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GEOMETRY OF CORRELATIONS BETWEEN
TWO PLANES S; AND §/,.
by
M. SHARIFUDDIN
Department of Mathematic.s;, Rajshahi University, Rajshaki Pakistan (East)

Introductien : A preliminary study of complete correlations of
S; on S'; on the lines of Schubert’s enumerative Geometry of conics and
quadrics was published by T.H. Hirst (1, 2)t. Applications to this case
are also recorded in (6). In this paper we set out to give a detailed
discussion embodying subsystem of such correlations, their representa-
tions on the Semple’s model Q of complete plane correlations which form
a starting point for the geometry of plane correlations with which
subsequent developments are largely concerned.

The work is broadly divided into two parts. The first- part deals
mainly with the representations of system and subsystem of correlations
on different models -whereas the second part develops the theory of
bases on the degeneration subvariety 9 introducing algebraic equivalence

on certain singular varieties.
PART 1

'§1. In what follows we wili use the notations x=(x;). y=(y;) as
the coordinate vectors of Sz and S’y and a=(;), v=(v) as those for the
lines of S; and S’;. Equations of complete correlations are then of

the form
Y Ax=0, v'Bu=0

where the matrices A=(aij), B=(bij), (i, /=0, 1, 2); satisfy the following
set of sixteen fundamentat relations :

T2
0 rygbp.otariybryy T appbras,
0"1"2=0 if ry5#ra,
3°=pll=322,

1The numbers in the brackets indicate numbers of papers mentioned in the
references.

Received : April 2, 1971.
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In the spscial case when S, is superimposed on S’z, the coincidence
complexes simply represent two distinct conics having double contact
(10). When a is symmetric the two equations represent the two
different aspects of the same conic.

§2. As follows from Semple’s work his model @ of complete
correlations in the present case is manifold Q=Qg in [64]. This manifold
is represented on the space Sy of coordinates aij by the cubic primals of
Sg passing simply through a Segre Variety V46=M( and also on the
space of co-ordinates b;; by cubic primals passing sxmply through a
Segre Variety W 48=N,

§3. The degeneration manifolds on Q.

There exist three such manifolds g, 7 and 37. We classify them as
follows :

(i) The manifold 7 :

This is a seven fold on @ lying in an ambient of a space of
dimension 63. In general it represents a system of correlations
for which A is of rank 2 and B of rank 1. The oo7 g-correlations
mapped one to one on the points of § are each of the form
(P, Q; 7) where P and Q called the centres of the system
of p-correlations are each a point of S, and S’;2 and risa
homography between the pencils with vertices P and Q.
Two lines are conjugate if the centre of one plane lies on e'ther
line and two points are conjugate if their joins to P and Q
correspond in the homography =. Conversely, two lines
correspond in = if each point of one is conjugate to every point
of the other.

Schubert in his ‘Abzah lende Geometric’ (5) dealt with analogous
variables (/, m; ) where he took /, m as lines of Sy and S’y (or S;=S’;)
and = as a homography between

(i) points of /'and planes through m,
(ii) planes through /and planes through m,
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(iii) points of / and points of m.

Our variables (P, Q; ) are a similar set for a pair of planes S and S’s.

(if) The Manifold .

n is dual to 9 with A and B of ranks 1 and 2 respectively. Points of
this manifold represent oo? n-Correlations each denoted by a symbol
(p, q; 7) where p, q are fixed lines called the axes of n-correlations. in S,
and S, and 7 is a given homography tetween points of p and g. The
conditions for conjugate lines and points are just dual to those: for .
correlations. :

(iif) The manifold 9n. ,

It is a sinfold on § (or n) for which the matrices A and B are both
of ranks 1. 9n is the Segre product of two three folds each of order 6.
Points of gn represent correlations of the form (P, p; Q, ¢) where P, p are
centres_and axes of the system in S, and Q, ¢ are centres and axes:in S’a.
Two points are conjugate in this system if the axis of one plane passes
through either point and two lines are conjugate if the centre of one plane
lies on either line.

§4. The Space Sg.

B:fore considering the mappings of Q on Sg and S’g we introduce
the following scheme of symbols relative to the mapping of 2 on Sg.

M® o B P Vi) Vi) o 1%

3 3
M® AB 7 VA) V,B) W vy

Interpretations of these symbols are :
M(1) : Rank variety with parametrization) (ay) = (p:q;)
M(?) : Rank variety given by | a;; | =0 having M® as a double locus.
a,p : Sheaves of generating planes of M®@ parametrized by the
co-ordinate vectors g, and p; respectively.
A, B : Sheaves of generating [5]’s of M.
P : Intersection of and — plane with a § — plane.
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7 . A contact solid of M@ the intersection of an A—space with a
B — space. . :
V33 (a), V33 (8) : Planar threefolds on M® generated by o — planes
and B8 —planes respectively. ' -
Ve? (A), V63 (B) : Generated by the spaces A and B that pass through a
point P of M Cones with the planes ¢ and B through P as vertices.
™ : Intersection of a Vg (a) with a Vg (g). It is a quadric
surface.
W . Intersection of a Vg® (A) with a Vg8 (B).

% : A Veronese surface of the oc8 system on M) . generated by
collineations between « and B. ;
y : Locus of points of intersection of collinearly related spaces

A and B. + is afive fold of order 7 on M@,
In addition we introduce two more symbols :
T; : A tangent[4] of M® join of a pair of planes « and §.
7 : A plane, Vertex of Veronese envelope of primes joining
collinearly related spaces A and B.

