VoLuME IX NoOvVEMBER 1976

THE PUNJAB UNIVERSITY

JOURNAL
MATHEMATICS

UNIVERSITY OF THE PUNJAB

YT ALIODE DAVTICTANT



EDITORIAL BOARD

" _Editor . M.H. Kazi
Associate FEditors : - M. Raﬁque, A. Majeed,
M. Iqbal, S. A. Arif, K. L. Mir,
M. Iftikhar Ahmad, F.D. Zaman.

Notiee to Contributors

1. The Journal is meant for publication of research papers,
expository’ articles, mathematical problems and their solutions.

2. Manuscrlpts in duplicate, should be typewrltten and in a form
 suitable for publication. As far as possible, the use of complicated nota-
tions should be avoided. Figures drawn on separate sheets of white paper
“in Black Ink, should be of a size suitable for inclusion in the Journal.

3. Contributions and other correspondence’ should be addressed
to. Dr. M.H. Kazi, Mathematics Department Punjab Unlversny
New Campus, Lahore, Pakistan. '

. 4. The dzcision to accept or reject a paper for pubhcatlon in the
' Journal rests fully with the Editor. :

5. Authors, whose papers will be published in the Journal, will be
supplied 30 free reprints of their papers and a copy of the issue contain-
ing their contributions. If an author wants more réprints he should
intimate the Editor about it at the time of submission of his paper. The -
additional reprints will be supplled on payment- of the postage and
printing charges. s

6. TheJ ournal which is publlshed annually will be supphed free of
cost in exchange with other Journals of Mathematlcs ‘

Printed at the Punjab University Press and published by Dr. M.H. Kazi,
Department of Mathematics, University of the Punjab, New Campus, Lahore,
Pakistan. ’



1L,

L.

Iv.

CONTENTS

Page

ELLIPTIC CURVES OF PRIME POWER
CONDUCTOR

S. Akhtar
THEORETICAL STUDIES ON THE PROPA-

GATION OF SEISMIC SURFACE WAVES IN

HORIZONTALLY VARYING STRUCTURES
M. H. Kazi

SOME RESULTS ON 7 CLASSIFICATION
STATISTIC
Ahmed Zogo Memon
EXTENSIONS OF CERTAIN SYMMETRIC
OPERATORS
F. D. Zaman

ESTIMATION OF THE SCALE-PARAMETER
FROM THE TYPE II CENSORED RAYLEIGH

DISTRIBUTION
Abdul Samad Hirai

13

45

51

61






ELLIPTIC CURVES OF PRIME POWER CONDUCTOR

BV
S. AKHTAR
Deprtment of Mathematics
Uunivetsity of the Punjab

In [3] we were able to find alarge class of primes which are
impossible conductor. We factorized the equation :

y2 = x3-1728 ¢ p%, D
e=+1, in the cubic field Q (9), 6= p3, to obtain those solution of this
equation called ““Good Solutions” for which the equations :

X = (af 4 4ag)2—-24 (a; az+2ay). @
y=— (& +4ap+36(a> +4ap) (a; a3-2aq)

= 216 (a§ + dag) 3)

are also soluble in q;, as, as, ay, ag, as raticnal integers. These integers

a, as, as, 4y, g, are the co-efficients in the Weierstrass minimal model
Y24 a xy+ayy=x3+as x2 +ay3 x+ ag, aieZ

of the eliiptic curve E of conductor N=pf and discriminant A = € pd,

where 1< dgi. Ogg [1] has shown thatif p#2, 3 then p3 ¥ N so that

i=1 or 2. By a suitable change of co-ordinates, we can assume that

a=1,0,a3=0, 1 and a2=0, + 1 (Tate {2] ).

In this paper we solve the equation (1) completely for good solutions
when p=7, 17 and 31 and list the curves if they exist. We also prove that
there are no elliptic curves of conductor p if p=47, 71. We factorize
the equation (1) in the quadratic fields /" £3, \/ + 3p. We deal

These results were a part of the Ph.D. thesis submitted by the author to the
University of Manchester in 1966. The author wishes to thank Dr. B.J. Birch for
his help and guidance.
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separately with the four cases : deven,e==11:dodd, e=*1. We find
that the good solutions for p=7, 17 arise as special cases. In fact,
these solutions for p=7, 17 were first found by Francis Coghlan,

another research student of B.J. Birch.
We prove the following :
Theorem :

There are no curves with conductor p if p3£2,3,17, p % + 3
(mod 8), p # ¢* + 64, the class number of the fields R (\/3p ) and
R (/Z3p) are not divisible by 3, and (m, 3) = 1, where I+m 35
is the unit of the field R (- 3p ).

In particular there are no curves with conductor p if p=47 and 71.

The class numbers and units of the field R (/7 ) are listed in the
book by Borevich-Shafarevich [4].

We first suppose that d = 2k (k > 0) and €= — 1, so that equation

(1) can be written as

y2 = x3 + 1728. p2 (k> 0) 4
We note that x is odd, otherwise the equation is impossible modulo
power of 2. We prove the following.

Lemma 1
If p is a rational prime such that p 5= 2, 3, 17, p % + 1 (mod 12)
and p3 ¢2 + 64 for integer ¢, then equation (4) has no good solution.
Proof
Factorizing the equation in the ficld R (- 3 ) we have
B=@—-24p/3) (O + 24pky73)
Since p 3¢ 41 (mod 12) by hypothesis, p does not factorize in the field
R(/"3). The common ideal divisor of (y~24p*k./3) and (y+24p*

/3 ) also divides 144pk and so since x is odd and p does not factorize
in R (/3 ), we have the following two cases to distinguish
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y & 24pk /3 = (a+bvT )
y & 24pf T = Q+yF) (@t 3P

i+

Case 1°: +
Case 2°: %
where a, b are rational integers.

