 and x∗ distinct), the set–valued map φ0
has a fixed point y0 in Bδ(x

∗), and satisfying

‖ y0 − x
∗ ‖≤ C ‖ x0 − x

∗ ‖2 . (3.11)

Proof. By hypothesis (H1) there exist positive numbers M , a and b such that

e(Q−1(y′) ∩Ba(x
∗), Q−1(y′′)) ≤M ‖ y′ − y′′ ‖, ∀y′, y′′ ∈ Bb(0). (3.12)

Fix δ > 0 such that

δ < δ0 = min

{

a ,

√

2 b

3 L
,
1

C

}

. (3.13)

The main idea of the proof of Proposition 5 is to show that both assertions (a) and
(b) of Lemma 2 hold; where η0 := x∗, φ is the function φ0 defined in (2.7) and
where r and λ are numbers to be set. According to the definition of the excess e,
we have

dist (x∗, φ0(x
∗)) ≤ e

(

Q−1(0) ∩Bδ(x
∗), φ0(x

∗)

)

. (3.14)

Moreover, for all point x0 in Bδ(x
∗) (x0 and x∗ distinct) we have

‖W0(x
∗) ‖ = ‖ F (x∗)− F (x0)−∇F (x0) (x

∗ − x0) ‖

= ‖

∫ 1

0

(∇F (x0 + t(x∗ − x0))−∇F (x0)) (x
∗ − x0) dt ‖ .

In view of assumption (H0) we obtain

‖W0(x
∗) ‖ ≤

L

2
‖ x∗ − x0 ‖

2 . (3.15)

Then (3.13) yields, W0(x
∗) ∈ Bb(0).

Using (3.12) we have

e

(

Q−1(0) ∩Bδ(x
∗), φ0(x

∗)

)

= e

(

Q−1(0) ∩Bδ(x
∗), Q−1[W0(x

∗)]

)

≤
M L

2
‖ x∗ − x0 ‖

2 .

(3.16)

By inequality (3.14), we get

dist (x∗, φ0(x
∗)) ≤

M L

2
‖ x∗ − x0 ‖

2 . (3.17)

Since C > C0, there exists λ ∈ [0, 1[ such that C(1− λ) ≥ C0 and

dist (x∗, φ0(x
∗)) ≤ C (1− λ) ‖ x0 − x

∗ ‖2 . (3.18)

By setting r := r0 = C ‖ x0 − x
∗ ‖2 we can deduce from the inequality (3.18) that

the assertion (a) in Lemma 2 is satisfied.
Now, we show that condition (b) of Lemma 2 is satisfied.
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By (3.13) we have r0 ≤ δ ≤ a. Using (H0) we have for x ∈ Bδ(x
∗) the following

estimates

‖W0(x) ‖ = ‖ F (x∗) +∇F (x∗) (x− x∗)− F (x0)−∇F (x0) (x− x0) ‖
≤ ‖ F (x∗)− F (x0)−∇F (x0) (x

∗ − x0) ‖ +
‖ (∇F (x∗)−∇F (x0)) (x− x

∗) ‖

≤
L

2
‖ x∗ − x0 ‖

2 +L0 ‖ x
∗ − x0 ‖ ‖ x− x

∗ ‖

≤
3L

2
δ2.

(3.19)
Then by (3.13) we deduce that for all x ∈ Bδ(x

∗) we have W0(x) ∈ Bb(0). Then it
follows that for all x′, x′′ ∈ Br0(x

∗), we have

e(φ0(x
′) ∩Br0(x

∗), φ0(x
′′)) ≤ e(φ0(x

′) ∩Bδ(x
∗), φ0(x

′′)),

which yields by (3.12) and (H0):

e(φ0(x
′) ∩Br0(x

∗), φ0(x
′′)) ≤ M ‖W0(x

′)−W0(x
′′) ‖

≤ M ‖ (∇F (x0)−∇F (x
∗)) (x′′ − x′) ‖

≤ M L0 δ ‖ x
′′ − x′ ‖ .

(3.20)

Without loss generality we may assume that δ <
λ

M L0

and thus condition (b) of

Lemma 2 is satisfied. Since both conditions of Lemma 2 are fulfilled, we can deduce
the existence of a fixed point y0 ∈ Br0(x

∗) for the map φ0. This finishes the proof
of Proposition 5. ¤

Proposition 6. Under the assumptions of Theorem 3, there exist δ > 0 such that
for every starting point x0 in Bδ(x

∗) and y0 given by Proposition 5 (x0 and x∗

distinct), and the set–valued map ψ0 has a fixed point x1 in Bδ(x
∗) satisfying

‖ x1 − x
∗ ‖≤ C ‖ x0 − x

∗ ‖2, (3.21)

where the constant C is given by Theorem 3.