In the quadric transformation T, of Sg into the space Sg’ of
co-ordinates - #;; we have the same sort of setup as we had in Sg.
In particular M@ is dilated into N® a determinantal cubic primal
whose equation is | b;j | =0 and M@ is contracted into N® with
equations

b5l =0 »

Our object in this part, in the main, is to identify the types of
subsystem of correlations that are represented by the above varieties in
Sg, to discuss concurrently, the subsystem of correlations that have
analogous representations in S'g and finally to axamine the models of
both types of subsystem on the overall model Q of complete correlations.

5. . Mappings of Q, on Sg,

The model Qg of complete correlations (a, b) is mapped birationally,
as we remarked, on Sgin such a way that its prime sections are
represented in Sg by cubic primals through M®. In this mapping we
note the following : ’
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(i) 9 as a whole is mapped on M@, each 3— correlatlon (P Q: 'r)
sing mapped thereby on a point of M@,

(i) Since for 7, a isof ranik 1, the whole variety n is mapped on the
neighbourhood of M®, Every point and therefore every 5— correlation
(2.4; 7) in this mapping corresponds to the section of the neighbourhood
of a point P of M by a [5] through the tangent space T, to M@ at P.
(iif) A g1 — correlation is mapped by the sectioa of the neighbourhocd
of P by a [5] tarough the tangent space T4 aad contained .in the quad;ic
cone of M@ at P,
(iv) The whole neighbourhood of P in S, is mapped in this way on a
solid of the degeneration manifold # of Qg. Points of this solid corres-
pond to oo3 homographies between the lines p and g defining the
point P. The solid meets gn in a quadric surface representing the whole
neighbourhood of P in M@, S ‘

Details of the correspondence between the homographies between
D, g neighbourhoods of P and the subvarieties of the correspondmg
degeneration solid on n are tabulated blow.

Homographies Ambient of the Image variety on| Intersection
between p and g neighbourhood of P ] with 9n
Free homographies | Whole space Solid Quadric

: Surface
One linear condition| A prime through Plane Conic
on the homographies| T
Two linear A secundum line Two points
conditions through Ty -
Three linear A tertium through point X
conditions Ty
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A similar table can be constructed from the specializations of the
homographies between the lines representing P. In particular when a
prime through T, specializes into a tangent [f]to M@ the plane on 7
becomes a tangent plane to the quadric surface on gn and the system of
homographies then have a fixed pair of corresponding points one on p
and the other ongq. - »

Notations :—We will use the following notations for system of degenerate
correlations and the corresponding subvarieties on Qg.

(i) For p correlations (P, Q: 7) we use :

o P : as the condition symbol for P to lie on a given line.

9Q : as the condition symbol for Q to lie on a given line.

9% : as the condition symbol for the system to have a given pair of
conjugate points. By § 3. (i) 9§ is then the condition that the respective
joins of P,Q to a given pair of conjugate points correspond in 7.

- By analogy with Schubert’s development we take P, 3Q, 8¢ to be
the fundamental conditions of weight unity on the system of § — correla-
tions.
" We will use the same notations for the corresponding subvarieties
P, 9Q, ¢ on p.

(ii) For the system of n correlations (p, ¢ ; 7) which is dual to the
system of 9—correlations we use analogous symbols np, np, nC to stand
for fundamental conditions on ».

(iif)  For gn — correlations (P, ¢ ; Q, q) we use :
on P : as the condition symbol for P to lie on a given line of S,.
an Q : as the condition symbol for Q to lic on a given line of S».

on p: as the condition symbol for p to pass through a given point of Sa.
on g : as the condition symbol for ¢ to pass through a given point of S’2.

§6.- In the following we enlist a set of results identifying the
different systems of correlations with the varieties of Sg and S’g and
examining the models of these systems on the over—all model Q of
complete plane correlations. -



[71

1. The A—space and B-—space represent the system P2 and
0Q? respectively. The subvarieties P2 and 9Q2 on Q are represented
on A and B by cubic primals passing simply through V33 (a) and V3 (g)
respectively. o ,

2. The contact solid 7 of M@ represents the system gP2Q2. The
image variety 9P2Q2 is a generating solid of § and meets n in a quadric
surface of one system of 9n.

3. To the whole neighbourhoods of & and g planes correspond the
classes np2 and nq2. The varieties np2 and ng2 on n meet in n p2q2
representing the whole neighbourhood of point of intersection P of
o and §.

4. Points of V (A) represent the system oP where P lies on one of

the axes of the system of n-correlatlon_s, represented by the point O of
M® through which the system of spaces A passes. Similarly for
VZ(B). V;(A) and V;(B) meet in a five fold W of order 5 on M@ represen-
ting the class 9PQ. The varieties 9P, 9Q and 9PQ are mapped on the

corresponding manifolds in S by their sections by cubic primals
through MW,

5. To the whole neighbourhood of V:(a) there corresponds the

class np and similarly to the whole neighbourhood of V:(ﬂ) there corres-

ponds the class 7g of oo® n-correlations. The intersection five fold npg
of np with ng is mapped on the whole neighbourhood of the mtersectxon

of V: () with v 5(8) which is a quadric surface.

6. Points of ¢ represent the system of g correlations (P, Q; 7)
where P and Q correspond in a fixed collineation K between S, and S’,.

7. The whole neighbourhood of a Veronese surface on M®
represents a class of 9-correlstions (p, g; ) where p and g correspond in
a fixed collineation between Sz and S’,.
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8. A tangent space T4 of M® (necessarily lying on M@) represents -
the system of oo* 3-correlations (P, Q; ) where P and Q lie on two
assigned lines of S, and S’; which correspond in 7.

9. The class of 1-correlations (p, q; 7) where p, g pass through two
fixed points which correspond in 7 is mapped by the section of the
neighbourhood of a quadric @ of M® by the tangent prime to M®
along w.