Case 1° implies

+ y = a(a + 9?2 (5)

and + 8p% = b (a2 + b?) ©)

We first suppose that (p, y) = 1, so that(p,a) = 1 and either
p<|b or pk |(a2+b?). If pk|b then pb = + 2 pt where 0<A<3 and
accordingly a2=23"* — 42X p2k which gives p=2. Therefore pk|(a2+ b2)
and (p, b)= 1. Ifb= i‘ ], :t 2,. _—_': 4’ then aZ:—__gpk.._ 1, 4 (pk_ 1),
2 (pk — 8) respectively,all of which are easily seen to be impossible.
So b=+ 8, a2=pk — 64. If k is even, then k=2K and so

P - 64 =a? 6.1
which can be written as
(p¥ — @) (P* + a) = 64.
The highest common factor of p¥ — a and p¥ 4- a is 2 and hence
PK-a=%2,pf+a=1 32

which gives a=15, p=17 and K=1 and we have x=:33, +y=12015
as the solution of the equation y2=x341728.174.

If k is odd, then we may write £k = 2K + I and we have
(a + 8i) (a — 8i) = p2r+t
where i2 = — 1. This gives
@+ 8 = (A + Bi)K+1
where p = A2 + B2.. We write
A; + Bni = (A + Bi)®

for all.n > 0, so that A=A,;, and B=B,. We have-
a+8i =Ax+ iBx, which gives



i a = AAxx + BBx
and + 8 = ABsxx + Axx B.

Obviously 2B | Bk and so B| 8. If B=x*1, then A is even and so
a is even which implies that 2 | p. Therefore B is even and A, Agx

are odd, so +8= B[ﬁg%!‘ - Azk] implies that B=+8. Consequently

p = A2 + 64.
So we have proved that if p does not divde x, y then there exist
good solutions of the equation (4) only if either p=17 or p=A2-+64.
Now we assume that p | }4, then from thevequations (5) and (6) we
find that p| @ and p| b, so that p3|y and we can write the
equation (4) as
¥ 2 _ X 3 _
( ) = () + 18 ps
Obviously 2k— 6>0, because if k=3, then the equation will not have
any good solution. If y|p3 is divisible by p, then by the above method
we can find that p6 | y and hence by repeating the procedure we will
finally arrive at an equation of the form Y2=X3+1728 p2: (¢>0)
where X, ¥ are both prime to p ; this will have solutions only if
p=17, p=A24+64 and p=+1 (mod 12). We have x=33.172—21
+y=12015.17"2 as the solution of the equation y2=x3+1728.172k,

. Case 2° gives
+ y=2 (a>+4-9ab2)+9 (a2b-+b3)
and + 24pk=(a+9ab?)+6 (a2 b-5%)

which shows that 3| a, 9|y and so 27 | ¥, so 3| b and 27 24p
Since p# 3, the above equation has no solution. : »

This completes the proof of the lemma.

We remark that if p=+1 (mod 12) but p#c2+64 then solutions
have p | x.
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Let d=2k, ¢==1, then equation (1) becomes
y2 = x3 — 1728p2k M
If x, y are both even then 16| x and 8| y and the equation is
impossible modulo 8, therefore x, y are both odd. We prove
Lemma 2
The diophantine equation (7) has no good solutions if p # 2, 3,
17 and p 3¢ 1 (mod 3).
Proof
~ We write equation (7) as
[y + 24p% (20 + 1)] [y—24p* 20 + 1)] = 3
where e3=1, @1, Since p % 1 (mod 3), p does notsplit in the
field Q (»), so we get _
4+ y+ 24pk (20 + 1) = (a + b)3, o(a + bo)3; w2(e + be)?
so that
+ 48p*=3ab (a—b), a3+ b3 —~3a2b, — a3 — b3 4 3ab?
In the'last two cases 2 | (@, b) which implies that 4 | (a; ) and
so 64| 48pk. Therefore :
+ 16pk = ab (a — b) ,
This gives pt=171+3, and aq, b, a—b arex 17, + 16.17t, + 171 in
some order with appropriate signs so that we get a solution

x=273.172t,4 y=4455.173t of the equation y2=x3— 1728.172+6¢,

This completes the proof of lemma 2. We note that if p=1
(mod 3) and p { (x, »), the equation (7) has no good solution, so all the
good solutions of the equation will have x, y divisible by p.

Now suppose that d=2k+'i and e =¥1, so that equation (1)
becomes , _
y2 = x3 4 1728p2k+l - ()

where k > 0. We now prove



Lemma 3

The equation (8) has no good solution if p#2, 3, 7, p% 3 (mod 8),
(h, 3)=1 and (m, 3)=1, where A is the class number and (I4-m./37p)/2
is the unit of the field R(,/3 p).
Proof

" We write

(y+24p« \/37p) (y— 24pk /3 p)=x>.
Since pX% 3 (mod 8), 2 is either a prime or is ramified in the field
R (/3 p). Since (h, 3)=1, we have

553
either + y + 24pk./3p= (ﬁpi/},l’ )

I 33\3
of + y + 24pkyT ____(I+m2\/3p>(a+b2\/3 p)

— - /3p 3 p\?
If+y+ 24pk\/3,,=(14 L p)(a+b2\/3 p)

then + 16 y = I (a® + 9p ab?) + 3mp (3a2b+-3p b3)
+16.24pk =m (a3 9p ab2)+I (3a2 b+3p b3)

Since (m, 3)=1, 3| a, 3| y,5027| y and hence 3 | b and 27 | 24p*
which is absurd.

/37\3
If +y+ 24p /35 =(a__t£’2xi£) . then

+ 8y = a (a2 + 9pb2).
and + 64p* = b (a2 + pb2).
_ I (p, b)=1, then p* exactly divides a2+ pb?,so k=1 and p | a and
after considering the various possible values for b, we get b= 41,
a=+ 21, k=1, p=Tand so x=105, + y = 1323 as a good solution
of the equation y2=1x3-41728.343. (b= + 2,a = + 14 leads to a bad
solution).



