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NUMERICAL ITERATION OF SIMULTANEOQUS
SEMI-LINEAR ELLIPFIC PARTIAL DIFFERENTIAL-
EQUATIONS OVER A NON-RECTANGULAR REGION*
. by ,
SHAIKH H. MATIN
Weapons Department, United States Neval Academy,
Annapolis, Mdryland, U.S. 4.

INTRODUCTION

~ Point-wise numerical iteration by over-relaxation of finite difference
analogs of the Dirichlet Boundary Value Problem [1]* over rectangular
regions was presented by Young [2]. Greenspan[3] extended this
method to the - Nuemann Boundary Value Problem over rectangular
regions and the Dirichlet Boundary Value Problem over a region with
curved boundary. He further reported that the solution to Nuemann
Problem over a region with curved boundary did not converge. “Forsythe
and Wason [4] pointed out that this difficulty was mainly due to the finite-
difference approximation of the normal derivative on the curved boundary.
It was later shown by the author, [5], that if appropriate care was exerc sed:
in this finite-difference appreximation and in the over-relaxation process,
then the method will be feasible for regions with curved boundaries, nat;
only for Nuemann Problem, but even for the Mixed Boundary Value
Problem. This point is further elaborated later in the paper. In all the
works cited above, attention was focused only on-a single sécond-order
partial differential equation with prescribed boundary-conditiohs.

In some problems of interest- in ‘Fluid Mechanics, a higher order
partial differential equation may arise quite naturally. For instance, the
problem of slow flow of a fluid with uniform density and Viscdsify gives
rise to a fourth-order partial differential equation in terms of a stream
function [1]. However, an alternate formulation of the same problem
in terms of two variables, the stream function and the vorticity function,

# This research was conducted by Hydronautics, Inc., Laurel, Md., and was
supported by the office of Saline Water, U.S. Department of Interior under contract

No. 14-01-001-1246,
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will result in two simultaneous, second-order partial differential equations.
Generally, the later formulation will result in coupled boundary conditions.
This paper concerns the numerical interation by over-relaxation of such a
system of partial differential equations.

STATEMENT OF PROBLEM

In search for high-performance desalination units, one of the sugges-
tions [6] to enhance heat transfer during evaporation of saline waters is
to use rivulet flows on vertical metal plates lined with low surface-tension
materials such as teflon. It is presumed that water will form rivulets
of circular arc shape running down the plate, instead of a continuous
film and hence high conduction rates will occur at the rivulet corners.
Since salt accumulation on the rivulet free surface at any section will vary
along this surface, a surface-tension gradient will set in. This will tend to
drive the liquid on the free-surface toward the rivulet corner, which, in
turn, will create a swirling motion within the rivulet.

With proper simplifications, the swirling motion within this surface-
tension driven rivulet is expressed by the following mathematical problem.
The details of the derivation are deliberately omitted here and the interested
reader is refered to [6].

1. Differential Equations :
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Here, y =y (x, y)=stream function
¢=¢ (x, y)=vorticity function
R,=Reynolds number, a constant parameter, characteristic

of the flow
x, y=length co-ordinates along and normal to the plate

respectively, in rivulet cross-section.
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2. Boundary Conditions :
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y=0 on all boundaries 3
£=0 for x=0 i.e. at the line of rivulet symmetry @
L= for y=0, i.e. along the plate surface &)
and (== a—s 2 gw along the rivulet free-surface ©) -

Here, nand s are normal and tangential to the free-surface respectively,
and a is the radius of the curvature of that surface.

3. Equation of Free-Surface :

X2 y2+2y (Cos a) —1

Sin «a M
Here « is the contact angle for the rivulet, a property of the lining
material.

4. Input Function :

The term g'—f in Eq. 6 is the contribution of the known surface-
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tension gradient and hence itself known. Tt may be pointed out that Eq.
6 is the direct consequence of the balance of surface-tension and shear
force at the free-surface.

It should be noted that the differential equations in Eq. 1 and 2 are
coupled with Eq. 2 being semi-linear. - The boundary conditions on y are
well-defined, but those on ¢ are y—dependent i.e. coupled.

