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ON A PACKING INEQUALITY FOR PLANE SECTORIAL
NORM DISTANCES

Dedicated to Arnold E. Ross

by
HANS ZASSENHAUS

I the geometry of numbersthere occur distance functions like

; ! PR
Nn (P’ Q)zl ’i/;=1 (yi—xi)! s (P=X],. . xn)"Q':(yl’- .. yn),

Nym (P, Q)= (xcos-+y smj )! ( Q {x,y})

N*5, (P, Q)= | \/u,,,_v,,. l,(um=" COos (P, Vi =F Sin CP,'O<fp<12r ,r}O,

- _ 29, jm\ - (29 gy g
PQ™ E"COS kﬁ-" ;7'),1'S1n('—ne+7n) {
0Cji<mjeZ)
which have the following properties:

(1) N(P,Q,)is a real valued non-negative function of the pairs of
points P, Q of the euclidean n-dimensional space Ep,

(2) (translation invariance):
' - -

N (P, Q=NGR, S) ifPQ=RS,
(3) (homogeneity): _
s
N(©O,P)=AN(0,P) ifOP'=)0P, r» > O,
(4) (central symmetry):
- -
N (O, P)=N (O, P) if OP’ = — OP,
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(5) the En is the non-overlapping union of finitely many closed
cones Ej, ...., Ep emanating from the origin such that each of
them contains interior points and that, moreover, for any
parallelogram OP; P, P; with one vertex at the origin O and the
other three vertices contained in the same sector E jthere holds
the anti-triangle inequality

N(O, P;) > N (O, P))+N (O, Py).

The pointsets Cy, ...., Cp are called the secrors of :the sectorial
norm distance N which is defined by the properties (1)— (5). Or, equi-
valently, the ‘gauge body’ of all points of N-distance less than | from the
origin O is an open region S that is starred and centrally symmetric
about O such that E,—Sis the non-overlapping union of finitely many
closed convex pointsets Sy, ....,Sp such that for every pbint Pof S;
also the ray away from O belongs to S; and the pointset C; formed by
. allrays from O to points of S; contains inner points.

A sectorial triangie is defined as a triangle with vertices P, Q, R
such that the two points X, Y defined by setting

- 5 5> o

0X=PQ, OY=QR
belong to the same sector. Hence there holds the anti-triangle
inequality. )
(6) NP, Q+N(@Q,R) <N(P,R).
Let N be a plane sectorial norm distance. A pointset M is said to
be N-admissible, if the N-distance of any two distinct points of M is at
least 1.

Denote by #() the greatest lower bound of the areas of the N-
admissible non-sectorial triangles. For example for N=N, we have ()

—14/5, the area of the N,-admissible triangle OQR where Q=(1, 1),

R:(li:/E, ]_2‘/3} .
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We consider a finite N-admissible rointset M and a Jordan-polygon

T =P;..PyP, with vertices in M such that every point of M that is not
on the boundary of T lies in the interior.

Theotem : The area 4 (7) of T, the N-circumference

b
C(W)?\_‘IN(PB Pit1)s (Prs1=P1)
i~ -
and the number of points N in M satisfies the inequality

A(T)

M 3 r(N)

in the event that #(N) is positive. This inequality has been proved by an

ingenious argument in the never published thesis of Norman E. Smith

-[3] for the special case N =N2 ‘The theorem represents a generalization

—C(7T)+1 | M|

which permits to establish —— T (N) as anupper bound for the irregular

packing dens1ty with respect to plane sectorial norm distance. The
bound is sharp in Norman E. - Smith’s case and coincides with the
inverse of the critical mesh. M. Rahman [2] gives two other cases in
which 2¢ (N) is less than the mesh of the critical lattice. It is known
in one case [1] but not in the other one that the irregular packing
Censity cannot be greater than the regular packing density.

Proof of the theorem: If (7) would be wrong then there would be a
counter example M, 7T with minimum value of 6+ | M | .

If there are three points Pj, Piy1, P of M such that P is in the
interior of T and P; PP,y is a sectorial triangle contained in 7T for

which

(8) N (Pis Pi+1) > N (Pia P) +N(P5Pi+1)
then for all points X of M belonging to the triangle P; X P;,,, but not
to the straight segment P; P;,, the triangle P; X P;4, is sectorial again.
Among the points X let Y be a point closest to the line P; P,y It

follows that )
N (Pi’ PH-I) > N(Pi’ Y)+N(Y1 Pi+l)!
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that there is no point-of A contained in triangle P; YP;,; other than
the 3 vertices and that the triangle P; Y P;;; belongs to M. Upon
replacement of the Jordan polygon T by )
=P, Pz. ... P; YPH—I .. Py Py
the number of boundary points is increased by 1 such that all points of
M again either are vertices of M’ or they belong to theinterior of T’

Hence

A(T) ,

Let us note that

A(M)=A(T")+A®; Y Piy1) > A(T)

C(M)=N(P;, Piy)=NPi,Y)-N(Y,Pi41) >0
hence (9) implies (7), a contradiction. It follows that there is no
sectorial triangle P; PPy, containzd in T for which (8) is satisfied such
that P is inner point of M. If, however, P=Pj, where i+1< j<b and
where no point of M other than the vertices belongs to triangle P; P Py,
then either 5=3,

A(M), 1 1 —3=
57 (N)+ C(M)-+1 >0+ *4+1 | M |

or b>3. j=i+2,
Am)+ C(T)+1 3> | M| -1

2t (N)
(7r =Py Py.. Piys .. Py Pp

A(M > AT,
C(M)-C(M")= N(Pn Piy))=N (P;, P)+N (P, Piyy)
22NP,Pis1) 22

-hence again (7),
orb>3,j>i+2,

10) 4 T+ 5 € T+1> | a4 |

2t (N) T 2
(T"=Piy1 .. PJ' Pis1)
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A"y 1 .
(11) 2wyt 2—c<7r Y+1 > [ M)

‘ (7r”'=:Pj . Pb P[ .. Pi PJ)

M " Ma= {P}

A(T) > A(T)+A4(T")
C(M)- C(M")y=C(T"")=N (P, Piy1)—N(P;, P)
~N@®,Piy1) >0
hence upon addition of (10), (11) and subtraction of 1 on both sides once
again (7) is obtained.
Thus it follows that there is no. point P of Af other than P;, P;4;, for
which the triangle P; P P;4; is contained in 7 and sectcrial subject to (8).