If (p, a) =1, then p* exactly divides b. Writingb = + 2A p*
(0< A< 6), we get a2=26"2—22) p2k+1  which is impossible unless p=2.
Finally if p | (a, b) then p3 | y and the equation (38) can be reduced

to an equation Y2=X341728. p2e+l
where p3 does not divides Y. We get

x=105.72(671)13, y=1223.7¢"1
as the solution of the equation y2=2x3 4 1728.72¢+1,
Finally, we suppose tht that d=2k 11, €=1, so that
12 = x3 — 1728 p2k+1 (k > 0) )
Lemma 4

If p is a rational prime such that p#2, 3, 7, 17, pX 5 (mod 8),
p#c2+64, and (h, 3)=1 where h is the class number of the field
R (+/ —3p), then equation (9) has no good solution.

Proof
We write as before
x3 = (y+24p¥ \/ =3p) (¥ -24p* =3p).
Since p % 5 (mod 8), 2 is not split in R (yy=3p); also (&, 3)=1,

so we get
- 8 (% yt 24p% yTH) = (a+b I3

where a, b are rational integers. Equating the co-efficients of the
corresponding terms on both the sides, we obtain

+ 8y = a(a? - 9pb?) 9.1

and . - 4+ 64pk =b (a2 — pb?) .2)

If (p, a)=1, then by (9.2) p* exactly divides b. First suppose that
p¥| b and we get b= + 2 p¥ and

a2 = 44X, pk+1 26-A where 0 < A < 6. If A=2, 4| b, 8|a and
equation (3.4) implies that 128 | 8y which is not a good solution ;
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the same applies if A = 1. If A = 3, b=18p*, a2=8 (fp2k+1T1),
which is impossible. IfA=5, b=+32p% a?= (mod 8) and if A=6,
then 42=4096p2++14 1, g is odd and eguation (9.1) is impossible
modulo 2. - So we are left with A=0o0r A=4. If A=0, we get
a? — p2ktl = + 64,
If there is — ve sign on the right hand side then this equation is same
as (6.1) which has solutions if p=c2+4-64 ; and if a2 - p2¥+1=64, then
we write
{a - 8) (& + 8) = p2¥+!

and a—~8=pf, a+8=+ps for f, g0 and f4+g=2k+1. Conseque-
ntly 16=pf - pg, which implies that f=0, g=1, p= 17 and so
a=49,b=+1, k=0 and the equation y2=x3-1782.17 has a good
solution x=33, y= + 8l. If A =4, then pulting a=24", we get

a? ~ 64 pZ+l = + 1.
Considering the cquation modulo 4, we find that only —ve sign holds
and so we write
(@ - 1) (& + 1) = 64p2k+1
Since a’ is prime to 2p, we may write
@ — D=+2f, &+ 1=+ 27 pkn
where f+ g = 6 ; therefore + 2 = 2¢p2k+1 — 2f, If f=1, then

3|p, so g=1, p=17. We find x = 4353, + y = 287199, another
solution of the equation y2=x3 - 1728.17.

Now suppose that (p, b)=1, so that from the equation (9.2)we get
b= + 2f and a2 = p(22f + 26~f. p*7Y)

where 0 < f< 6; we have k=1, a2=p (22f + 26°f). It is easy
to find that only possible value for f 'is 4 and so a=+16, b=16,
p=7. We obtain x = 1785, y = + 75411 as the solution of the
equation y2=x3- 1728.343.



9
There remains the case pla, p|b, then by (9.1) p?| y. By

dividing (x, y) by suitable powers of p we can assume that p? does
not divide y. Thus we have the following three sets of solutions of
the of the equation (9) for p=7 and 17

x=1785.72(4"1)53,  y=+75411.7%"1

x=4343.172k13, y=287199.17%

x=33.172k13, y=381.17%,

This completes the proof of lemma 4.

Therem follows immediately from lemmas 1, 2, 3, 4 and
Lemma 5

If p does not divide (x, y), then N=p and if p divides (x, y) and
the co:responding elliptic curve is in its n minimal form, then N = p2,

When p=7, theorems 1 and 2 in [3] show that the equation (1)
has good solutions only if d is odd and d=0 (mod 3) ; also we have
just proved that for 4 odd, the equation (1) has exactly two families
of solutions, namely

x=15.7413, y=+27.7(d+D2

x=225.743, y==11539.7(it1)/2
Solving the equations (2) and (3) for g i=1, 2, 3, 4, 6, we get the
the following two families of curves

— d 3
yz+xy=x3_xz+(3 156'7 )x+ 6'4 (- 145.7d.142.7@+D)/2)

— o3
yexy=xi—xtg (28T PN L 1148574 + 1147640)),
6 /) Te4
These curves are in their minimal modle with a; integers and | A | as
small as possible when d=3 or 9, So in their minimal form we have
following four curves with discriminants—73,— 79, 73, 79 respectively.
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Y24 xpy=x3—x2-2x—1
y2 4 xy=x3—x2—107x + 552
Y24 xy=x3-x2-37x-"78
and y24xy=x3-x2-1822x 4 30393.
When written in the form
x2=%x3~35x-98
P=x3-1715x+2.75
Yr=x3-595x— 5586
P=73=-85.T3x+ 114.7%

with =y+1%x, X - x }, all have multiplicative reduction mod 7 and

so have conduc or 49. It is known that all the curves have poins of
order 2 and are isozencous.

So we have proved that there are no curves with conductor 7 and
there is one isogeny class of four elliptic curves with conductor 49,

It follows from Lemmas (1), (2), (3) and (4) that the equation (1)
has exactly four families of solutions for p=17, namely

x=273.174-2)/3, y=4455.17(d-2)/2

x=33,176@-4)3, . y=12015.17d4)/2
x=4353.17(--1)/3, y=287199.17(d-1)/2
x=33.17@-1)/3, y=81.17d-1)/2,

These solutions give the following eight curves in their minimal '
forms, with discriminant + 174,

d-2)/3
y2+xy+y=x3—x2—5+91'1167( 2 614 (17-91.17(2)73
+330.17(d-22)  d=2, 8
~4)73
S e (R RAL LS A e (| B R T

4+890.17(4-4).2)  d=4, 10
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' 1451. 17 (@173
Y2 pxyty=xioxz % 1161 P 614 (17— 1451.17¢-1)/3

+2.10637.17@-1)72) gd=1, 7

5411.17¢-1)73
yrpxypy—xd—x2 =21 116‘ % 614 (17=11.17@-1)73

—6.17@-1)/2y d=1, 17

When d==2, 4, 1, the good solutions of the equation (1) are not
divisible by 17 and hence the curves have conductor 17; and when
d=38, 10, 7, the corresponding curies have conductor 172,

So we have exactly four curves with conductor 17 and four curves
with conductor 289.