Without getting involved with the physics of the problem, its mathe-
matical content could be summarized in the following question :

Given a function T(x, y) described on the curve represented by

Eq. 7 (¢« known), Eq. 1 and 2 are to be solved simultaneously with

boundary constraints as in Eq. 3, 4, 5, and 6 to determine functions

v(x, y) and ¢(x, y) throughout the region bounded by the x-axis, the’

y-axis and the curve in Eq. 7.

Even for the simplest possible distribution of T(x,y), the above mathematical
problem is hopelessly complicated to yield to an analytical solution.

The problem, although phrased here quite arbitrarily, is a real physical
one and hence warrants the search for at least a numerical answer.

.SYSTEM OF DIFFERENCE EQUATIONS
Consider a semi-linear partial differential equation as :

2%u 0%u ou
A (5 3) o5 +C &, ) ay2+P (69 55

+E(x, ) g—;‘+F-(x, ¥) u=G (x, y) - ®

For a-known ¢ — distribution Eq. 1 is a special case of Eq. 8 and so
is Eq. 2 for a known distribution of y. Thus, Eq. 8 represents both Eq.
1 and 2, with u being y and { respectively. Hence, for the purpose of
generation of a finite-difference analog, Eq. 8 is considered as defined over
a region R bounded by a boundary B.  If R is spanned by a square grid
of mesh size A, then at any interior point (x,, y,) the difference equation
corresponéing to Eq. 8is : [7]

agtt (xg, Yo)=a1% (Xg+51h, yo)+a.u (xo, Yo+s:h) )

+a3u (Xg— 538, Yo)+aqu (xg, Yo—s4h) —t (X0, Vo) )
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Where '
a;=(2A (xg, Yo)-+hs3 D (3 o)) /s1(s1+53)
ay=(2C (xg, yo) +hss E (X0, yo))/s2(5:-+54)
a3=(2A (xg, ¥o) — hsy D (x5 ¥0))/s3(51+53) ) (10)
a4=2C (xg, y.) —hsz E (xg, ¥))/54(S2 +54) ,
do=0d{+ag-t+ao3t+ays—F (x4, y,) #2

and -
=G (x,, yy) h2.
Here )

s1="170, 5y =" (a1

h

Ya—Yo
h

, s4:XO ';ly4

Sg=

O2

é4
Fig. 2)

Referring to Figure 2 the s; (i=1,2,3,4) indicate the relative position
of the neighbours of a point in the square grid. Hence these may be
.called the neighbourhood scale fractions. Ti the region R isa rectangle,
then a square grid may be so chosen, that- the boundary points coincide
with the nodes of the grid. In that case, all 5; are equal to 1 for each point
interior to R. Otherwise, in general

5i<1, for i=1, 2, 3, 4.

Eq. 9 represents the required difference equations corresponding to the
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co-efficients of the given differential equation in Eq. 8. A proper choice
of h will give «; such that

ap=dytdataztdy 12

Eq. 9 for node in the grid will give a system of simultaneous equations as :
N

S aijui=bj (13)

1=
where N is the total number of nodes at which the unknown values of the
function are to be determined and b; are the known values contributed
by the boundary conditions. For the Dirichlet problem, N is the number
of the interior points of R, whereas for the mixed boundary value problem,
N is the number of the interior points plus the points on the boundary
on which the normal derivative is specified. The condition required in
Eq. 12 guarantees that the coefficient matrix (ai;) in Eq. 13 is diagonally
dominant.
ITERATIVE METHOD

Among the Point Iterative Methods for the solution of a system of
[inear difference equation (Equation 13), Young’s method of successive
over-relaxation has proved to be the [4] most successful. The convergence
of a solution by this method requires the coefficient matrix (a;;) to have a
special property, which Young [2, 7] has called property—A. For the
Dirichlet problem in a rectangular region, with the boundary passing
through the nodes of a square mesh, the co-efficient matrix of the
difference system does possess that required property. Hence, for that
problem the convergence of the itreration process is guaranteed [2].

The property—A of Young is further relaxed [3,4] and it is shown
that such a method of iteration will converge even for a Dirichlet problem
for a region bounded by a curved boundary. Itis observed that the essential
features of the co-efficient matrix are that itis : (1) irreducible, (2)
symmetric, (3) positive definite and (4) diagonally dominant.