If it is possible - to find: a triangulation of 7 into non-sectorial
triangles using only the points of M as vertices then by Euler’s formula

the number ) of these triangles satisfies :
| M| +r41= —23~ ,+'£21+2
so that
=2 M| -b-2
A(T) > 2t (N)
A4 (T)
- ———1
2t > | Ml
5- C () >
1 >1
hence upon addition of the last three inequalities again (7).

The theorem therefore will follow from the  following ~ Lemma:
Given a Jordan polygon 7T=P; P, .. P, Py and a finite pointset M
containing Py, Py, .., P, such that every point of M ‘distinct from

.,Pp belongs to the interior.of . For no point P of M for which
Ps£P;, P-£P; ,,, the triangle-P; P P;, belongs-to. T andis - sectorial such
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that (8) is satisfied. Then thereis atriangulation of T into non-sectorial
triangles using precisely the points of M.

Proof : If the lemma would be wrong then there would be a counter
example with minimum valve of | M| . :

For any peint chain X X, .. X) the broken /-path X, X .. X; is
defined as ihe chain of straight segments X, X;, .., X,~; Xj. It is said
tobe an i, M, T, S-path (or sectorial /, M, 7T-path, or sectorial M,
T -path) from X, to X, if

(1) each of the /-1 points X,, Xi, .., X| belongs to M

. >
(2) each vector X;X;,; (0<i<1) is non zero and belongs to the

same secCtor.
—_———

1t follows that each vector X;X; (0<i<{j& /) is non-zero and
belongs io S. .
- A refinement of the I, M, M, S-path is defined as an (/41),
M, T, S-path X, X .. X; X Xiyq .. X
A sectorial M, T -path is said to be maxima] if there is no refinement,

If there is a sectorial M, T -path from P to Q then after a finite
number of refinements a maXimal Af, 7T -path from P to Qwill be
obtained. 7 '

If the vertices P;, Piyy .., Py of T satisfy the condition that the

_—— ———>
vectors P; P;;1, --» Pigl_1 Pis1 belong to the same sector then the broken

path P; P;,y is a maximal sectorial /, M, T -path from P; to Py, t.
Such a sectorial /, M, T -pathis said to-bea boundgary M, T -path.

Any subpath X;, .... X;j(where 1<i<j/) of the sectorial I, M,
T-path X, X;....X] is a sectorial M, T -path. If the sectorial M,
T-path X, Xp....Xj is maximal then every subpath is also maximal

sectorial.

t We set P4y =Py, Ppyr=Py, .., Pop1=Pp_1.



(7]

If there is a“maximal sectorial M, T-path ftom one vertex of 7T
to another one that is not a beundary M, T-path then there is a subpath
P; K1 Xo....Xj_y Pj (where 1<i< j<it+b; i<b)

for which none of the points Xy,....X;_; is a vertex of T,

It follows that the two Jordan polygons .
7T1=P, X] Xz. . .X[_l PJ Pj+1 e .Pi.‘_bﬁlpi,
7T2=Pi X] Xz. . --Xl—1 Pj Pj—l' .
and the corresponding intersections M= M n T, (Iz¥l, 2) both satisfy
the assumptions cf the lemma such that there is a triangulaticn of Ty,
into non-sectorial triangles. The two triangulations together constitute
a triangulation of 7 info non-sectorial triangles

From now on we make the additional assumption that every
maximal sectorial M, 7/-path leading from one vertex of 7 to another
one is a boundary sectorial M, 7T -path.

If >3 then, after suitable numbering, there will be an index i such
that 2< i< b and that the straight segment P; P; belongs to 7T and that
P;, P; are the only points of the straight segment P, P; that are on the
b0undary of T and that there is the maximal sectorial M, 7, S-path
Py P;....P;and iis aslarge as possible.

If there is a vertex of M inthe Jordan polygon T =P, P,....P; P,,
say the vertex P;j (where i< j<(b), then there are vertices P/, P;’, of 7’
such that ; <i’ < i< j’<b such that the straight segment P/ P ;' belongs
tc 7', bt that it has only the points P/, P with the boundary of 7
in common. It follows that either P/ P/41....P7/ or P/ P/_;....
PPy, Py_y....P; form a maximal sectorial path from P;’ to P;’. 1Inthe

_
first event the vector P; P;* would be in S and also in the sector that is

opposite to S. 1In the second event the vector P; P;” would belong to §
and also to the sector that is opposite to S. In any case there arises a
contradication. It follows that the vertices Py, P, ....P; are the only
vertices of 7T belonging to 7T’.
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Thus we have shown .that none of the straight segments P/ Pj
(where 1<i'<i< j'<b) belongs:-to T. All vertices: P, Py, ....P; of T
must lie on the same side.of the straight line P; P;. This is because
the broken path P; P,....P; is sectorial. ‘

Let the ray Py )Emove to the other side of ray P;P; such that
another vertex Pj of T is met for the first time in-such a way that the
straight segment P; P;j belongs to 7 and the intersection of this
straight segment with the boundary of 7 consists only of the endpoints.
Hence i< j<b. From the argument given above it follows that none
of the straight segments P;” P; (1<i’<i) belongs to 7T. Moreover there
are vertices Py, P;" (where 1<i'<<i"<i) such that the line P/ P;”
intersects line P; Pj in a point X lying between P; and P; and the ray
XP; is between the ray from X that is 0ppositc ray XP; and the ray

———
XY with Y bemg defined by the equation XY =P; P;. Since both vectors
— > —_——>
Xy, P'X belong to C it follows that the vector XP; belongs to S,

—_
hence also the vector Py P; belongs to S. Hence j=b because of the

maximal property of i. But in this event there is the sectorial triangle
P; P; P, which is a contradiction.