- 10. Points of = represent 002 correlations 3(P, Q; 7) defined by a
collineation K between Sz and S’; such that

(i) P, Qcorrespond by K, »

(i) = is the homographic correspondence between lines through P

and lines through Q ‘which correspond by K.

The aggregate of such g~ correlations are mapped on the manifold g
by a Novemic Delpezzo surface.

11. The system of n — correlations (p, g ; 7), where p and g corres-
pond in a collineation K between Sz and S’ and for such a given pair
(p.q), T is a homographic correspondence between points of p and ¢
waich correspond by K is dual to the above system. The whole system
is mapped on some sorts of neighbourhood of Veronese surface. Since
every pair is associated with a uniquely defined = every point of the
Veronese surface is associated with uniquely determined tangent [5] at
the point corresponding to 7. The sysiem of such n-—correlations is
mapped on 1 by a Novemic Delpezzo surface.

From the preceding results it is clear that the two rows of symbols
of § 4 are so arranged that the neighbourhood of any element of the
first row represents a system dual to that represented by the opposite
element of the second row.

PART 11

1. 9 which is itself a nonsingular variety contains a large number
of subvarieties some of which are nonsingular and some singular. We
give below some results concerning singularities of some of the sub-
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varieties of § which are easy deductions using local parametrizations of
the varieties while leave others to be established by the interested
readers.

To start with we observe :

1. 9, 6P and 2Q are all nonsingular.

2. 9§ defined by conjugacy of the point pairs A (&) and A’ (7))
is singular. To exhibit its singularities properly we encounter below
some of the subvarieties of g{.
on p, éng : Two five fold systems with the axes p and ¢ through A and
A’ respectively.
omP2, anQ2: Two four fold syctems with the centres at A and A’
respectively.
on pq : A four fold system with axes through A and A’.
on P2 g, 99 pQ2? : Two three fold subsystems of gn P2 and an Q2 with
axes through A’ and A respectively.
ou P2 Q2 : A two fold system with centres at A and A’. ,
8¢ is simple at every point of gn p—gn P2—on pq, on pg—an P2g—an pQ2
and 9n P2 —n P2¢ having simple contacts with 91 and gP at evéry point
of these two latter varieties.

9C has double locus at every point of gn P2q, the tangent space being
a quadric cone whose vertex is a solid and base a quadric three fold,
which degenerates into a pair of 6-spaces at every point of g7 P2Q2
embedded in 97 P?g. It follows further that these two tangent spaces are
simply the tangent spaces one to gP and other to 3Q.

2, *Theory of the base on a

The essence lies in representing g in the three way space (P, Q, a)
and applying repeatedly the methods of degenerate collineations. The

*From now on for varieties on g and gn we will omit the common
factor o and 9n and make the convention that if V, denotes a point set
variety of dimension d then Vd will stand for multiplicative -variety in the

sense used by Hodge. -
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following is a long list of results—a: straightforward derivation of the
methods of degenerate collineations (12). ‘
1. Any d-fold (d >4) on 3 satisfies the equivalence relation
Va—3SrVyi=l, .. r
@
where 4, .., ~, are integers, and each V:i is an irreducible d-fold contain-
ed in atleast one of P, Q, L. '

2. When d=6, (1) gives
Vo — 1 P+ Q+3 §

The following are some self evident equivalent formulae satlsﬁed by
some of the six folds on j.

(@) om — ¢

(b) ov ~ P-+Q where 1, v represent two classes of oo7 correlations
with a pair of conjugate points and a pair of conjugate lines respectively.

3. For equivalences on P and Q each V; satisfies the equivalence
formulae .

Vg~ s eV g i=1, .., 7 (say), 4<d<5

where each V; is an irreducible d-fold contained in at least one of
P?, PQ, P¢ and Q2, QP, Q& respectively.

4. Afive fold on ¢ which is not contained in 99 satisfies

Vs—I182+mCP+4+-n{Q
5. For a five on 3 we combine (3) and (4). This leads to-
Vs~ 71 P24y Q24ry 24 ¢4 PQ+ 5 PL4+6 QL

where the r;'s which are not all zero may be positive or negative
integers. Let V4 be an irreducible four fold which does not consist
entirely of 9n —correlations. Then,

6. on §, V, satisfies

- E i V4,, i=l,. ooy 8o

where the ~;’s which are not all zero are positive integers and each
V4 is contained either in {2 or in {P or in Q.
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7. (3, 2P, 2Q), (&P, P2, PQL), (£2Q, Q2, PQL) constitute
bases for four folds for algebraic equivalences on &2, PC and Q¢
respectively. '

8. The sets (P2Q, PQ2, PQL), (P2, P2Q),«(Q2P, Q2{) form basis
for four folds for virtual equivalence on PQ, P2 and Q2 respectively.