We deduce from section 2.2 in [3] that when p=231, there is no
good solution of the equation (1) for (4, 3)=1 ; also when d=0
(mod 3), section (2.1) ‘mplies that (1) will be soluble only if 4 is odd
and x,y both odd. So suppose thatdis odd. When e=1, section 5
shows that there are no good solutions of the equation (1) for p=31
and 4 odd. Therefor = -1. We go back to section 4 and follow
the argument for p=31. A fundamental unit of the field
29+3 /93

g s SO We have from case 2°.

X 128.31% = (@ + 279a b2) 4 29 (a2 b + 3153).

If a, b ae both odd, then the equation is not true modulo 16, so a, b
are both even. In fact 4 | a, b). Putting a=4a’, b==4b’ we get

R (V%) is

4231 = (2 + 2794 b'?) + 29 (@2’ + 315'3)

which impl'es that a’, b’ are of the same parity and so right hand side
is divisible by 8 which is not possible. Hence that equation (1) has
no good solution for p=31.

We claim that there are no elliptic curves with conductor 31 and
961.
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Summariz'ng the results, we claim that there are no curves with
conductor p or p2, when p=35, 13, 23, 29, 31, 41, 59, 97 and there are
no curves with conductor p when p=7, 47, 71.

When p=7, 17 the following are the only curves with conductors
17, 19, 49, 289.

Curve Discriminant Conductor

Y24 xy+y=x3-x2—x 17

V24 xy+y=x3-x2—6x—14 289

Y24 xy+y=x3—x2—91x—310 17 17
y2+xyt+y=x3-x2-x—14 —83521
y2i+xy=x3-x2-2x-1 - 343
y2+xy=x3—-x2-107x4 552 -79

P24 xp=x3—x2-3Tx-178 343 49
Y24 xy=x3 — x2— 1822x+ 30393 79

Y2+ xp4-y=x3 - x2—2644x — 24922 178
y2xy+y=x3 —x2—-199x—17.4016 —1710
ye+xy+y=x3—-x2—-26209x - 17.95680 177 289
Y24 xy+y=x3-x2-199x+17.120 177
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THEORETICAL STUDIES ON THE PROPAGATOIN OF SFISMIC
SURFACE WAVES IN HORIZONTALLY VARYING STRUCTURES

M. H. KAZI*
Department of Mathematics
Punjab University (New Campus) Lahore, Pakistan

Abstract ;

In recent years various problems associated with transmission,
reflection and diffraction of seismic surface waves propagating in horizon-
tally varying structures have been investigated by a number of authors.
Such studies are important to understand the physical processes associated
with energy transfer at continental margins, other horizontal transitions
and with multipathing. Mathematical treatment of these problems is
very difficult, even under highly simplifying assumptions and a variety of
analytical, approximate and numerical methods have been used to achieve
some measure of success. We present here a brief review of these methods
and the seismological problems to which each method has been applied.

1. Introduction
One of the principal aims of theoretical seismology is to investigate

the effects of velocity changes, and especially of discontinuities or bounda-
ries on the propagation of elastic waves through the earth, and to identify
its subsurface structure in terms of elastic parameters by comparing the
theoretical results with seismological observations (cf. Jeffreys, 1970
Ch. III). As observations become increasingly precise, owing to the great
improvements in techniques of data acquisition and analysis, so one may
hope to learn more by these means.

Seismic surface waves play an important role in this context. A
useful property of surface waves is that the energy is spread out in two

*This work was carried out at the Department of Applied Mathematics and
Theoretical Physics, Cambridge University, U.K.
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dimensions, rather than in three as in the case of body waves. Conse-
quently, surface waves are relatively more prominent on seismograms,
particularly on those of distant earthquakes (cf. Jeffrzys, 1970, 2.03).
Moreover, their restriction to the neighbourhood of the surface of the
earth, a region which is not easily investigated in body wave studies, is of
great advantage in determining the velocity structure in the crust.

The method employed in the investigation of the crustal and upper
mantle structure of a given region by means of surface waves, is based upon
the comparison of observed dispersion curves with those computed for
various theoretical models (cf. Ewing, Jardetsky and Press, 1957, 4-5).
Knopoff (1961) has, however, pointed out the considerable difficulty in
securing uniqueness in applications of surface-wave data to investigate
the detailed structure of the earth. WNevertheless, this inverse method, if
used with auxiliary geophysical information, continues to be useful.
Among recent studies are those of Goncez et. al. (1975), Panza and Calcag-
nile (1975), Knopoff et. al. (1974) and Knopoff et. al. (1973) for isotropic
layering and Crampin (1975) for anisotropic layering.

The construction of dispersion curves from seismograms has been an
area of active research for a long time (c.f. Ewing et. al. 1957, 4-5, for early
work). Significant advances have been made in this field in recent years
with the use of seismic arrays, improved instrumentation and sophisticated
techniques of data analysis (such methods as cross-correlation (Landis-
man et al., 1969), auto-correlation (Dziewonski and Landisman 1970,
Dziewonski et.al., 1971), bandpass filtration (Alexander 1963) ; Archam-
beau et. al., 1966 ; Kanamori and Abe 1968 ; Dziewonski et. al., 1969),
the methods of sums and differences (Bloch and Hales 1968) and cross-
multiplication (Bloch and Hales 1968), time-variable filtration (Pilént
and Knopoff 1964), high-resolution technique (Capon 1969) and maximum
likelihood techniques (Capon et.al., 1969). The observed dispersion
curves together with their structural interpretations have yielded a large
amount of information about the earth’s crust and the regional departures
from the average global picture. The most important result is the pro-
nounced difference found between oceanic and continental structures (sce
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Oliver, 1962). Horizontal variations in structure also occur within
oceans and continents ; e.g. across mid-ocean ridges, island arcs, moun-
tain ranges and tectonic faults (see for example : Molnar et. al., 1975 ;
Choudhary 1975 ; Smith and Bott 1975 ; Kono 1974 ; Cann 1974).