There remains to discuss the caseb=3. If | M | =3 then T -itself
is a non-sectorial triangle. Therefore | A/ | >3.

There is a point P of M in the interior of the triangle P; P, P3=T
— — —
such that neither the vector pair P; P;, P, P nor the vector pair PP,
—
P, P, are in the same sector.

There is a-sectorial 7, M, T-path P; Q,....Qr_y P connecting P;, P
with maximum value of = and there is a sectorial - m, M, T-path
PR,....R, _; P, connecting P;-P, with maximum value of :m. :Because
of the property of P mentioned above all of the points Qy,....Qr_4,
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Ry, ....Ryu_; are in the interior of 7. Let us choose P in such a way
that r+m is minimum. Itfollowsthat the path P, Q, ....Q,_1 PRy....
R, P, is a Jordan path.
Hence the two Jordan polygons
=Py Q,....Qr_t PRy....Ry_{ P, Py Py
T”=P;1Qq....Qr—1 PR;....R;,_1 P2 P;
respectively satisfy the assumption of the lemma with respect to the

pointsets _
) M=T'nMM=T"nM
respectively.

As was shown already there are triangulations of 77, 77" into non-
sectorial triangles using precisely the pointsets T’ n M, 7T" N M res-
pectively as vertices. The two triangulations together provide a triangula-
tion of 7T into non-sectorial triangles using precisely M as vertices.
Hence the lemma.

The Ohio State University, September 1965.
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IMPACT OF HOMOLOGICAL ALGEBRA ON THE THEORY OF
ABELIAN GROUPS

by
S. M. YAHYA
Department of Mathematics
University of Karachi
West Pakistan

The object of this article is to describe the important role which
Homological Algebra has played in the development of the theory of
abelian groups. Homological algebra isa branch of mathematics which
has emerged mainly during the past fifteen years from algebraic
topology by abstracting most of the powerful algebraic techniques from
their topological setting. In view of the fact that homological algebra 1s
a highly specialized subject I feel called upon to detail some of its basic
concepts. Because of the limitation of space it will not be possible for
me to describe in detail the latest developments in the field of abelian
groups. I will therefore have to content myself with broadly indicating
how homological algebra has influenced the abelian group theory,

Let me begin with some definitions.
1. Group Homomorphisms

Definitions. A homomorphism ¢: A—>B from the abelian group A
to the abelian group B is a mapping satisfying (a+a’) p=a ¢-+a’ ¢.
The kernel of & is the subgroup =1 (0) of A, i.e., the subgroup consist-
ing of elements which are mapped on to zero under the mapping ¢. The
subgroup A¢ of B is the image of ¢, the factor group A/¢~! (0) is the
co-image, and the factor group B/A ¢ the co-kernel of . The homomor-
phism ¢ is a monomorphism if its kernel is zero, and epimorphism if its
co-kernel is zero, and an isomorphism if itis both. If A’ is a subgroup
of A, then the monomorphism i : A’—A defined by @’ i=a’,a’ ¢ A, is
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called the inclusion map or injection, and the epimorphism p: A—>A/A’
which maps each element of A onto its coset is called the projection.

Definition. A sequence of abelian groups and horﬁomorphisms

. Pyl Pn
...... '—)An+[ > An An'_l D e, (])

is exact at Ay if the image of the homomorphism ¢,4, is the kernel of the
The sequence is exact if it is exact at A, for each n.

homomorphism ¢y,.

ip
We note that the squance O—->A'—>A—A/A’'—>Q is exact.
Thus we express the fact that A’ is subgroup of Aand A” the quotient
group A/A’ by saying that the sequence O—>A’'->A—>A"—0...... ()]
is exact.

2. Tensor Product, Torsion Product, Hom. and Ext.

Definition. The tensor product A Q@ B of two abelian groups
A, B is the abelian group generated by elements a X b, a € A, b € B,

with the following relations :
(a1+a2) @ b=a1 Q b+a, @b,
aQ(b1+ b)) =a@b;+a R b,.

AP
Definition. Let O—R—F—>A—>O be a presentation of an
abelian group A (i.e. A is expressed as the quctient of a free abelian

group F), Then it can be shown thatthe kernel of the homomorph-

ism ) : R®QB—>FXB, where B is any abelian group, is independent,
upto isomorphism, of the choice of # (see [11]) and is called the .
torsion product of A and B and is denoted by Tor (A, B) or A # B.

Definition. Let A, B be two abelian groups. Then the set of
all homomorphisms A-»Bform an abelian group under the compo-
sition defined by a(p+P)=ap+a,a e A, ,P: A-B.

This group is usually written as Hom (A,B) or A AB (the latter
notation is due to E.C. Zeeman).
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Aou
Definition. Let O—»R—>F—A—>0O be a presentation of A.

Then it can be proved that the co-kernel of the homomorphism

A :FQB->RKB is independent, upto isomorphism, of the choice
of 1 (see [11]) and is called the group of extensions of B by A and is
written as Ext. (A, B) (or A 1 B).

3. Projective and Injective groups!.

Definition. An abelian group P is projective if, given any epimor-
phism ¢ : A—>B and any homomorphism g: P—B, thereis a homo-
morphism ¢ : P—A such that « ¢ =§.

Definition. A group I is injective if, given any monomorphism ¢:
B—A and any homomorphism §: B—I, there is a homomorphism «:
A—>T such that ¢ a=§p.

It can be proved that an abelian group is projective if and only if it
is free and injective if and only if it is divisible.

4. Categories and Functors

Definition. A set E of elements {~¥} is called a multiplicative
system if, for some pairs ¥y, Y. € E a product Y1 ¥, € Eis defined.