A base for equivalences for four folds on 9 is obtained by combining
the above. This leads to :

9. An irreducible four fold V4 on g satisfies the equivalence relation

Vi~ c; P2Q 4, PQ2 473 P2§+"4 Q2§+"5 PQC+ s PL24 7, QL2

+7g 83

To show that (P,. .., §), (P,2..., Qf) and (P*Q,...E8) of (2), (5) and
(9) form minimal base for varieties of respective dimension, we pick up
appropriate varieties of complementary dimensions. From the study
of the intersection table we claim :

10. The set of eight three folds (P?Qf, PQ?2L, P22, Q247 PQL?,
PG, QL3, {4 provides a minimal base for three folas on 3.

11. For surfaces on 3, (P?Q%, P2Q¢2, PQ2(2, P2C3 Q“G3; PQL)
form a minimal base.

12. The set (P2Q2{2, P2QL3, PQ2(3) provides a minimal base for
curves.

3. Base on gn

By applying to.the much simpler case of g7 the methods used to
investigate bases on g the following results are obtained :

1. A base for five folds on 37 is generated by (P,p, Q,q)"

2. A base for four folds on gn is generated by (P2, p2, Q?, g2, PQ,
Pg, pQ, pg).

3. A base for three folds on g7 is generated by
(PQ2, P2Q, Pg?, P2q, pQ?, p2Q, pg?, p*q, P2p, Q%g).

4. For surfaces on 97
(P2¢2, p2Q?, p2q2, P2pg, pQ?q, PQ?q, rQ?¢, P2Q?) constitute a base.
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5. (P2Q?%g, p2Qq2, P2pQ2, Pp2Q2) constitute a base for curves on 2n.
We observed earlier that 97 is the direct product of two three folds
V; and W: where V: is the aggregate of flags (4)

F:F, c F; of Sz and W: is the aggregate of flags
F': F’, cF’; of §’5. The nonsingularity of gn follows by observing that
a proper collineation preserves the inclusion property.
A base for surfaces on V: consists of two surfaces
F_: Aggregate of flags for each of which F, lies on a line,
F;: Aggregate of flags for each of which F; passes through a point.

For curves the base.consists of ’
F 2, Fi2: Aggregate of flags for each of which F, and F; respectively are

fixed.
A point of V: has interpretation F02Fi denoting a particular flag for
which F, and F; are both fixed.
7 With F’s replaced by F’ ’s only we use almost identical notations and
meanings for elements of bases of different dimensions on W:.
It is easy to see that if the d-fold ¢4 is a base member of 95, then

there exist base members Vg and Wy_g of V: and W: such that

$pa=VeXWq_y
strikingly displaying Semple’s hypothesis that a base member of

Vd=Vil)-xV§21k is obtained by pairing off a base member of VS) with

2 . . . '
that of Vfi_,‘ that preserves equality of dimensions.
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BASIS IN BANACH SPACE AND ITS TOPOLOGICAL DUALf‘
by
S. A. KHAN SHINWARI
Institute of Mathematics, University of Islamabad

1. Introduction. The aim of this paper is to investigate the
relationship of a basis in a Banach space and its topological dual. In
his inspiring paper Karlin [3] has discussed and analyzed various types of
bases in Banach spaces which served as a foundation stone for future
investigations in Bases problem. These results have been considerably
improved by James [2], Zippin [4] and others who have presented other
criteria like separability and reflexivity of Banach spaces. In this paper
we prove some results by using one of the well known results of James
[2] which is given in the sequel as James Lemma.

2. Preliminaries. In this section we introduce some notatlons and
concepts of a basis in a Banach space.

If E denotes a real Banach space, then the first conjugate space E* is
its topological dual and, is the space of all linear functionals f defined on
E such that ;

1S = Sup | A9 VAEILR

If {x,,} c E, then [X,.] will denote the smallest linear space

spanned by the elements {x"}n—- r

Lin sp {xn} —1 (linear subspace spanned by the set) is the

smallest linear subspace containing all the elements of the set ; it is not

in general closed.
o (E,F) denotes the weakest topology on E such that all functions

of F are continuous, where F < B¥*,

+Received : October 28, 1971.
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Definition 1. Let E be a real Banach space. A sequence {x,.}n:’1
of elements of E is said to be a basis (also called a Schauder basis) for E,
if for every x £ E, there exists a urigque set of real numbers {an} no_ol

=) m
such that x = Sapxp, ie. || xX— 3 apxp |—>= 0 asm—— 0.
n=1 n=1

Definition 2. The functionals { fu} ncf { in E* constitute a biorthogonal

sequence with respect to the basis {-xn}n QOI in E, if f (x) =§nm where

§am is the Kronecker delta symbol.

It is well-known [1] that the set of real numbers ap, defines continuous
linear functionals over E. We denote them by a, = f, (x) v x € E.
Definition 3. A set [ c E*is said to be regularly closed if for every
Jo notin [1, there exists an x, € E such that £, (xo) 5~ 0 and g (xo)=0 for
allgin .

James Lemma. A sequence {x,,}n‘j_c’1 (xn 5%0) forms a basis for E if

and only if there exists K > o such that

n n+p
IS axli<Kl 2 axl,

= =

where n and p are any positive integers and {”i}z is any set of real

1
numbers.

3. Main resulits. Using James Lemma, we now prove our main
results.
oo
n=

Theorem 1, Let {x”}:_—l be a basis for E and let { f;} 1 be the

) ==}
corresponding biorthogonal sequence in E*. Then 3 f(x,)f, converges
n=1

for every fin [ fﬁ]::_l.
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o0

Proof. - Let f3 €] f,,]::o:l. By hypothesis, 3 : Jm (x) X, converges
m=
to x, say, as n — co.

4

' n
Theset { S fou (X) Xm:@ 1, r; ¢ Z+} is uniformly bounded for all x:in
m=n

n .
E,Ilx|'< 1. For, by James Lemma || 3 f; (x) xi | <X || x || for all .

i=1
This implies that
n ,
I %2 fa(x) xu | <2K | x| foralln, n 6y
m=n
Now there exists some function g € linsp { fn}::o_ 1 such that
lg-fpll <e/2K ; @
Also we have
N N N N
W2 faGn)fall =1 = fa@a)fo— 3 gGn)fat S gn) full
n=N n=N n=N n=N

N N
I 2 (fa=8GE)fall +1 = gx)ful
n=N n=N

i 4

N
<Swp | I (fa-@fsa®]+1 I g
S oA <t a0 3 &l
< lxI<l n=N n (*) xn n=Ng( n) Jall

For N sufficiently large the second term on the right-hand side becomes
zero. In view of (1) and (2), we finally obtain

4

N
S faGmfal<e
N . :

n=
which shows that the series converges.
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m
Theorem 2. If 21 S(xn) fn converges weakly in o (E¥, E)—
n=

topology to f, as m — oo for every f € E¥, where { f,.}:i_l ¢ E¥ is a
sequence of biorthogonal functions with respect to ‘{x,.};o_l.