One of the most interesting phenomena associated with the propaga-
tion of surface waves is that of multipathing, such as observed by Capon
(1970, 71) and Bungum and Capon (1974) at LASA. Capon has shown
that multiple arrivals of surface waves can be observed, owing to
refractions and reflections at continental margins. Evernden (1953,
54) seems to have been the first to observe this in connection with the
propagation of Rayleigh waves ; it has also been considered by Pilant and
Knopoff (1964) and Knopcft et. al. (1966). The prcpagation of surface
wave microseisms across major structures (the Rocky Mountains) has
been studied by Haubrich and McCamy (1969) and Hjortenberg (1968).
Propagation of micrcseisms across continental margins has been reviewed
by Darbyshire (1962) and also studied by Darbyshire and Ckeke (1969).

In order to construct a theoretical analysis of surface wave reflection
and diffraction, it is necessary to formulate the problem mathematically
and to obtain exact or approximate solutions for refiected and transmitted
waves at for instance, continent/ccean margins with large impedance
contrasts. However, the mathematical structure of the problems is
complicated by the number of parameters involved in the description. of
the discentinutity. These are the elastic properties of the continental
and the oceanic regions, the thickness ratio of the two regions, the distance
over which the thickness transition is made and the nature of the water
layer over-laying the oceanic region. The complicated geometry of the
structure of the transition zone is another source of difficulty. Hence only
idealized -models of the continental margin have been used so far. Even
then the mathematical treatment of these problems is difficult.

Nevertheless, theoretical studies of transmission, refiection and diffrac-
tion of surface waves at continental margins and other horizontal
transitions are important to gain further insight into the physical processes
associated with energy transfer at boundaries and with multipathing,
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2. Theoretical Technigues for Surface Wave Transmission Problems

The task of finding exact solutions for various problems concerning
the passage of seismic surface waves through laterally varying structures .
is formidable, even under highly simplifying assumptions. A number
of authors have used a variety of analytical, approximate and numerical
methods. We pfesent here a brief review of these methods and the
seismological problems to which each method has been applied.

(i) Wiener-Hopf Technique

Sato (1961) set up the two-dimensional boundary value problem
associated with the propagation of monochromatic Love waves in a
structure consisting of a homogeneous half-space, overlain by a homoge-
neous surface-laver which undergoes an abrupt change in thickness (i.e.
a surface-step, see fig. 1 (a)) and solved it exactly by the Wiener-Hopf
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FIG. 1(a). The Geometry of the problem of the propagation of Love waves
past a step.

technique. The factorisation - involved in the Wiener-Hopf procedure
leads to an infinite set of simultaneous linear algebraic equations to be
solved ; the numerical evaluation of the transmitted and the reflected Love
waves is thus very difficult. Consequently, Sato derives approximate but
straightforward algebraic expressions for transmission and reflection
co-cficients, when the change in thickness of the surface-layer is small
compared to the wave-length. Using a similar technique, Kazi (1975)
has solved the problem of diffraction of Love Waves, normally incident
on a perfectly rigid or a perfectly weak half-plane which lies in the surface



17

layer (of uniform thickness) of a two-layered half-space and which is
parallel to the interface (see fig. 1 (b)). The foliowing conclusions are
reached :

1. Love waves incident on the screens are diffracted by the screens

into Love-type modes propagating in the lower half-strip (adjacent to the
half-space), and channel waves in the upper half-strip which has free
surface above and free or rigid surface below. Most of the channel modes
d1e out rapidly with distance from the edge of the screens.
2. The problem of Love waves past a weak screen is connected to
Sato’s problem of Love waves incident on a vertical step discontinuity
in the surface layer, from the thicker to the thinner side. Whereas Sato’s
solution involved a set of infinite, simultaneous, linear algebraic equations
to be solved, our approximate solution involves a finite set.

FREE SURFACE

\\\\\\\\\\\\\\\\\\\\\
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FIG.1 (b)

FIG. 1 (b) The geometry of the problem. Love waves are normally incident on the
screen from right to left.



(i) Green’s function techniques

(a) Kirchhoff’s method

The starting point in Kirchhoff’s method is to express the displace-
ment at any point as an integral over a closed surface surrounding that
point. This is accomplished by means of elastodynamic representation
theorems. The solution of any diffraction problem may then be obtained
by making part of the closed surface coincide with the diffracting surface,
and evaluating the integral with suitable boundary conditions. To do
this one needs to know the displacement and traction over the whole
surface. Usually, only the displacement or the traction (but not both)
are known ; and to solve the problem certain simplifying assumptions
must be made. ,

Ghosh (1963) used a Green’s function technique, essentially equivalent
to Kirchhoff’s method, to find the displacement of Love waves due to a
point source placed at the interface between a substratum, consisting of a
homogeneous half-space and a homogeneous surface layer with a
gradually sloping top (see fig. 2). Ghosh showed that Love waves of small
periods are strongly attenuated in the continental margin due to the slcpe
of its boundary. -
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Knopoff and Hudson (1964) used Kirchhoff’s method to investigate
the same problem as that of Sato (1961) (earlier, Hudson and Knopoff
(1964 a, b) used this method for finding approximate values of complex
transmission and reflection co-efficients for surface waves, normally
incident upon the corner of a homogeneous elastic wedge formed by
two stress-free planes), Transmission co-cfficients were derived for
monochromatic Love waves incident normally upon the discontinuity
from either direction. - Taking the surface integral to be over the vertical
plane containing the step, Knopoff and Hudson used Kirchhoff’s approxi-
mation by substituting displacements and tractions of the incident wave
for the unknown displacements and tractions within the material, while
on ithe step the traction is zero and displacements were estimated in
different ways for the two different directions of transmission. The
problem was thus reduced to quadratures. The transmission co-efficients
found by Knopeff and Hudson differ greatly according to the direction of
travel. When the wave travels to the thicker layer, the co-efficient is large
for low frequencies and small for h}'gh frequencies (with a transition
frequency). For waves travelling in the opposite direction, the co-efficients
vary very little over the whole range of frequencies.