An element e € E is called an identity if N3 e="; and e Y=,
whenever ; e and e “,are defined. The muitiplicative system is called
an abstract category if the following axioms are satisfied :

(@) the triple product (V1 V) Vs is defined if and only if ~N; (Y. ¥3)

is defined. When either is defined the associative law (V3 V2) Vs
=4; (Y2 Ys) holds. This tripie product will be written as

as ’Yl 'YZ ‘{3 5
(i1) the triple product v; ¥, Ysis defined whenever both products
Yi Y2and Ya Yg are defined ;

1. By a group we shall always mean an abelian group.
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(i1i) for each W e Ethere exist identities e;, e,, €E such that ;¥
and ¥ e, are defined.

Definition: A cotegory E consists of a collection { C} of elements
called objects and a collection {~ } of elements called mappings. The
objects are in 1 —1 corf;espondence C—>1¢c with the set of identities ot
the abstract category. Thus to each mapping ¥ there correspond unique

1 1
objects C; and C; such that Cl_”{ and CZ'Y an defined. The objects

are called the domain and the codomain (or range) of ¥ respectively. We
write § : C;—»C,. We now give some examples of categories :
(i) the category of topological spaces and continuous maps ;
(i) the category of abelian groups and homomorphisms ;
(iii) the category of vector spaces over a field-and linear transforma-
tions. '

Definition. Let E and D be two categories and let T be a function
which maps the objects of E to the objects of D and maps of E to maps
of D. Then T is called a covariant functor if the following axioms are

satisfied:
@) if ¥ : C;=>C,,then ¥ T:C; T-C, T,
1
@) CT=1,;
(i) if "1 ¥, is defined, then (Y1 ¥2) T=(V1 T) (Y, T).
Themap T is called a contravariant functor if these axioms are
replaced by
@) if ¥:C;—>C,, then Yy T: C, T-C; T,
1
@) Cl=1,,
(iii) if ¥ N, is defined, then (¥; ¥3) T=(¥, T) (¥, T).

Tensor product is an example of a covariant functor and Hom.
that of a contravariant functor (For details of categories and functors

see [1]).
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5. Direct and Inverse Limits.

Definition. A relation a'< g in a set M is called a quasi-order if itis
reflexive and transitive. A directed ser M is a quasi-ordered set such
that for each pair ¢, 8 e M, 9 a ¥ € M for which a<% and B<H.

Definition. A direct system of sets {X, m} over adirected set M

. . . a .
is a function which attaches to each « € M a set X and, to each pair «,
B such that ¢ < gin M, a map

waﬁ : Xa-—>Xﬁ

such that, for each ¢ e M
a . .
Ty = identity,

and for a<B< N in M,

An inverse system of sets {X, m} over a directed set M is a
function which attaches to each o € M a set Xa, and to each pair «,
such that ¢ < g in M, a map

T g:X -»X
a p a

such that

ﬂaa = identity, « € M,

T 'Y-rr Fg:71'OL'Y,<1<F3<"{illl\/I.

Definition. Let {G, =} be a direct system over the directed
set M where each G% is an abelian group and each wﬁ is a homomorph-
ism. LetZX ¢P G denote the direct sum of the groups of { G, 7 } .

a [¢8
For each <g in M and each g € G the element
4 o

aﬂ'
& Tq
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of »@ Giscalled a relation. Let Q be the subgroup of X G
generated by all relations. The direct limit {G, =} isthe factor group
G* = ZEG/Q

The natural map X P G — G defines homomorphisms

L G¥»G™ called projections.

We can similarly define the inverse limit of an inverse system of
groups. (For details see [1]).

6. Exact Sequences
It is well known in homological algebra that if the sequence
0—->A'—>A—->A"—0 .. .. . 0]
is exact, then for any abelian group B the following sequences
0—A’ * B>A * B»A" * BbA/QB-ARB—->A"RB—0 (2),
0>A"#\B—>AAB—A' #1B—>A"tB—>A{B—>A’1tB—0, (3),
0—BAA’—>BAA—>BHA">BtA’->BtA—BtA"—>0 (4,
are exact (see [11]1)

The exact sequences led to the study of other exact sequences in

o
the theory of abelian groups. We call the exact sequence A’—>A—>A”
pure exact if A'« is a purs subgroup of A (A’ is called a pure
subgroup of A if, for each integer n, n|a in A, a € A’, implies
that n|a in A’). We can similarly define the group of pure
extentions Pext (A, B) (We shall denote it by A ¢ B), Harrison [9]
showed that if the sequence (1) is pure exact and B is any group then
the following sequences

0>A"AB>AAB—A'AB—>A" ® B5APB—A' PB—0 ),
0->BAA'=>BAA—->BAA">B © A’-»B PA-BPA"—0 (6),

are again exact.
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Fuchs [4] showed thatif the sequence (1) is pure exact then

the sequences

05>A'QBARBA'ZBS0 .. o o . o (D
0—>A’ *B—>A*B—A"*B—=0 .. .. .. «. .. (8),
0—»BAA—~BhA—-BAHA" B )N
0—A”AB—>AnB—>A'AB RO ¢ (1))
BtA’>BfA—>BTA"—0 O ¢ ) )
A"tB—A1TB—A’T1B—0 B ¢ VA N

are pure exact.

I have generalized these concepts (see [25]) and studied P-pure
exact sequences and-the group of P-pure extensions, where. P is a family
of primes. In the same paper I proved the theorem, stated below
which includes the case of pure exact sequences (7) and (8) as its

special cases.
u

Theorem :  If the sequence 0—A’->A—>A"—0is pure exact and
T is an additive covariant functor, commuting with the formatlon of
direct limits, then the sequence
AT T ,
0-—>T(A")-—-T(A)--»T(A")—0 S ¢ )
is also pure exact,

For further generalizations we  refer to the” paper of Fuchs (8]
7. Duality

Duality plays a significant part in homological algebra. One may
have already observed duality in the definitions given above, for
example, image and co-image, kernel and cokernal, domain and co-
domain, projective and injective, direct limits and inverse limits. Hom
and Ext. are dual, in a sense, to tensor product and torsion product.
Duality has also led to many new concepts in the theory of abehan,
groups.
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7.1 Algebraically compact groups. The concept of an algebrai-
cally compact group which has a role, in a sense, dual to that of a
direct sum of cyclic groups was introduced by Kaplansky in his book
({13] ‘Infinite Abelian Groups’). A systematic theory of algebraically
compact abelian groups is now available (see [4], [5], [7] ).