‘When the normal derivative is specified on a boundary which is parallel
to the grid lines of the mesh, the extension of the method for the Dirichlet
problem is rather simple, since the mesh points are on theboundary and the
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normal to the boundary is along one of the grid lines. However, when
the specified normal derivative is to be satisfied on a curved boundary, then
the numerical method adopted for approximating the normal derivative
affects the coefficient matrix quite adversely as shown in the next paragraph.
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APPROXIMATION FOR NORMAL DERIVATIVE ON A CURVED
BOUNDARY

Referring to Figure 3a, the most obvious way to approximate the
normal derivative is to express it in terms of its components-along the-co~
ordinate axes as : ‘ ’

g—:f = gl‘ cos 0+g—y sin ¢ 14
B.P. '

It is shown that the co-efficient matrix for the difference equations

employing Eq. 14 loses both symmetry and diagonal dominance [3,4].

However, if a first order approximatioh to the normal derivative is used as :

oup i s
o= | s
B.P.
Where
ds d,
Uy=uz 5 h +u3 hz (16)

(dy, d,, dy are shown in Figure 34) then the co-efficient matrix is at least
diagonally dominant, although not symmetric. It is to be noted that
in Eq. 16 d; and d; are both to be less than 4. If the normal to the boundary
at a point is as shown in the Figure 35, then Eq. 16 is to be replaced by

d
U =uy h+u3 4 (17)

(ds, d, are shown in Figure 3b) thus guaranteeing the: diagonal dominance
of tne co-efficient matrix.

PROCEDURAL REMARK

Since all the conditions required of the co-efficient matrix for the con-
vergence of the iterative solution are only sufficient and not necessary,
ther: is no reason to assume thatthe convergence of the iterative method
may not be possible even if any one of the properties is not present in the
coefficient matrix. Based on this conjecture, Greenspan conducted
numerical experiments on a Laplace equation with normal derivatives
specified over a circular boundary and found that the iteration did not
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converge [3]. However, a précedural modification of the iteration
scheme has been reported [5] to converge and was utilized here. This
procedure and the mechanics of grid generation on digital computer is
described in the Appendix at the end.

METHOD OF ITERATION

For a given T(x, y) on the free-surface of the rivulet, the differential .-
equations and the boundary conditions in Eq. 1-5are discretised according
to Eq. 9 and 15. The iterative procedure is started by first assuming an
arbitrary distribution of y and ¢ in the region. For this ¢, the finite- -
difference analog of Eq. I is solved at each point to re-estimate y, conform- .
ing to the boundary. conditions in Eq. 2. With this re-estimated y— dis- -~
tribution, the co-efficients of Eq. 2 are evaluated ateach point, and boundary :
conditions on-¢ are estimated according to Eq. 5 and 6. The given dis-
tribution of T on free-surface is also employed in Eq. 6. Having established
these, thé finite-difference analog to Eq. 2 is solved ateach pointintheregion
tofgiv'é/a«segond estimate of ¢ distribution. Hopefully, this second estimate
of ¢ will conform to the differential equation and the boundary conditions
better than the first one assumed arbitrarily. I this process is repeated
again and over again, solutions to the original problem should be

approached.

COMPUTATIONAL RESULTS

Figure 4 shows a distribution of T on the free-surface given by «=90°
in Eq. 7. The abscissa of this plot is the arc length of the fre¢e-surface.
Here, for computational experiment, T is assumed as

T=Cos3 (7/2 (1-5)) (18)

For this assumed distribution of %%, and R =50, the above

iteration scheme was carried out on an IBM 1130 digital computer.
“The iterations were repeated for about 100 times. The final distributions
of y and ¢ are shown in Fig. 5 and 6, respectively. The distributions seem
reasonable intuitively, and the results of heat transfer obtained by this
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same procedure are being reported separately elsewhere [8]. Here it is
intended to emphasize that even if this is only a numerical experimentation
on a digital computer, it does open a way to handle the simultaneous semi-
linear partial differential equations with coupled boundary conditions which,
otherwise, will not, in general, be tractable. The numerical experimenta-
tion has shown a definite trend of convergence of iterative scheme ;
however, a proof of convergence is lacking and needs further research and

exploration.
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APPENDIX I
GRID GENERATION

In order to achieve a point-by-point iteration on the difference equations
in Eq. 9, the co-efficients «; for respective points will be needed. These
depend on the co-efficients of the differential equation Eq. 8 and the scale
factor as shown in Eq. 10. For the interior points, S;’s are all unity, but
for points near the boundary, these should be estimated as for Eq. 11.