By a similar method, Mal and Knopoff (1965) found the transmission
and reflection co-efficients for plane harmonic Rayleigh waves, normally
incident (from either side) upon a step change in the elevation of the surface

. of a homogeneous half-space (see fig. 3).

Theoretical and experimental studies of transmission and reflection of
Rayleigh waves round corners {(de Bremaecker 1958 ; Knopeff and Gangi
1960 ; Lapwood 1961 ; Kane and Spence 1963 a; Hudson and Knopoff
1964 b ; Pilant, Knopoff and Schwab 1964 ; Mal and Knopoff 1966 ; Lewis
and Dally 1970 ; Viswanathan, Kuo and Lapwood 1971) have revealed
considerable discrepancies between the observed and the predicted
transmission co-efficients. These discrepancies are partly due to the fact
that wave motions resulting from the diffraction by the corner are, to a
large extent, ignored in the theoretical studies. The step problem is related

~ to the wedge problem in the sense that two corners are present and much
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energy is considerably scattered into body waves.” The Kirchhoff method .
is one in which diffraction at the corners is inevitably neglected.

Mal and Knopoff, in their attack on the step problem, present a
modified Kirchhoff’s method, making several types of approximation each
applicable in a different range of the ratio of height of the step to wave-
length. When the height of the step is less than one-half of the wave-
length, a fairly good estimate of the transmitted waves is obtained. The
transmitted wave does not suffer any appreciable phase shift, but there is
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" TWEIG. 3. Geomstry of the Rayleigh wave propagation problem investigated by
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'side, (b)) when the waves are incident from the depressed side. i
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a rapid attenuation in the amplitude with increasing frequency. When the
height of the step is greater than one-half of the wavelength, the phase

as well as the amplitude is significantly perturbed and the theoretical results
are not in good agreement with experimental results.

" (b) Perturbation Methods

Herrera (19644) developed a perturbation scheme for applications of
Kirchhoff’s method to any problem formulated in a region whose geometry
and physical properties deviate only slightly from those of a region for
which the corresponding Green’s function and the solution of an auxiliary
problem are known. In this method, Kirchhoff’s surface integral is
replaced by a volume integral over the region in which the structure deviates
from the basic model. Within this region, displacements and stresses are
replaced by their unperturbed values. It is similar to the Born’s method
of Atomic Physics. Herrera illustrated the method by investigating the
effect of changes of the thickness of the crustal layer in mountainous regions
on the transmission of Love waves (sce gig. 4). Using the same technique,
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FIG. 4. Geometry of Love wave propagation in .cfustal ﬁgyer of variable
thickness (Herrera, 1964a). ’ '
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Mal and Herrera (1965) gave a simple mathematical expression for trans-
mitted Love waves across a constriction in the crust in a single-layered
half-space (see fig. 5). Herrera and Mal (1965) reformulated the method
to treat the problem of scattering by small inhomogeneities for media which.
deviate slightly from homogeneity in a large region and then modified
it to treat media with large deviations from homogeneity in a thin region.
The scattering of Love waves by a dike (see fig. 6) was evaluated by way of
illustration,

FiG.5

FIG. 5. Geometry of the Love wave transmission problem across a constriction
in the crust (Mat and Herrera, 1965).
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FIG. 6. Geometry of the problem of scattering of Love waves by a dike
(Herrera and Mal, 1965).
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Gilbert and Knopoff (1960) proposed a similar peturbation scheme to
investigate the scattering of two-dimensional seismic waves from topo-
graphic ‘irregularities of small magnitude and slope. In this way the
problem was reduced to Lamb’s problem for distributed surface sources
by replacing the irregularity by an equivalent stress distribution. Scat-
tering of Rayleigh waves incident upon a topographic irregularity was
analysed by way of illustration. Hudson (1967) extended the application
of the method to three-dimensional obstacles of an arbitrary nature and
used it to interpret a surface wave arrival at the Eskdalemuir seismological
array.

Using the formalism of propagator matrices, Kennett (1972) extended
the perturbation scheme to calculate the scattering effects of slight
lateral inhomogeneities of small lateral extent in a multi-layered elastic
medium. Scattering effects produced by near-surface inclusions in
simple half-space models are calculated as an example.

Kennett (1973) extended this method further to treat problems of the
propagation of seismic waves through a multi-layered medium containing
a layer within which there is a step horizontal discontinuity in elastic
parameters (see fig. 7). The surface of discontinuity may be inclined to
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the vertical. Kennett pointed out that the perturbation miethod leads to s
system of singular integral equations which may be solved iteratively:.

(c) The method of local imhedding
Using a modified version of “the principle of localization” (Bellman
and Kalaba 1959), Knopoff and Mal (1967) computed the effécts of an
inclined upper surface and an inclined Moho (see fig. 8) on the phase
velocity of Love waves propagating in a single homogeneous layer of
varying thickness overlying a homogeneous half-space.
~ According to the principle of localization, it is assumed that the
sloping boundary is made up of an infinite number of small steps and that
the wave undergoes instantanecus transmission and reflection at each
step : the reflection and transmission occur as if the layers to the left and
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FIG. 8. The geometries of thecrust in the transition:regions considered-by
Knopoff and Mal (1967) :
(a) irregular surface.
(B) irregular interface.
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to the right of the step were actually of uniform thickness, differing by an
infinitesimally small amount. Hence the method depends upon the solu-
tion of an auxiliary problem, namely the determination of the transmission
and reflection co-efficients for waves propagating past a step. Since the
exact solution to the step problem does not exist, Knopoff and Mal use
the Green function procedure of Knopoff and Hudson (1964) to obtain the
reflection and transmission co-efficients of the auxiliary problem. For
forward transmission, variation in elevation of the upper surface was
found to produce no calculable effect. For both directions of propaga-
tion past an inclined Moho and for backward transmission for an inclined
upper surface a period range was determined in which the effect is maximum
and has a phase shift, Knopoff and Mal concluded that the phase velo-
city of surface waves in the transition zone of a thickening layer is
severely influenced by back reflections from the structure beyond the
seismic observatory. Hudson and Knopoff (1967) reached a similar
conclusion in their investigation of surface wave scattering by topographic
irregularities : forward scattering is much less important process for
removing energy from a surface wave train than back-scattering. Knopoff
and Mal point out that this feature is more important in producing phase
shifts than is the shift in the eigenvalue as found by Takahashi (1964),
who solved the eigenvalue problem (using JWKB approximation) for
Love waves with a hyperbolic interface (see fig. 9) between the upper
layer and the mantle,