It is indeed one of the remarkable results of the abelian group
theory that any one of the following properties characterizes an algeb-
raically compact group A. '

(i) A is a direct summand of a group that admits a compact

topology. _

(#) A is a direct summand of a complete direct sum (or direct

product) of finite cyclic and quasi-cyclic groups.

(i) A is a direct summand of every group that contain A as a pure
“subgroup. '

(iv) Ais pure injective ( cf [16]).

(v) Aisofthe form D B where D is a divisible group and B
is Hausdorff and complete in its n—adic topology (see (6],
[121) '

(vi) Ais of the form A==D 5 * Ay, where D is a divisible group

' p

and Ap, for each prime p, is a p-adic module that is Haus-
_dorff and complete in its p-adic topology.

(vii) If a system of linear equations over A has the property that
every finite subsystem is solvable in A, the whole system has a

solution in A, ‘ ‘ ‘ K
7.2 Co-torsion groups. The theory of another important class
of groups, called co-torsion groups, which are in a way, dual to torsion
groups, was evolved by Harrison [9] . Co-torsion groups are charac-
terized by thefact that their all extensions by torsion-free groups split.
For example A 1B is co-torsion. They have the following striking

properties (see [5], [6]). '
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(i) a homomorphic imaze of a ce-tericn Lrevp is ce-torsicn;
(i) a subgroup H of a co-torsion group G is co-to:sion if the factor
group G/H is reduced ;
(7ii) an extension of a co-torsion group by a co-torsicn ‘group is
co-torsion ;

(iv) a complete direct sum of afamily of grours is co-torsion if and
only if every member is co-torsion ;

(v) a reduced co-torsion group G is algebraically compact if and
only if its first Ulm subgroup GI:Q # G vanishes';

(vi) Ulm subgroups of co-torsion groups are co-torsion and Ulm
factors of co-torsion groups are algebraically compact;

(vii) a torsion or torsion-free - co-torsion group is algebraically

compact.
7.3. Cogenerators, Cocyclic and finitely cogenerated groups.

Let me add one more illustration of how duality gave rise to a
new concept. It is well-known what a cyclic group is but perhaps it is
not as well-known what a cocylic group is. This concept was first
introduced by Maranda [16] . Let me explain it is some detail. We
observe that a cyclic group is characterized by the property : '

Let G be any group and ¢ any homomorphism from G to A, g an
element g € A such that if @ € Im ¢ then ¢ is an epimorphism, a being
called a generator of A.

In a heuristicaily dual sense, we call a group cocyclic if it has the
following property :

Let G be any group and ¢ any homomorphism from A to G, g
an element g € A such thatif a does notbelong to Ker ¢ then ¢ is a
monomorphism, a will be called a co-generator of A.

Thus a group A is cocyclic if g a € A, a=0 such that every non-
trivial subgroup of A containsg. Such groups are known to be of the
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type Zp’ﬂ(k<oo),p a prime.. We note that a finite cyclic p-group is
self-dual. : ;

Parallel to the theory of generaters ofa group I have developed the
theory of cogenerators of a group and introduced finitely cogenefatea’
groups. v 7 -

Let G bea group and let S be a subset of its non-zero elements such
that every non-trivial subgroup of G intersects S non-vacuously, then
we say that G is co-generated by Sor Sis a set of co-generators of G.
If S is finite, then we call G a finitely cogenerated group.

We know that a finitely generated group is a direct sum of a finite
number of cyclic groups and that its subgroups satisfy the maximum
condition. We thus eXpect a finitely cogenerated group to be a direct
product of a finite number of cocyclicgroups and expect its subgroups
to satisfy the minimum condition. That this is true is shown by a
theorem which we shall onlystate here.

Theorem. The following statements are equivalent :

(i) G is a finitely cogenerated group;
(i) G is an essential extension of a finite group ;
(m) G is a torsion group of finite rank ; __
(iv) G is a direct product of a finite number of cocyclic groups ;
 (v) the subgroups of G satisfy the minimum condition.
8. Structure of Tensor Product, Torsion Product, Hom and Ext.

" Homological algebra has also contributed to the structural aspect
of the theory of abelian groups. The structure of the tensor preduct of
two p-groups and that of a p-group ard a torsion-free group were first

given by Fuchs. in his famous book [2] (Abelian groups). It is shown
there that if A and B are p-groups and G-a torsion free group then AQB

= UV where U and V are basic subg1 oups of AandB respectlvely,
and that AQG == "I@A where ¥ is the rank of G / pG. !
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U is called a basic subgroup of a p-group A if
v'(i‘) U is a direct sum of cyclic groups
@i Uis purein A;
(iii) the factor group A / U is divisible.
Thus if A and B are torsion grohps AXBisa direct sum of cyclic
groups.
The structure of the torsion subgroup of AQB where A and B are
any abelian groups, was described by Fuchs in [4] (see also [24]). Let

A; denote the torsion subgroup of a group A and Ay the torsion-free
group A / A;. Then the stracture of the torsion subgroup (AQB);of

ARB is given by
(AQB) == k EB[UP® VP@E KR A D Z'@Bp]

where U p, Vp are basic subgroups of the p-components A », By of A, B;
_ respectively and v,, v, denote the ranks of Af/p Ay and Bf/p Bf

respectively.

In fact, the structure of A ¥ B when one of the groups is torsion
is comyletely known (cf, [6], [24]). The structure of the tensor product
of two torsion-free groups is not yet known.