This could, in principle, be done by laying out a grid graphically,
and picking off the cc-ordinates for the various points manually. However,
in practice, - this is: rather, crude .and cumbersome, if not impossible,
especially if the grld size is to be decreased for increased accuracy, and
various regions with different o’s are to be investigated. In view of this,
an automatlc computer routine was developed which picked off all the
internal and boundary points of the rectangular grid network imposed on
the aeutal region, labeling the different points as shown in Fig. 7. The
points are classified as : (1) Points on the x-axis ; (2) Points on the y-axis ;

. (3) Points on the curved boundary and vertical grid lines ; (4) Points on the
curved boundary and herizontal grid lines; (5) (6) and (7) are points interior
‘but ad]acent to the curved boundary with a nelghbourmg pomt as 3
“or 4; or 3 and 4, respectlvely The points interior to the region, with all
its neighbours also interior, are labeled as 0. :
These chioices are required in order to estimate the normal derivatives
on the curved boundary using Eq. 14 or 15, and generating automatically
the.appropriate scale factors for finite difference equation, Eq. 9.
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APPENDIX II

Finite-difference equations of the form in Eq. 13 are obtained for each
interior point only. Even if the boundary condition involves the speci-
fication of the normal derivative at the curved boundary, the function
values at the interior points are relaxed to conform to the differential
equation by solving Eq. 13. Having found the new function values at the
interior points, the values at the curved boundary are changed so as to
remain conformed to the boundary conditions. :

Essentially, this amounts to iterating or relaxing first a Dirichlet
type problem and then, after the interation, forcing the values of the
function at the boundary points to conform to the prescribed conditions,
if the normal derivative is specified. Hence, mathematically, the value
of the function-at the boundary points changes from iteration-step to
iteration-step. Putting it another way, for the Nuemann or Mixed Boundary
Value Problem, Eq. 13 is actually replaced by

1; aij 1™ =5 @Y (18)
i=
where N is always the number of interior points and » is iteration-step
number. For more detail, the reader is referred to [5].
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SYMMETRIES AND DYNAMICS IN HIGH ENERGY PHYSICS )
k By’ V
JOHN CUNNINGHAM
Department of Applied Mathematics,

University College of North Wales,
Bangor Caernarvonshire, U K.

The purpose of this review is to indicate the kind of mathematics
used i in high energy physics and to survey the subject as it enters the
seventies. Some of the original work referred to has been carried out by
the author m collaboratlon with M. Rafique, University of the Pun_]ab

Lahore. ‘
1. Introduction:
In ordinary non-relat1v1stlc quantum mechamcs the elastlc scattermg

problem } .
’ atb—>a+b : ()

1s studied us‘mg ‘the one-particle Schrodinger wave equation appropriate
to the motion of a relauve to b (w1th h equal to Planck’s constant

divided by 27:) ,
- B YAV @ Y=E

where p is the reduced mass of  and b, V (r) is a potentil fucntion, E the
energy, x)/ a probablhty amplitude. One secks solutlons of the form

v W= 10,0 < BN )
the first term représenting a plane wave propagatmg in the direction of
the vector k and the second an outgoing spherical - wave (there is an overall
time dependence exp (—iE#/h)). The physics of the problem is-contained
essentially in'the amplitude f whose squared modulus | f | 2isthe so-callaed
différential scattering cross-section which measures the ratio of particles
emerging at ¢, ¢ (considering a specifi¢ direction and looking at the spherical
wave) to particles n the incident beam (the plane wave). The problem
is in principle solvable being mathermatically well defined — given V (r)
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solve equatlon (2) to find f(9, ¢) the amplitude describing the result of a
countmg process

In relativistic high energy physics the problem is somewhat ill defined
and often one knows fairly little about the amplitude T (the analogue
of f) in detailed terms. We treat T as a function of serveral variables

s, L, ui; I, B Y 6]
whose meaning I propose to explain. The semi-colon in (4)
divides the world of high energy physicists into two camps peopled by
persons whose activities are significantly different and whose inter-
relationship is generally unproductive. The variables I, B, Y refer to
internal quantum numbers i.e. to the detailed nature and _properties of the
“elementary’’ or “fundamental’ objects which are involved in the scattermg
process. This kind of physics is called symmetries. The variables s, ¢, u
correspond to the scattering itslef (energies, momenta, etc) for given values
of I, B, Y. This kind of physics is called dynamics.