(iii) Complex-variable methods

Wolf (1967, 70) has developed a method for determining the scattered
field which results when a Love wave is incident on a layer having a small
irregularity (see fig. 10q) in the free surface and overlying a rigid half-space.
The scattered field is represented as an integral in the complex plane over
the modes of the unperturbed structure and then the choice of the kernel
of the integral is made in such a way that the boundary condition is
approximately satisfied on the irregular part of the boundary. Wolf
(1967) shows that the scattered field may be described by a super-position
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of Love waves and non-propagating disturbances (since the lower material
is rigid, the continuous spectrum of eigenvalues is absent). Scattering
by a triangular trough (see fig. 105) is obtained as an illustrative example.
Slavin and Wolf (1970) have extended Wclf’s method to treat the case
in which the irregularity cannot be considered small. The method uses
a least square progedure to approximately satisfy the traction-free boundary
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FIG. 10. Geometry of the Love wave scattering problems considered by
Wolf (1967, 70) : (a) a layer having a small irregularity in the free surface

and overlying a rigid half-space.
(b) alayer having a triangular trough in the free surface and overlying

arigid half-space.
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condition - at the free surface irregularity. Numerical results were
obtained for surface irregularities shown in figures 11.
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FIG. '(11) Surface irregularities in the Love wave scattering problems investigated
by Slavin and Wolf (1970).

(iv) Numerical methods

The propagation of Love waves across non-horizontally layered
structures has been treated directly by methods of numerical analysis.
Boore (1970) considered a model consisting of a surface layer with a sloping
base (see fig. 8), overlying a half-space. Using a finite difference scheme,
together with Fourier analysis of a pulse, Boore calculated the transmission
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co-efficients and velocities of reflected and transmitted phases over a wide

range of wave numbers.
Lysmer and Drake (1971) developed a finite element technique er the

analysis of Love wave propagation across an irregular structure separating
two horizontal structures and applied it to the following models : a surface
layer with a step elevation at its base, overlying a half-space (see fig. 13) ;
a surface layer, with a sinusoidal free surface, overlying a half-space (see
fig. 11) ; a continental boundary, and a structure 1nclud1ng a slab of litho-

sphere dipping downward at an angle of 45°.
For a detailed account of the finite difference and the finite element

methods in seismic wave propagation, reference may be made to the articles
by Boore, and Lysmer and Drake in Bolt et. al. (1972).
(v) Statistical methods

In order to obtain estimates of the amplitudes of surface waves
scattered by complex but small variation in structure, Knopoff
and Hudson (1964b) applied Chernov’s (1960) statistical methods to
results obtained by a perturbation method similar to that of Herrera. By
assuming the space-correlation functions of the elastic parameters to be
Gaussian and isotropic, Knopoff and Hudson were able to calculate the
mean-square amplitude of the scattered waves, averaged over a statistical
ensemble of inhomogeneities. Hudson (1970) applied this approach to
investigate the attenuation of surface waves by inhomogeneities whose
size is small compared with the wavelengths of the incident waves,

Some statistical properties of Rayleigh waves due to scattering by
complex topography, assumed to have certain statistical properties, have
been given by Hudson and Knopoff (1967), using a similar scheme based
on the perturbation method of Gilbert and Knopoff (1960)

(vi) Asymptotic Methods .
‘(@) Boundary layer methods

The boundary layer method (also called parabolic equation method)
is applicable to boundary diffraction problems (acoustic, electromagnetic,
elastic), in which we may consider that a wave is propagated as if within a
thin layer near the boundary. Certain boundary conditions must be
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specified on this boundary. Surface waves present an example — waves
are propagated near the surface and decay rapidly with depth. In the
application of the method to surface wave propagation, we may allow the
elastic constants to vary as functions of position, but the method can be
carried out only for high frequencies.

Babich and Molotkov (1966) considered the propagation of high-
frequency, time-harmonic Love waves in an elastic half-space, which is
inhomogeneous in the direction of two co-ordinates (one normal to the
surface). The upper surface of the half-space is supposed to be stress-
free. Under the assumption that the velocity of propagation of transverse
waves increases with increasing depth close to the boundary of the half-
space, these waves are concentrated in the surface wave-guide. The
boundary layer method is used.to establish formulae showing the: deperd-
ence of Love wave displacements on the co-ordinatesiand the: frequency.
The depth of penetration and the phase velocities of these waves are also
obtained. t ‘

Mukhina and Molotkov (1967) extended the method' to high-fre-
quency Rayleigh waves in an elastic half-space. The Rayleigh waves are
concentrated in 2 near-surface wave guide, if it is-assumed that the velocity
of the transverse waves increases near the boundary of the half-space
(the velocity of longitudinal wave may an arbitrary depth dependence).
Mukhina and Molotkov also discuss the differences between the propaga-
tion properties of Rayleigh and Love waves.