For the structure of the torsion product A = B we refer to Nunke's
paper [19] (On the structure of Tor).

The structure of Hom (A, B) is not yet known -in the general case
when A, B are any groups. However, it isknown in many particular
cases. Fuchs has proved (see [3]) that the algebraic structure of the
character group of a discrete abelian group A depends only on certain
cardinal invariants of A. Pierce [20] has shown that Hom (A B) can be
completely described if A is a torsion group.

For the structure theory qf the group of extensions, which is rather
elaborate, we refer to [9], [10], [15], [17], [18], [27].
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9. Generators of A + B (Tor (A, B)).

We observe that most of the important functors -in homological
algebra have the remarkable property thatthey can be described by a
canonical system of generators and relations. The first striking example
in this direction is Eilenberg-Maclane‘s description of the functor
Tor (A, B) (see [0]). They define T (A, B) to be the abelian group
generated by the elements (a, b), where a € A, b € B, and h is anintegar
such that # a=o, h b=0 ; these elements are subject to the relations :

(i) (a+a, Bh=(a, Dp+(@’, b)p, ha=0,ha’=0,hb=0;
(i) (a, b+b")h=(a, D)+ (a, b')p, ha=0, h b=0, h b'=o;
(iii) (ka, b)p=(a, b);,;;, k h-a=o0, hb=o, k being an integer;
(iv) (a, kb)h=(a, b)in, ha=o0,k h b=o, k being an integer.
Then it can be shown that T (A, B)= A = B (defined as above).

This description led to the study of new functors. For example, I have
studied functors S" (Aq, Ay, ..., Ap)(see [22]) which include Tor as

- a special case. I havealso introduced functors L”Y I(Al, Ay ..., Ap)
and discussed their properties (c f. [23]). ’

Moreover, the isomorphism T (A, B) = A * B hasalsoled to some
problems in a different direction. We have defined A « B as the kernel

of the homomorphism A: R @ B—F 9 B, where O—>RAF—M>A—>O is
a presentation of A. We note that the element (a, ), of T (A, B)
corresponds in this isomorphism to an element r (3 b (we shall call such
an element a monomial) where ¥ A=hf,f € F, f #=a. We thus observe
that the kernel of the homomorphism A: R®B-FRB is generated by
monomials, This observation gave rise to the following question; given
monomorphisms ¢: A’—>A, \: B’—B, is the kernel of the homomorphism
s v:A @B ->A QB generated. by monomials? The question
was answered by me in the negative by giving two counter-examples

(see [21]).
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Let me reproduce one of them here.

Let A=Z(@)® Zis(a1), B=Z (b) D Zi5 (b1),
A'=Z (@YD Zs(a)), B’ =Z (") D Zs (b1),

where Z(a) denotes the infinite cyclic groups generated by g and Z;¢ (a;)
the cyclic group of order 16 generated by ;. The inclusions

A’CA, B’SBare given by

a =4 a+2a,
b =4 b+2 by,
ai'=4 ay,
by'=4 by.

One can easily verify that '’ & by'+a,’ @ b’ is an element of the
kernel but it is not a linear combination of the monomials present in the
kernel. In particular @’ @ b1/, a;” @ b’ are not in the kernel.

Now the following questions, which are so.simple in form, still
remain to be settled.
(/) What is a necessary and sufficient condition that the kernel of
Q@ V: A’ Q@ B'>A R B may be generated by monomials?
(ii) What is a necessary and sufficient condition that ¢ @ v :
A’ @ B’—A & B may be a monomorphism? '
10. Some Isomorphisms

We have two important isomorphisms in homological algebra of
abelian groups (which can be derived from the Kiinneth formulae):

(MHNAQB*xCO)PA+BYCO)=AXB)*xCPH(A «B)RQC,

(i) (AQBTCHA «+BIAC=AABTC)PATBAC).

Many significant results have been obtained by applying these
isomorphisms. But personally, I have been interested in the structure

of the groups themselves that appear on each side of (i) and (ii) and
thus eéxamining these isomorphisms. T have shown the structure of each

side of (i) [24], proving that
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ARQB *CO)PA «(BRQC)
NZ@[U,V@(VP sWp)DUp » (V)QWp) B IZD (Vo @ Wp)

ap
@2@(WP®UP)@3@(UP®V}’)@2(G9(?P*C.D)
¥4 Fp f
@2@ (Cp »Ap) P = @(AP ® Bp)l,
rp (By) rp (Cf)

AQB) +CHA=*B)RQC
= 2@ [(Up@Vy) «Wp DUy = V) QWp DI D(Vy @ Wp)

&y
@E@(WP®UP)@YZ'(UP®V.D)@EE(B(];’P * Cp)
fp »
@2@(@9 *Ap) DI D(Ap = By,
rp (Bf) ’1’\Cf)

where Up, Vp, Wy are basic subgroups of Ay, By, Cp, the p-com-
ponents of the torsion subgroups A;, B;,, C; of A, B, C, respectively,
ApyUp=Z2 P Z30 By/Vp=3@PZpo, Cp/Wp=ZZoo,

ap fp vp b
and rp (Af)=therank of Af/p Ay.

The structure of each side of (if) is not yet known. I can give the
structure in a significant special case when C is algebraically compact
(see [26]). The difficulty in the general case when A, B, C are any
groups is perhaps because of the fact that Hom, Ext and inverse
limits are not strictly dual to tensor product, torsion product and
direct limits. For example, every abelian group can be expressed as the
direct iimit of its finitely-generated subgroups (A finitely generated
group is a direct sum of cyclic groups). No such result is known for
inverse limits. 1 believe the best result available is: the inverse limit of
reduced algebraically compact groups is again algebraically compact
(Cf. [7]). 1T still hope that it may be possiblc to find the structure
of both the sides of (if). Perhaps some relevant concepts of co-pure
quotient gtoups and co-basic quotient groups or some modified inverse
limits may have to be found. In this connection I would also like to
point out that Maclane [14] introduced the functor Trip (A, B, C) which



(25)

is isomorphic to either side of (i). Some one may be able to define a
suitable functor co- trip (A, B, C) which would be isomorphic to each
side of (ii).