Perhaps one should say that *‘clementary” is a misleading term t
apply in particle physics. Very few objects (such as the proton) are
stable and most (such as the neutron decaying via n—>p-+e+v) decay
spontaneously into other objects. The division of objects into “elementary’
and “composite” is quite arbitrary depending on an arbitrary statement
of what one means by a short decay time. Short lived objects are usually
thought of as non-elementary. Rather than make a distinction of ‘such
blatant artificiality a common philosophy is to regard no object as
fundamental and every object as being composed of other objects (inculding
perhaps itself) — bootstrap philosophy

In dynamics one accepts as given some set of basic objects s0 in this
sense dynamics treats every object as fundamental, '
2. Symmetries : :

The quantum number B is probably the easiest to explam roughly
to the layman. It stands for baryon number i.e. the number of ‘particles
of a family of objects (to which belong the familiar objects kown as
proton and neutron) whose number is conserved in some sense in processes
of the type considered.

[ R

S —
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The properties of proton p and neutron # are very similar and there is
evidence from scattring theory that forces p—p, p~n, n—n _aré charge
independnet. It is convenient to treat p and n as two different charge
states of the same particle the nucleon (Q= -1 for p, Q=0 for n).

If one introduces operators apt, dnT which create respectively a
prbton and a neutron (the operators ap, ap destroy the corresponding
particles) one may construct four Qpe;rators"

aptap, aptan, antap, aytan )
which leave unaltered the baryon number. The commutation relations
for these operators are
artait+aiapt =6
apa;+ ajap=0.
Convenient combinations of the operators (5) are

B=atpap+anta, ©6)
the baryon number itself and
T+=ap1'an,
T_=aytap ™

7=} (aptap—anta)=Q-3 B
where 7, changes a neutron into a proton and 7_ does the reverse ;
Q is the electiric charge.
A possilbe representation of these operators is provided by the matrices

0 1 0 0 1 0y
(D= ()
00 1 0 0 -1

operating in the space spanned by vectors

() ()

representing respectively the proton and the neutron. The charge operator
for example is represented by y

o).
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The commutation relations for the operators (7) follow from those
for the a’s and are familiar to everyone with an elementary knowledge of
angular mometum theory. They are

[T 7 ]=74
[t T ]=—7_ ' : ®
[‘T+, T_ ]:2 T, :
identical to those for angular momentum operator
Ji :inljy’ J, =1 o ©)

The relations (8) define a Lie algebra isomorphic with the usual angular
momentum algebra. '

By analogy with angular momentum theory there exists an operator 12
(analogous to J2=1J,24-J,2+ J;2) having eigenvalues of the form I (I41)
and p—n states can be classified into multiplets — sets of 2I-1 states with
eigenvalues I, of 7 varying from —Ito I. In the two nucleon system
one finds two isotopic multiplets as listed in the table (10) -

State I, I
D1 D2 1 1
1 .
ﬁ(mnﬁnmz) 0 1 triplet (10)
nny -1 1
L( ny—n1py) 0 | 0 singlet
VK Dy —nypp g

The operator I2 commutes with the elements r 4+ To of the Lie algebra

and is in fact the only Casimir operator of the algebra which means that it
is a rank one algebra (a Casimir operator is one other than the unit operator
which commutes with every element and the number of such operators
defines the rank of the Lie algebra). Just as J,, J; can be thought of as
generators of the group 0(3), the operators =, 7, can be thought of as
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generators of a group SU (2) a unimodular unitary group of transforma-
tions in a two dimensional isotopic spin space (spanned by .vectors
representing p and n).

Other baryons are observed and their properties have been catalogued.
For example the reactions .