Then {x,,}:;l forms a basis for E.

oo
Proof. Since 3 f(xp)fn (x) converges for all x € E, we have, in
H=
particular
n
Sup | 3 f@E),(®) | =M<
n k=1

for each x € E, and so by the uniform boundedness theorem,

n
Sup I X fEf, | =M< .
n k=1

o0
Now the result that = fu (x) xn converges for every
n=1

x € [xn]nof_l, follows byb the same method of proof as
Theorem 1. We now show that[ xn]:°__1= E.

Let us suppose that x € E\[x,,]noi> P then by the Hahn-Banach

theorem, there exists a continuous linear functional fo € E* such
that fo (x) =1 and f5 (xp) = o for all » > 1. By the hypothesis,
m .

S fo (xn) fn converges weakly to f,, i.e. in the ¢ (E*, E)-topology.
n=1 C
Hence

;” Jo (xXn) fo (X) —> fo (x) as m —> 0.
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But fo (xn) = 0 aﬁdfo (¥) = 1. Consequently

m
0= Elfn (%) fo (Xn) ——> fo (x) = 1,
n=1 -
0
which is impossible. It follows that [xn] = E and therefore
n=1

-
{xn}n__=l forms a basis in E.

0
is a basis for E and [f;] el = [ s

[os)
Theorem 3. If {x"}n= 1

1

e}
regularly closed as a subset of E*, then {fn} e is a basis for E*.

1
0
Proof. We have seen in theorem 1 that if {x,} nel is a basis
o0 o0
for E,then = f(xn)fn converges for every f € [ j;.]n_‘1 . For any
n=1 =

x ¢ E, define x (f) =f(x)forall f e E¥*. The x is a linear map  E*

——> K (real scalar field). Now it is easily seen by considering )@n that

w .
if f= 3 by fn, then by = f(xy) for all n.
n=l
w . . w
3 f(%n) /n is unique, and so { i} _,

Hence the expression f =
n=1

o) s
forms a basis for [ f"]n——l . Now if we can show that [ f"]n—- 1= E*,

0
then { f"}n:= i is a basis for E¥,

Assume that [' 5£E*, then there exists an f, not in[? and by hypothesis,
there exists an x, € E such that f;, (x,) 3= 0 and fy, (x,) = o for all n > 1.

w .
But xo = 3 fp (x0) xn = o which is a contradiction. Hence
n=1
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o]

© ' ‘
[fd,_, =0=E* andtherefore {fp} _ forms a basis for E*.

Theorem 4. If { fn}:’_ ; s a basis for E* and {xn}:’_ , n E is a
. ® © . o
biorthogonal sequence to- { f"}n—- 1 then {x"}n— jisa basis for E.

Proof : Let f € E*. Then since { fn};o_l forms- a basis for E*
o0}

each fin E* can be expressed uniquely in the form f= 3 = ¢, f. There-
n=1

(o0}
fore fix)= = c¢nfn(x)for all x e E. In particular, we have
n=1

o0
S (xm) = 3 cnfn (Xm)
n=1

= ¢, forn=m (nm=123....). Therefore

o m
f(x) = 3 f(xn) fa (x) for all x € E. Hence the series 3 f (xp) fn
1

n= H=
converges weakly to f, for each f € E*.

Hence by theorem 2, {x,,}::o_ ! constitutes a basis for E.
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TOLLER POLE ANALYSIS OF DIP STRUCTURE
IN 0~ +4+—>1++ 1+ PROCESSES

KHALID L. MIR and M. IQBAL TAHIR,
Mathematics Department, Punjab University, Lahore
and
HAFIZUL HASAN,
Department of Physics, Islamia College, Lahore
and
A. R. KHAN,
Department of Physics, F. C. College, Lahore.
Abstract
It is shown that according to 0(3,1) symmetry model, the differential
cross-sections for near-forward scattering in0—+-4+—>1+4-4+ reactions
should exhibit dip at =0 and a=—1. These predictions are not incon-
sistent with the recent experimental data available for r*b-»B*p.
Introduction __
The explanation of dip structure in the forward and the backward
differential cross-sections serves as a good critkrion for the validity of.
any model. Many authors have tried to explain the dip structure in

various reactions by using Regge theoryl’ 2 3). Contributions have

been included and cuts 4,5,6,7) have also been brought in to give
suitable description of dip phenemenon. But despite all these efforts, no
consistent explanation of dip structure in various reactions has been
given so far. Different models provide only partial explanations; a
model which explains the dip structure in some backward reactions fails
to do so in others. There is no Regge model which gives a unified
picture of the dip structure in the scattering processes with definite spin
content. In the following we shall study the dip structure in the differen-
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tial cross-sections for the forward scattering processes with spin content
0~+3*—>1+-1-1* on the basis of extended formalism of Toller’s 0(3,1)

symmetry model.® % 10) This model predicts dips at a(f)=0 and a(f)

= — 1 and these are not inconsistent with the recent measurements ) of

the differential cross-section for the process =+ p—B+*p.