T have necessarily omitted even to mention some very important

results.

But even if I have been able to suggest the SJgnlﬁCdnce of the

impact of homological methods I should be satisfied.
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1. Introduction

Reduction procedures such as those of Brown (1) and Melrose (2)
relate the single loop Feynman diagrams of various collision amplitudes
and, unless it can be proved that single loop diagrams are in some way
typical of the perturbation series to. which they belong, such procedures
remain of rather academic interest. - On the other hand if a reduction
procedure which relates Feynman diagrams of different orders in the
perturbation series for a given amplitude could be given then the
analytic properties of the amplitude might be obtainable from the study
of one or several ‘‘basic’ diagrams”. Patashinski ez a/ (3) have given
such a procedure : suppose that z is a point of a Landau curve ¥ for a
Feynman diagram of arbitrary complication whose internal masses m;
are given : then there exists a reduced diagram with the same configu-
ration of external lines and no internal vertex whose internal masses
are M (m; , z) such that the point z lies on the Landau curve N for
the reduced diagram. Thisis a very weak result equivalent to saying
that a complex electrical network of resistors can be replaced by a
simpler one of the same effective resistance by inserting suitable resistors
between the external terminals and 'eliminating all internal ones.
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This reduction procedure has proved nseful only when the Mj; are
independent of z.

2. Wigwam Siogularities

The present authors (4) have studied the Wigwam diagram in order
to invastigate some properties of Landau curves previously discussed by
one of us (5). The Wigwam diagramis the vertex graph specified by

P1=q2-+q4—9s, p2=q1— 42, ps=qs—44, 0=91--q5— s @
where p; denote the four-momentum of an external line (p2=z;) while
g; that of an internal line of mass ;. The Landau curve W(zy, 25, z3)

is a pair of quadric surfaces and this suggests that the Wigwam
diagram might be simply related to Triangle diagrams specified by

P1=Qs—-Q>, Py=Q1~Qs, P3=0Q,-Q (2)
in an obvious notation. One might hope to find a constant set of Mj
~values on each quadric. If we fix z; and z; we obtain four points of
N which we denote by z, 3, k=1,2,3.4. If we apply the reduction
procedure to find masses Mj (m, 2y, 22,2s) for [+ we find that the M
depend on both z;and z,. Further if we compute the points of [
which correspond to the masses M and the given values of z, and z; we
obtain two values of z; namely z;,; where. z1,; does not coincide with
any point z; 4, t=1,2,3,4. Wethus verify the truth of the theorem of
Patashinski er @/ and convince ourselves that it is totally irrelevant to
the problem of finding ““basic diagrams”. A

3. Result

If the value of z; is fixed then the Wigwam Landau curve is a pair
of conics which coincide with the Landau curves belonging to Triangle
graphs having the same value of zg and with masses

My=m, | 3
M:;= L) . (4)

Mo, -
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where a=(m3 —m? — m%)/(2m;) (6)

and c satisfies

2 2 2.2
m, €2+ ar-+3a2-+a?niy —mymy =0 ¢

; 2 2
with A\=zg—my—n,

where J (z;) has the value 41 for some values of z; and value —1 for
others. The masses M;, M,, M, are different from those given by the pro-
cedure of Patashinski et al.

4. Conclusion

There is therefore a suggestion that the location of Triangle
singularities is relevant to the location of Wigwam singularities. Possibly
the Triangle graph is a ‘*basic diagram” for locating vertex singularties :
perhaps by means of suitable sums (or integrales) over the masses M;
the whole perturbation series (or a significant part of it) can be
generated ?
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1. Introduction

o0 .
Let M be a compact, connected, C-manifold of dimension n. Let
fiM——>EMN (N> 1)

bea gimmersion of M into euclidean spéce E" +N of dimension n-+N.
Let B, be the bundle of unit normals - or M induced by f and S’H-N 1 be
the sphere of unit vectors in E" +N Let

V: B, —o st NI

be the canonical map given by

—
V [p, v(p)I=E [v (p)] , N
where E is the end-point map which translates unit normal vector ¥(p)

to the origin and identifies its end-point with a point on S +N_l
Let dV, don.-1 and d= FN—] denote the volume elements of M the fibre
SN -1 ofB,, and SZ ﬁ_N —,1 respectively. Then we have

—
1) (M)*(dsn4n-1)=G (p, v(p)) dV Ndon_1.
The scalar factor G (p, v(p)) is known as the

szsclntz-Kll/mg curvatuie of M at p in the direction of v(p) [4] We

note that G (p, v(p))=0 where the rank of V <n+N-1

(1) This paper is a part of the author’s doctoral dissertation submitted to {he
University of Liverpool in January, 1966.

(2) The author is greatly indebted to his supervisor Professor T. J. Willmore
for introducing him to modern Differential Geometry. . )
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Following S. S. Chern [1] we define the total absolute curvature of
M at p by
@) KHo)={ | G (2. (p)) | o

where SN-_1 is the fibre at p € M. - The total absolute curvature 7 s of
M is then given by ‘

1 *
O e {4 Ki(p) dV

n+N

275
SO N-1
. ) f n- )
where Cn AN—1 - <’§i§ is the area of the sphere S,
2

2. Connected sum M;#M,

O
Let M;, M, be two compact, connected C-manifolds of the same
dimension n. Then the connected sum M;H M, is a manifold obtained
by removing an n-cell from each of the two, and then piecing the two
manifolds together along the resulting boundaries.