T 4p—> STkt (11
and
. T 4n—> 3¢k 12)
though seemingly possible on the basis of considerations of charge, baryon
number, energy, etc. are not both observed despite their obvious similarity.
The operation of this selection rule is conveniently expressed by introduc-
ing a new quantum number S (the strangeness) whose conservation is used
to account for the observations. In the example the strangeness balance is

04+0=—-1+1 '

0+0£4—-1-1 : (13)
‘Existent in nature is a chargeless particle A of strangeness —1 whose
properties are similar to those of the neutron (strangeness 0) and it might
be convenient to treat n and A as equivalent in a strangeness space as
~differen states of the same particle. This has been done and a U-spin
formalism identical to the above described isotopic spin formalism has been
developed and the same rank one Lie algebra and group SU(2) are involved.

If one combines the p — n equivalence with A — nequivalence one arrives
at a formalism with a basic p —n— A triplet (three different states of a single
entity the Sakaton) out of which one may build more complex systems e.g.
two Sakaton systems. The underlying group is SU(3) which contiains of
course SU(2) sub-groups and the multiplet structure of composite systems
reduces to a study of group representations.

The Sakata model does not agree with physics in that the permitted
composite structures of the model do not match at all well the observations
of high energy physics. However, an identical model—the quark model—
based on a fictious (or perhaps simply unobserved in the present experi-
mental region) triplet of objects called quarks in whichp,n, A etc. appear
as composite entitties, Not only does this SU(3) model provide a pattern
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fitting observation but also it has proved its predictive value (@~ discovery),

The quantum numbers B, T, Y (Y is the hypercharge B-+S) describe
symmetries of the basic entities. Let us now turn from symmetries to
dynamics and take B, I, Y as given.

3. Dynamics :

In s—¢—u physics it is actually often convenient to discard the selec-
tion rules altogether and artificially reimpose them at the end of the calcula-
tion. In any event in a description such as this it is simplest to deal with
chargeless, spinless, particles specified ‘completely by energy-meomentum
four-vectors. Also as I do not wish to have to define the term antiparticle
I shall assume that no antiparticles exist or simply that all my partieles
(they have no charge) are their own antiparticles.

The  process
at+b—>c+d (14

may be described by four energy-momentum four-vectors p;, i=1, 2, 3, 4,
formally meaured ingoing. There appear to be seven invarianpts which
one can construct from foux four-veetors with vanishing sum genc{g}(-
momentum conservation)
p2=m?2, i=1,2,3,4 - )
the particle masses and
s=(p1+p2)?=(p3+Pps)?
t=(p14p3P=(p2+ps)? (16)
u=(p1+ pa)=(p2+p3)*
but actually
: 4
s+t+u=z mj2 an
i=1
so that there are two independent invariant dynamical variables s, ¢ (or
S, u .or t, u) to be considered.
4. Crossing
In this simple theory the description is completely symmetrical and
~ indeed could equally well represent a process (depending literally on ong’s
pont of view) '
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a+d % b-c (18)
in which the variable # plays thé role of the squared energy previously
played by 5.

The crossing theorem (discovered in perturbation theory) and apparently
a general principle of physics states that a single analytic (with some quali-
fications) function T (s, ¢, u) describes all three processes

o ‘a+b = c+d ' ’

a¥c =>b4d ’ (19)

a+d-=b+c o
‘or more précisely that the three amplitudes which a priori describe each
channel separately are in fact continuations of one another.

Mathematically the analytic structure of collision amplitudes is a very
important study which finds expresston 1n so-called dispersion relations
(integral representations). Thése relations provide a set of dynarmical
equations which constrain but do not completely determine an amplitude
and «expéerimental data have been satisfactorily described using dispersion
rélations. Moreover, they have proved to have predictive value (7=
resonance) and leéad to predictions about relationships between particle
masses which complement symmetry theories (sum-rules).