0(3,1) Symmetry Formalism

Toller® has shown that the scattering amplitudes for the elastic
forward scattering.: which possess symmetry with respect to the homo-
geneous Lorentz group 0(3, 1) can be expanded in terms of unitary
representation function of 0(3, 1). This formalism has been extended in
an approximate way, by Delbourgo, Salam and Strathdeel? to inelastic
near-forward scattering amplitudes for the scattering processes of the
type a-+b—>c+d having masses mi, mz2, m; and my and spins sy, 52, S,
and .s4 respectively.  According to the extended formalism, the reduced
amplitude Ts,.\s’)‘ , can be expressed in terms of a new set of helicity non-

flip amplitudes Tﬁ& (s, 1) as

+ = - N2 7/ Ty ? ] — ’ T
Ts’k’sh j 1512 534 2 <SVLIA=ATA> J'As 0
where
' S =8354 el , | s2—54 ]
S=514F53 coriiininn. , | Sy—s3 |

—2—~| 1s a kine-
512534

$(s, 0| .
2

with A1, A2, As, Mg the helicities of the particles and

matical factor. The amplitudes 'I:’(,iz have poles. If only one pole is

supposed to dominate, then ijig can be written as
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(s

1) 6 =3 § Gamayxp ") (o DX

Josmin (j', S)
{8, o0 mmmmexa Ly
where d!;;, (£¢) are the representation functions of 0(3, 1) and

S—U

i 2(mf+m§)—t g‘% i 2(m§+m3)-t ; ¥

cosh ép=

To obtain the asymptotic behaviour of T;,',;l for high energy, the represen-
tation functions d" °o., (¢¢) are expressed in terms of es‘;:’;, (&) as
NG'+e+1) fE—o41)
, A1y Xe Tl
N i LA sy
For large £;, the behaviour of eJ;;, is given by

[P(S~A+1)P(S+J’°+l)
PG+A+D) TS~ jot+ 1)

oy €0, (s +uit

t—->oo

LU =A+DPG i+ DY,y J A
Ve eaTvereaT] R aU

fe+j+DM(~jo—9)
PUo=A+H) M (e—2+ ) (=o+j'+1)

provided j,>A. Forj,<A, the same formula with j, and A interchanged

X (COSh ét)_(a+ 1+j°—k)

gives the asymptotic behavious of e] , (¢2). The correct Regge behaviour

is obtained by putting e=a+1, where o specifies the usual Regge
trajectory.
Calculations and Discussion

In the 0(3,1) symmetry formalism discussed above we start with
s-channel centre-of-mass helicity amplitudes
<Pssis, Pasara | T | pisidse pesada>=<Aghg | T | MA2>
and express them in terms of reduced amplitudes Ts'A’s) as follows :
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<Ash | T Map>=3 <S4dq | s2A2 8" —\'>
Sy S

XTgryrg) (8 D<SAssh | sm>

The reduced amplitudes are further expanded in terms of
/
T](:gx)s (s, t) as

1A
Toasals 01:,-2'“! 2 <sW A= A; A>XT( )(s n

/ -
The amplitudes T,;fk)f (s, ) have poles in the extended complex

angular momentum o -plane. The contribution of a typical pole to the

) .
J'As

There are twelve helicity amplitudes for the process 0=+3+—>1++43*,
but owing to the parity, charge conjugation and time reversal invariance
only six of them are independent. We choose these amplitudes as.

<04|T|03>,<0-3|T|03> <1}4|T|0%>
<13|T{03>, <1-3|T[|03>,<~-1-3|T[0}>

Using the formalism discussed in the previous section and
assuming that only one trajectory dominates the asymptotic behaviour of
the amplitudes, we obtain the following expressions for the helicity

amplitude T, .’ is given by equation (A).

amplitudes :—
()]

w1
(1) <03 [T{03>= §T1010+*"-* 0010=T10:F 75 Ton

=2 —06-2

[¢3] z +z [6}] ’
=—4 1 < s -
0, n T Y
X[ o U_J,.JLa—o_l]
o_+_lz l—-¢

. V72 - JZ ‘}[ 1 W 1 o
2) <0-3[T|0} >.——3~T1110——~3— o | 73 T ..t \/-2Tm

]
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) — e c—-2 d —6—2
where T_uz-—24~/15 @ ‘)[‘(‘o+,l)(c+2)z T d=0)2=0) ]
@ 3O o—1 8 o-3 —c—1
Tw="2 Fn(,l’t)[(l—c)z — 5% tlte)z
+ _8_2—0'-—3]
) [e)

1 = 1
@) <I2iT104> “101—1+3T001—1

_ , 3 1 (1) 1. (1))

| & lz( L0 1 T(n L ®
J 3 6 002+ 2 ool+~/'§' ooo)

where . :
o @ o(l—o) 0—2 o(c+41) %2
T 2 =2~/156 (0, 1) [(1+ AZ+0’ (I-o0)2—-af ]
@ o(1-0)24+ o)+ (1+0)(2— o‘) c—2
+§P12 {1, t)[ o(2+0)
_(2+9) 1—0)—6(c+1)(2—c)z-a—2]
6(2—a)
-2, —o=2
I @ T
Tml-———12 ﬁu(l, t)ﬂ—-————-—» e
6)] — ¢ o—1 ¢ —o-1
T1w=‘~/3“m(0")[f:‘;z 1)
m — c o—1 ) —-0o—117
Tmz—-“/ 5FR ‘)[(c+1)(c+2)z T @-92-o, J
-1 o —a—1
N ()| [ e
@
=0
000

@ <-13|T{0}>= §T1011+J Toott
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TN [ VR i T
=t L 6 102 J7.101+ J?Tmo]

e e Ly

VAR WO Ve
' 1 T(D]

+\/? 000

5"

where all the amplitudes T‘ have bezn defined above.