Proof. The proof of Proposition 6 is the same one as that of Proposition 5. The
choice of δ is the same one given by (3.13). The inequality (3.14) is valid if we
replace φ0 by ψ0. Moreover, for all point x0 in Bδ(x

∗) (x0 and x∗ distinct), we have

‖ Z0(x
∗) ‖ = ‖ F (x∗)− F (y0)−∇F (

x0 + y0

2
) (x∗ − y0) ‖

= ‖

∫ 1

0

(∇F (y0 + t(x∗ − y0))−∇F (
x0 + y0

2
)) (x∗ − y0) dt ‖

In view of assumption (H0) and Proposition 5 we get

‖ Z0(x
∗) ‖ ≤ L (

1

2
‖ y0 − x0 ‖ +

1

2
‖ y0 − x

∗ ‖) ‖ y0 − x
∗ ‖

≤
L

2
(2 ‖ y0 − x

∗ ‖ + ‖ x0 − x
∗ ‖) ‖ y0 − x

∗ ‖

≤
LC

2
(2C ‖ x0 − x

∗ ‖2 + ‖ x0 − x
∗ ‖) ‖ x∗ − x0 ‖

2

≤
L

2
(2C2 δ2 + C δ) ‖ x∗ − x0 ‖

2 .

(3.22)

By (3.13) and (3.22) we have

‖ Z0(x
∗) ‖ ≤

3L

2
‖ x0 − x

∗ ‖2 . (3.23)
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Then (3.13) yields, Z0(x
∗) ∈ Bb(0). Setting r := r0 = C ‖ x0 − x∗ ‖2, we can

deduce from the assertion (a) in Lemma 2 is satisfied.
By (3.13) we have r0 ≤ δ ≤ a, and moreover for x ∈ Bδ(x

∗) we have

‖ Z0(x) ‖ = ‖ F (x∗) +∇F (x∗) (x− x∗)− F (y0)−∇F (
x0 + y0

2
) (x− y0) ‖

≤ ‖ F (x∗)− F (y0)−∇F (x
∗) (x∗ − y0) ‖ +

‖ (∇F (x∗)−∇F (
x0 + y0

2
)) (x− y0) ‖ .

(3.24)
Using assumption (H0) we obtain

‖ Z0(x) ‖ ≤
5L0

2
δ2 (3.25)

A slight change in the end of proof of Proposition 5 shows that the condition (b)
of Lemma 2 is satisfied. The existence of a fixed point x1 ∈ Br0(x

∗) for the map
ψ0 is ensured. This finishes the proof of Proposition 6. ¤

Proof of Theorem 3. Keeping η0 = x∗ and setting r := rk = C ‖ x∗ − xk ‖
2,

the application of Proposition 5 and Proposition 6 to the map φk and ψk respectively
gives the existence of a fixed points yk and xk+1 for φk and ψk respectively which
is an elements of Brk

(x∗). This last fact implies the inequality (3.9), which is the
desired conclusion. ¤

Remark 7. (a) It follows from the proof of Proposition 5 that constants C0 and δ0
can be replaced by the more precise

C0 =
M L

2
, (3.26)

and

δ0 = min

{

a ,

√

2 b

L+ 2 L0

,
1

C

}

, (3.27)

respectively. Note that

C0 ≤ C0, (3.28)

and

δ0 ≤ δ0. (3.29)

(b) The constant δ0 in the proof of Proposition (6) can be given by :

δ0 = min

{

a ,

√

2 b

3 L0

,
1

C
, 1

}

. (3.30)

Indeed by adding and substracting ∇F (x∗) (x∗ − y0) inside the first norm in the
computation of ‖ Z0(x

∗) ‖ we arrive at an estimate corresponding (3.23) :

‖ Z0(x
∗) ‖ ≤

3L0

2
‖ x0 − x

∗ ‖2 . (3.31)

Hence δ0 can be replace δ0 in the proof of Proposition 6. This modification is usefull

when δ0 > δ0. These observations are important in computational mathematics
since the allow a smaller ratio C and a larger radius of convergence [3], [4].
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Remark 8. The sequence (yn) given by algorithm (1.2) is also quadratically conver-
gent to a solution x∗ of (1.1) (see [9]). Note that the midpoint method for nonlinear
equations was shown by us to be of order three (see [1]–[5], [7], [8]). However we
had to introduce Lipschitz conditions on the second Fréchet derivative ∇2F . Here
we simply used hypotheses on ∇F only. In a future paper using the Ostrowski
representation for F given in [8] we will recover the third order of convergence of
method (1.2).

Application 9. (see [14])
Let K be a convex set in IRn, P is a topological space and ϕ is a function from
P × K to IRn, the ”perturbed” variational inequality problem consists of seeking
k0 in K such that

For each k ∈ K, (ϕ(p, k0); k − k0) ≥ 0 (3.32)

where (.; .) is the usual scalar product on IRn and p is fixed parameter in P . Let
IK be a convex indicator function of K and ∂ denotes the subdifferential operator.
Then the problem (3.32) is equivalent to problem

0 ∈ ϕ(p, k0) + ∂IK(k0). (3.33)

The problem (3.32) is equivalent to (3.33) which is a generalized equation in the
form (1.1). Consequently, we can approximate the solution k0 of (3.32) using our
methods (1.2) and (3.10).
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