5. Regge Behavioﬁr(l) : ,

In potential theory the equation determining the poles of the partial

wave amplitudes a)(s) defined by :

s, H= 2 @1+1) ai(s) P; (cos 6) Qo)
. 1 - -

where ¢ 1s ssmply related to the scattering angle g, comcides with that
defining the bound state energy levels. This leads to the notion of Regge
poles in high energy physics. One constructs an amplitude -z (/, s)
defined for complexJ which coincides with aj(s) when /=0, 1,2,....Among
the singularities of ¢ (/,s) are poles corresponding to bound states, resonances;
etc. in‘the system considered. The trajectory in the complex I-plane of
sicha pole as’s varies 1s given by ,

I=a (s5) 21)
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and is called a Regge (pole) trajectory. At various points on such a trajec-
tory occur points which can be associated with bound states, fesonances,
etc. This clearly puts all objects (bound states, resonances, etc.)” on the
same trajéctory into families and remnforces the idea that no object 1s
elementary — no elementary particles, “only Regge poles. For example
the N and N**#* (pion-nucleon resonance) lie on the same trajectory—theé
nucleon was conventionally an elementary particle while clearly the third
nucleon resonance was composite. This dynamical scheme of particle
classification is not of great value because many Regge trajectories pass
through but one point which can beé assigned to an observed object—other
members of the same Regge family presumeably appearing only at energies
above the present experimental range. A detailed review of Regge theory
in low energy potential scattering and its extension to particle calssifications$
has been given by Rafique, M.Sc. thesis, Wales, 1965. L

In potential theory by suitable contour deformation the' Sommerfield-
Waston transformed partial wave series can be ‘manipulated ‘to exhibit
the large ¢ behaviour (properties of Legendre polynomials) .in a form
dominated by a single Régge pole. ~ Translated into high energy physics
one attributes high energy behaviour in the t-channel to the exchange of
objects Reggions related to poles in the s-channel corresponding to resonant
or bound state behaviour . . J

[, ~ g (-1

t—>00

a(s.)

Not only does this prove important in discussions of convergence of dis-
persion relations but has been raised almost to the rank of a fundamental

principle—the principle of duality. )
A model combining the requirements of c1ossmg and Regge behav1our

03

has béen invented. by Venéziano ™ and h'as received ‘much successful

attention from' theorists.
Now neither crossing nor Regge' behav1our have any rigorous basis
but both have weighty support in perturbation theory from the study of

infinite classes of terms.
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6. Difficulties ¢

The terms of the perturbation series are in the form of multiple
intergrals and the problem consists of finding

(a) the points of no-analyticity of each term

(b) classifying the termwise results with a view to making assertions

about the sum function.

The programme (a) is in a reasonable state but the same can only be
said of (b) asymptotically. This may surprise the reader because disper-
sion relations (and the Mandelstam conjecture) have been very successful
and are NOT firmly based even in perturbation theory—they are the
product of intuition aquired in fourth order perturbation theory !
Asymptotic behaviour based on intuition aquired in non-relativistic
theory seems dubious but is indeed very well founded in the high energy
perturbation model.

We (the author in collaboration with Rafique) have tried to do some-
thing about singularity classification by using Plucker’s equations of

algebraic geometry(3’4) .. The points of possible singularity for each term
lie on curves whose implicit equations were first written down by Landau
(5, 6). Only one infinite family of Landau curves (the so-called ladder
diagram curves) have been classified (Regge and Barucchi (7)) and our
studies so far indicate that ladder diagrams are by no means typical. The
main feature not exhibited in Regge and Barucchi’sanalysisisthe occurrence

of cusped Landau curves. Computer drawings(4) indicate empirically the
complexity of the problem and the probability of one being unable to per-
form the eliminations necessary to obtain from Landau’s equations the
explicit equation of the curve (which, conveniently, one hopes to write in
terms of a single parameter using automorphic functions). This is

so because a theorem of Salmon(s) states that the genus of a curve in
general exceeds by unity the number of independent cir¢aits which can be
made on the curve. The higher the genus the more complicated and more
unfamiliar are the automorphic functions needed for the parametrisation.
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7. Conclusion. ]

It is always unwise to attempt predictions in any subject and high
energy physics is no exception. The experimental situation must have
more than usual impact on theorists when the new higher energy accelera-
tors (such as the European 300 GeV machine) come into operation. Who
can tell which methods or which “fundamentls” may be discarded ?

Surely, despite past failures, theorists will continue to seek a marriage
of the successful SU(3) symmetry schemes with schemes for Lorentz space ?