®) <15 [T0 §>=ﬁTm-x

\/2[ 1 o 1 o®
3 L5137 /3 12

3
+ '\/—5—T111]

where
® — o2 =2
T, =120V2I¢ (0,1 [(1 o T
o2 —6—271 V2@
R (e e S MUY

(lme a—1 516(2—0)(3—-0')0' -3
[ (1~0)z + a:24-0)(3+ )

—c— 576 (2+0')(3+0) — -
+(1+0) z +———~—6(2_0)(j_a) ]

and other amplitudes have already been defined above.

-1 V2
0 <-15-1T]04>=—73=Tun

—l/lg ek t)[—(léa)z“—l+ —3—26-3

+(1+,o)z—.°—‘1+ %2—6-3]




[29]

In order that the differential cross -section may not blow up, the
various residue functions must contain ¢ factors which occur in the
denominators of their coefficients. The corresponding amplitudes
T (“,9 ) can then be written as :

JAs
(¢Y] (V) a—2 —o=2

=12 ; .

T, =1 Cu(l,t)[z 2 ]

© TR ¢ - —_g—
‘T001=—\/3 C01(0,t)[0'(1—6)zc 1_6(1—!_6)2 ’ l]

@ - (D o—2
Tm_—24 V15 C, 0,0 [a(l ~0)(2—0) z |
_a(1+q)(2+a)z'“"2]
o)) 3 @ o—1 c—3 —-o—1
Tlll__TCu 1,9 [c(l-—o)z -8z +o(1+40) z
. c—3
-8z ]

and similarly for others. ,
If only the leading terms are retained, we get :

() o—1
<0}[T|04>=C olo—1)z

- . ) -
<0G T04>=}]a] %c;ll L) s(e-1)z° "

<13iTI04>=1a" |31 0,000 +D

5 @ '
+,\/7C02 0, t) 62(e—1)(0—2)

1 (€ C~—1
+——\/..2_ Col ©, %) a(a—1) ]Z

.} (1
<-131T 04>= & | }[3C @.n0o@+D
+ ,\/gcf;) (0, ) 02(c—1)(c—2)

1 ) o-1
—-——=C (0,00 —1]
V2 01( noe-Djz
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< itioes=[ 4 &) o oe-30-2x

(o= 1004 2)0+3)+n] 5 oL, DX

c(c—- 1)]26
- oW -1
<-15t [ Tlog>=}C ) 1 po(e-1) 7
For 6;—1 i.e. a=0 four amplitudes become zero. However in each

of the remaining two amplitudes only one term does not vanish. We
therefore expect a dip at a=0.

Foro=0 i.e. a=—1, all the amplitudes disappear. We, therefore,
predict a dip at a=—1.

Now in the process =t p—B* p three trajectories Aq, A2, and © can
be exchanged. It has, however, been argued that the e-trajectory is the
dominant one because the particle B+ appears to be associated only with
the particle ©13. This trajectory has been parametrized!¥ as ‘

@, =0.4540.9¢

For =0 and ¢ =-—1 thls gives

=-0.5 (GeV/c)?2 and t=—1.6 (GeV/c)2 respectm,ly Although the
experimental curve is not accurate enough, there seems to be such an
indication of the dips in the vicinity of the predicted values of ¢.
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ON CLASSIFICATION BY THE STATISTICS Z AND W
by
AHMED ZOGO MEMON
West Pakistan Agricultural University, Lyallpur

1. Introductisn : We consider the situation where an observation x
has come from one of the two p-variate normal populations m;, =; with
means g, b, and identical covariance matrix 3, the parameters u; and py
are unknown, and the two random samples drawn from =, and =, are
available to aid classification of x into its relevant population. Two of
the classification statistics proposed in discriminant analysis are

Ny
N+

W=[x—% (x;+x2]’ 37! (1—x.),

where xl, X, are the sample means, and N; and N, are the sizes of
samples from w; and w, The procedure of -classification by the first
criterion is to assign x to =y if Z < 0, and to =, if Z > 0. According to
the second eriterion the observation x is assigned to'#; if W >0, and
to m, if W < 0. o

In following any procedure we can maké ‘two kinds of errors in
classification ; one is, that we decide to classify x into =, while it belongs
to = ; the other is, that we decide to classify x into =, whlle it belongs
to m,. This paper employs a large sample approach in mvestlgatmg
probabilities of making such errors which arise ‘due to use of above
procedures - A comparative study of these procedures is also made for
varlous values of Ny, Nz, p, D2 where D2 is the Mahalanobxs distanee

Zm ) R 57 R - g (- R T ()

between wy and m,.
2. Error Probabxhues ¢ We write Prob (D | x €m)to mdlcate the
pxobablhty of makmg a decmon D about classlﬁcatlon of x by a glven
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procedure when x comes from =;; i=1,2. Suppose, the decision D is
as arising from Z > 0, then Prob(Z > 0 | x € ;) is the probablhty of
classifying by Z the observation x € =; into my. If i =1, this becomes an
error probability since x is misclassified. The other kind of error
probability due to using Z is Prob (Z < 0 | x € 7). Similar notations
will be adopted below in the case of W statistic.
Theorem 4 : If D > 0, then

() Prob(Z >0 | xemy)

01 4y, A
=[N-(14= 4
(1= (4 g+

Q92 , Qs
N e e N )0, ppo

(#) Prob(Z L 0| x & my)