(= ) o0
A C-structure can be constructed on M# M, from the C-structures of

M, and M, [7]. _,

Let1,ay,.... an_y, 1 and 1, By, Pa,....Pn_1, 1 be the Betti numbers
of M; and M, respectively. Then it follows from Myer-Vietoris theorem
[3] that the Betti numbers of My#M, are 1, ay-+F,.. . stn_y+Fnmy,
1. Moreover, if y is the Euler-Poincare characteristic operator, then

(4) XMy HMz)=x(My)+x(M)-2.

Let C(M) denote the minimum number of critical points a non-

o0
degenerate, real-valued, C-function can have on M. An immersion

f:M—)En+N

is called a minimal immersion if
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(5) p=C(M).

It follows from Morse-inequalities [6] that

(6) 7p=CON> Z 4; (M)

where ¥; is the ith Betti number of M.
Let = denote the total absolute curvature,

Then it follows that

) “M> Z e,

® *M)>E t,
g2
and

©) ~ MIHM)SZ 0 +3 pr -2,

In the special case of n=2, we have

(10) = M) ZANo+ 1 +¥2=2+"1.
Also '
A1) xM)=Ay="1+1=2-"1.
Hence we have
(12) 7(M) >4 ~x(M).
Definition : An immersion of a 2-manifold M is said to be minimal
if it gives.
(13) 7 (M)=4—yx(M). ” )
Let 7y, 7, be the minimal total absolute curvatures of M; and M,
respectively. Then we have ‘
m1=4-xMp)
and 72=4—X(M2).

Hence it follows from (13) that
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T (M1#Mp) >4 -y (M1#My)
=4 =% (M)~ x(M,)+2
=6=(4-r1)—(4-"2).
Hence
(14) = (M FM) >my 47— 2.
21. Special cases
By means of formula (14), we can calcuiate the total absolute cur-

vatures of various special manifolds as shown below :—

(@) Let M1=S"=M2. Then
T (ShfESY) >24+2--2=2,

In general

T (SPHE.L .. HS" (m times)) >2m~2 (m—-1)=2.
(b) Let M;=S2 and M,=2-dimensional torus T2,
Then

T (S2HT)>2+4-2=4.
In general, the total absolute curvature of a 2-sphere S? with m
handles is given by : N
T (S2H(T24.... #£TY)) > 2+4m—-2m=2 (m+1).
(c) Let M;=T2 and M,=T2H#T2...... m times, Then
7 (T24.... .. (m+1) times) >4 (m+1Y~2m=2 (m+2).
(d) The Betti numbers of the 3-dimensional torus S!xS!xS' and
the manifold St x S24: S1x S2:481xS? are the same, namely, (1, 3, 3, 1).
It follows from [8] that ‘ ' '
T (S1xS1x St)=7(S). 7(S). 7(8)=22.2=8.
Also from (i4) we have
(ST X S24:8! X S23 81 X §2) >7(S! >l’32)+7(51 x82)+7(S'x 89 -4
=4+4+4-4=8.
3. Convex extensions

n+N e | . iy .
Letf: M—E be a C-immersion where M =(single point). Then
it is easy to see that ry=1. From this we conclude that the minimum
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decrease in the total absolute curvature of a manifold, when an n-cell is

. e n+N, ©,
removed, is 1. On the other hand, ifg’ : M—~D"—>E is a C-immer-
sion, then the minimum increase in the total absolute curvature of g’

is 1 when g’ is extended to g : M—+En+N, " Such an extension of g' is
called a convex extension.
' - [='a}
Let M, and M, be compact, connected, C-manifolds of the same
dimension n and M 4+M, be their connected sum. Let f: M; #M2—>En+N

i n+N
be a C-immersion of M;#M, into E . Let f]M;—Cr and

7| My—Dn be denoted by 'y and f7» respectlvely. Then we can prove
the following :

Theorem (3.1). Let vy and 7, be the minimal total absolute curvatures

of M, and M, respectively. Let f : M[#Mg"—)En-*-Nb‘e a minimal im-

mersion such that f*q, f*, admit convex extensions. Then

(15) 7x M FMp)>m1+72— 2.

o0
forall C-immersions F: My My— En + N.

Proof. Let By (M;#M,) denote the bundle of unit normals

induced on Ml#Mg by /. Then, from (2) and (3), we have

U rr=c ‘“(()( yin-1) |

nEN=1" (M, #M,)

f}(7) ( nJrN—l)l

CnaN-1 »(M, ~ D)

fl()( —1)"‘

CnN=-1 B,(M,—Dn)
or T2+ '

Letf; : My—oE" TN
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andfi . Mz-—)-En+ N

be the convex extensions of f;” and f3' respectively.
Then, from (16), we have
(A7) =i +or =01 =) +(12=-2)
=7f1+7f2=2>71+72=2.
Since f is minimal, we have
7F>'rf
. n+N :
for all F : MifM;——>E . Hence, from (17), we have
Te2T1+ 1 —2,

We hope to consider the following problem in our - future research

work.

Problem.

In the above notation, what is a necessary and sufficient

~ condition that £, and f,' admit convex extensions ?
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by
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In this paper we present a somewhat isolated result of Probability
Theory which illustrates the power of simple results like Hélders
inequality.

i

Let X;, i=1, ....., n be random variables and S;=5 X jthe sequence

=1

of partial sums. Take 7 real and denote mathematical expectation by
E. Write vf for E(|X;|t) when this exists and define the random

n
variable St= 3 X; | S; |t. We prove the following:-
i=1

(1) Theorem: Suppose vf“ exists, i=1,....,n. ThenSt has ex-.

pectation and

(n+ 1)t 2":‘ vt+1

(t+1) =1 ¢

E (89K

if t>1.
To establish this result we prove a lemma which is of independent
interest.

(2) Lemma: Let x;,i=1, ...., n be a sequence of real numbers and
i
put 5;= 3 xj,i=1,....,n  Then
=1
n (n+1)
st=3 x; | & K5 3 ] g [
=1 ll ll<(f11) izll l[

if t>1.
Proof: Take t»1. When n=1, (2) is true because 2t>r4-1.
Suppose (2) is true for n=m. Then by assumption














































































































































