Despite thedifficulties hinted at in section (6) will not theorists persevere
with that seems to me to be their only model formally satisfying
the axioms of quantum field theory—the perturbation series ? New

©) using differential
equations instead of integrals may lead to success. Personally I favour
attempts to build upon the sort of expertise gained in single term anzilyses
(typified by the work of Rafique, Ph.D. thesis, Wales, 1967) to study infinite
sets of terms with a view to finding Landau singularities for suitable sum

avenues of approach such as that of de Alfaro et al.

functions. As for asymptotic behaviour generalisation from termwise
behaviour to that of infinite sums has largely been achieved and this in
itself is some guarantee that perturbation theory and the Regge theory
of high energies will continue to excite interest in the seventies.

The Work of Olive and Negrine (in progress in Cambridge, England)
suggests that Landau cruve analysis and asymptotic behaviour are
intimately connected and this too encourages a belief -that perturbative
methods developed in the sixties will have relevance in the seventies.

A definitive account of the subject is given in ref. (10).
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ON THE MOBIUS INVERSION FORMULA

by
‘M. R. CHAWDHURY
Institute of Mathematics University of Islamabad,
Islamabad, Pakistan.

A galance at the Mobius inversion formula suggests that one has to
do with some sort -of inversion, but apparently none of the books on
number theory points out explicitly what this inversion in reality is. The
purpose of this note is just to do this.

The formula can be looked upon as an illustration of a very simple
and basic fact of group theory. All we assume on part of the reader is
some familiarity with the group concept and the elementary divisiblity
properties of natural numbers, in particular the fact (“the fundamental
theorem of arithmetic) that every natural number >1 can be expressed
uniquely, upto the order of the factors, as a product of powers of
finitely many prime numbers.

The Mobius inversion formula is concerned with arithmctical:
functions. By an arithmetical function f we shall mean a function
defined on the set, N, of all natural numbers, with values in the real, or
even compiex, numbers, such that f(1)=1. (More abstractly, we could
allow f to have values in any commutative ring with identity element, 1.)
Some examples of arithmetical functions are :

(1) The divisor function T (n); o _

T (n)=The number of (natural) divisors of a, including 1and n.
(2) The @ function (or, totient function) of Euler ;
@(n)=The number of all positive integers m <n, which have no
common divisor with n, except 1.
(3) The function & defined by € (n)=1 for every n e N.
(4) The function  defined by

. 1,ifn=1,
iM= 0, ifn>1.

Consider the set, A, of all arithmetical functions f : N—D, where D
is the set of all integers, or of all rational, or real, or complex numbers -
(or, for that matter, any commutative ring with identity, I).
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For any f, g € A let us define a function f*g by the equation

| 09)] (f*g) (n)— 2 f(d)g( ) foreach n e N,

where the summation extends over all the natural divisors of n ; (d | n is
read ““d divides n””). Obviously f*g € A, for any f, g € A. Thus the set A
is closed under the operation* definied by - (1). (This operation is an
arithmetical analogue of that of convolution in Analysis).

Of great importance in number theory are the multiplicative arithme-
tical functions. fe€ A 1s called multiplicative, if for every pair of rela-
tively prime or as we shall say, coprime natural numbers m, n, we have
2 . Simny=fm) f(n) for all m, n ¢ N with (m, n,)=1
(m, n are called coprime, it their greatest common divisor, (m, n), is 1.)

The functions € and i defined above are both multiplicative; so are
T and @. A proof that ¢ is multiplicative can be found in any book on
elementary number theory, e.g. [1], Theorem 60, page 53. We shall
be interested also in the set, M, of all multiplicative arithmetical functions
f : N—>D, that is, in the subset

M={fe A: f is multiplicative}
of A. We assert that M, too is closed under the operation *; that is;
f*geM for all f, g € M. Indeed, for any pair of coprime numibers
m, n, we have C :

(%) @) (7%8) 0= (lsz(d>g(if}))(kfnf(")g(%))
TN f(d)f(k)g({?) (%)
x)

s s f(dk)g
d]mlc]n

= 3 ! mn
O3 ()
= (/) (nn)

The last step deserves a word of explanatio@. Since (myn)=1, I=dk
runs through the divisors of mn, as 4 and k run through the divisors of



















































































