(122, 4, %2, A1, 92 ,
=[1 Q+N1+ N2+ Nf+ N§+ N1N2+”") ¢(y)]y=D/2

where
a1=} D=2 (d*+Dd*+pd2),
ag=4 D72 [d*+Dd3— (D2~ p)d2 —D3d],
aj =4 D 4 [d8+2Dd"+(D24-2p+-4) do4-2 (p+2) Dd’
—(4D2 —p2 — 2p)d4 —4D3q3~4pD242],
az=} D [d8+2Dd7—(D2—2p—4) d*~2 (2D2~p~—2) Dd’
—{D4+2 (p+4) D2—p2—2p} d4+2 (D2 ~p—~4) D3d®
+(D*4-4D2~4p) D2d2-4D5d], ,
ay,=3% D74 [d®+2Dd”+2 (p+2) d6—~2 (D2—p-2) Dd*
—{D*+(p-+4) D2—p2—2p} d*—(p+4) D3d3—-2pD2d?2),
and ¢(y) is the cumulative distribution function of N (0, 1).
Proof: Let F; (y) be the distribution of the random variable
(Z—u;) | o; when x¢& m (i=1, 2), the parameters #; and o; being mean
and variznce of the asymptotic distribution of Z. It is not difficult to

see that py=~—p,, oy=c2. Memon (1970) derives the first part of this

theorsm from F; (¥). .

To prove the second part we suppose that fl (¥) is the expression
obtained by interchanging Ny and N, in Fy (). As Z —» —Z under
this operation, we have
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Fa(y)=Prob (Z_’L2<y)
G2
S —Z+u,
—1—Prob (—02—< —y)

—Z—
6

=1—-Prob( < —y)

=1-Fy (-
On using this result, we have
| Prob(Z > 0| x € m)=1—Prob(Z < 0 | x & m2)

=1—"Prob (Z B2 y) J D)2

y
=1-F,(-y) 'y=D/2

=FLO),_pp2,
Thus if Z is the classification criterion, the interchange of N; and N, in
error probability of one kind gives error probability of other kind.

Theorem 2 : If D > 0, then
() Prob(W< 0| xem)

_ aiy , ax 412
= (1+ g+ 2+ U et L YBON__
2

1

v/

(if) Prob (W >O]xsﬂ'2)
a1 a1z
(+N1+ 2+ + +NN --~)¢0’)ly=_£

N

where
ay=4 D=2 (d* Lpd2+de)

az=}% D2 [d*~2Dd3+(D2+ p) d2—pDd],

ay =4 D™*[d8+2 (p+2) dS+2 (p+2) Dd®+p (p+2)d*
+2p (p+2) Dd3+p (p+2) D2d?],

az=% D4 [5d8—4Dd’ {2 (3D2+4p) d6—2 (2D2+3p+6) Dd5
+{D*+6 (p+2) D*+p*+2p} d*-2 {(p+2) D2+p2+2p} X
Dd3+p (p+2) D2d?],

ayp=} D [d*~2Dd"+(D2+2p) d°~ 2de5 ~p (D?—p)d*-+pD3ds
— p2D242],
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and ¢(y) is the cummulative distribution function‘of N (0, 1).

Proof : The proof being lengthy, we shall omit it here. However,
the reader can prove this result by adopting an approach as used by
Okamoto (1963), Memon (1970), and above in Theorem 1.

3. Comparison of Two Procedures : We shall now consider the two
cases N;=N, and N;#N3 in comparing the classification procedures
based on Z and W statistics. Since in the sense of relative desirability a
better procedure should be one which minimizes the risk of misclassifica-
tion of the observation x, our comparison of one procedure with the
other will take into account both kinds of error probabilities.

Case N =N2
When N; =N, =N, it is easy to observe from the above theorems that

Prob (Z>0 | x &€ ®=13=Prob (ZL0 | x & my),
‘Prob (W<0 | x.€ ®)=Prob (W0 | x & 7).

1
The terms appearing WIthT\I as well asl\ll in the asymptotic expressions

of these error probabilities are found to be identical. Also since
1—¢(—D/2)=¢(D/2), we conclude
" Prob (Z>0 | x &€ ©))=Prob (W<0 | x e m),

Prob (ZK0 | x & mp)=Prob (W>0 | x & m2),
that is, the two criteria are equally good for the purpose of classification
of x into its proper population when the samples drawn from =, and
are of the same size.

Alternatively, since in this case we notice that

= N+1 [(x xl) E4—1(:":"'-7‘71) (x_-xZ)' E—I(X xa)]
2N
NV
and on which account
L0 =>- W>0 -—>W<0

N+1
ZL0 > N+1W<0 =SW>0,
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we obtain the same results as above. -

Case N;5£N,

The problem of comparison of the two procedures is rather intricate
in this case. To facilitate such a study, we have prepared a table which
presents overall error probabilities evaluated at D2=1,2,3,4,6; p=1,2,3,
5,10; keeping Ny =40 and varying N; over 50,70,100. These probabilities
due to the use of Z and W, where unequal, are given in .the first and
second rows respectively, in front of each value of p. For example, the
probabilities of making the two kinds of errors in classification by Z, W
when N;=43, N,=50, D2=2, are.both equal to 0.33691 at p=>5, and
0.34383, ¢.34386 at p=10. » o

The table reveals some-interesting features about the classification
procedures based on the statistics Z and W. The probability of making
an overall error increases in case of each procedure when (i) the
Mahalanobis distance D2 decreases, (ii) the dimensionality p enlarges,
(i) the sample size decreases. But on comparing one with the other for
the classification point of view, we notice that Z generally is slightly
better than W at smaller values of D2, larger values of p and wider
differences in N; and N,. This performance in favour of Z improves
with increasing D2, p and or | Ny=N, | . However, when the sample
sizes are same€, the two criteria show an equal performance whatever the
values of other parameters. -

