Molotkov and Zhuze (1969) introduced into the problem a disconti-
nuity in the properties of the medium at a vertical boundary and studied
the effect on the propagation of high frequency Love waves. Tt is shown
that the incidence of a Love wave in mth-mode on the vertical boundary
generates a reflected wave, consisting mainly of a Love wave of mode m,
and refracted Love waves of all modes, in general,

(b) Ray-theoretic methods
Keller and Karal (1964) developed a. geometrical theory for the. pro-
pagation of elastic surface waves on boundaries or interfaces: of elastic
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solids. The theory applies to periodic waves of high frequéncy and short
wavelength and is an extension of geometric optics. Keller and Karal
introduced the concept of complex rays that travel from the source to the
surface, than along the surface, and finally from the surface to points in
the solid, and derived geometrical formulae for the determination of phase
and amplitude associated with each point on each ray. The total displace-
ment at a point is the sum of the displacements on all the rays through the
point, each of which is constructed from the corresponding phasé and
amplitude. The theory is applicable to curved surfaces and to inhomoge-
neous media. o

Gregory (1970) has developed a formal asymptotic theory for the
propagation of high-frequency, time-harmonic Rayleigh waves over the
general smooth free surface 5 of a homogeneous elastic solid. It is
shown that on ¥ these Rayleigh waves can be described by a system of
surface rays, which are shown to be geodesics of the surface 3§ . An
explicit first order dispersion formula is derived and the amplitude of the
waves on 3, is shown to vary in such a way that the energy propagated
along a strip of surface rays is constant. The general theory is applied to
the propagation of Rayleigh waves over the curved surface of a circular
cylinder, down a circular cylinderical bore hole and over a sphere.

(¢) The method of Whitham’s averaged Lagrangian -

Whitham (1965a, b ; 1967a, b) developed an approximate and general
theory for the study of propagation of almost harmonic wave trains in
terms of an average Lagrangian, and applied it to water wave pro-
blems. The theory, is, however, applicable to elastic surface wave
problems also. )

Gjevik (1973) applied Whitham’s averaged Lagrangian method to
the study of the effects of non-horizontally-layered crustal structures on
surface wave propagation. He formulated a variational principle for Love
waves based on the averaged Lagrangian and derived equations governing
the slow variations in frequency, wave number and amplitude of ‘the waves
for problems where variations in structure are small within a wavelength.
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Woodhouse (1974) developed a ray theory for surface wave pro-
pagation in a layered elastic structure, in which there are gradual lateral
variation the thickness of the layers and in the elastic parameters
characterising each layer. The theory is based upon a perturbation
procedure given by Bretherton (1968), which leads to the same set of
equations for linear waves in a slowly varying wave-guide as that
obtained through the averaged Lagrangian. Propagator matrix form-
alism is used by Woodhouse to derive equations governing the slow
variations in amplitude, frequency and wave number in a nearly uniform
and approximately sinusoidal wavetrain. An equation governing the
slow variation in - phase is also deduced. Woodhouse shows that the
solution of these equations by the method of characteristics gives ray-
tracing equations and an amplitude equation similar to those given by
the . standard ray theory for body waves, His results reduce to those of
Gijevik (1973) and DeNoyer (1961) (who was the first to determine
the approximate effect of a sinusoidally varying layer on the propagation
velocity of Love waves) in the restricted cases they consider.

(vii) Variational mathods :

Variational methods have also been used to find approximate solu-
tions of surface wave propagation in laterally varying structures. Alsop
(1966)-has given a method for calculating reflection and transmission co-
efficients for a ‘monochromatic Love wave, normally incident on the
vertical discontinuity between two multi-layered quarter-spaces in welded
contact (a step may exist between the two qﬁarter-spaces), see (fig. 12).
The method is based upon the fact that the motion, as a function of depth,
in the medium on either side of the plane of discontinuity can be completely
expressed as a sum, with proper co-efficients, over the eigenfunctions
that would be appropriate to the medium if it were a half-space instead of
a quarter-space. However, in view of the difficulties involved in work-
ing with a continuum of eigenvalues, Alsop neglects body wave con-
tributions and uses only the discrete modes, as a first approximation,
But then the partial sums on the two sides of the plane of discontinuity
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cannot be matched exactly and it becomes necessary to use a variational
method to get the best possible fit. The variational procedure involves
the minimization of the meansquare efror between the two partial sums as
integrated over the boundary between the two quarter-spaces-a procedure
used by Kane and Spence (19635) in their theoretical studies of the pro-
pagation of surface wave across wedges. Transmission and reflection co-
efficients are calculated for the surfacestep model used by Knopoff and
Hudson (1964) and the M-discontinuity step (see fig. 13).

The results obtained by Alsop agree qualitatively with those of
Knopoff and Hudson in general, but there are considerable differences
in detail particularly at intermediate and long periods. At zero frequency
and for both directions of propagation, the transmission co-efficients
obtained by Alsop are unity, whereas the transmission co-efficients
obtained by Knopoff and Hudson are not. Knopoff et. al. (1970) looked
into the reasons for this discrepancy and noted that the amplitudes of
Love modes as a function of depth depend strongly upon the layer thick-
niess, even at very long periods, and that Love waves crossing the region of
changing thickness may have a transmission co-efficient different from
unity at zero frequency. This result does not apply to Rayleigh waves;
for Rayleigh waves in a medium with single surface layet, the behaviour
at the longest periods is as though the layer was absent.

McGarr and ‘Alsop (1967) used a similar method to determine the
reflection and transmission co-efficients for two-dimensional monochro-
matic Rayleigh waves, normally incident on the plane of discontinuity of
the following laterally discontinuous structures—a homogeneous half-
space with a step discontinuity of the free surface, and two quarter-
. spaces with different densities and elastic constants, welded together to
form a half-space. Two-dimensional model experiments of these cases
were conducted and it was claimed that the experimental data show good

agreement with the computed results, as long as the structural changes at
the discontinuities are not extreme,

Malichewsky (1974) has considered the interaction of seismic surface
waves with curved discontinuities using Alsop’s method with a curvilinear
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co-ordinate system. Malichewsky and Neunhofer (personal communica-
tion) have also used Alsop’s method to investigate the propagation of
surface waves, obliquely incident on a vertical discontinuity, by using a

representation on either side of the plane of discontinuity which is supposed
to allow mutual conversion of Rayleigh and Love waves.

Gregersen and Alsop (1974) have given a method, based upon Alsop’s
(1966) work, of treating similar problems numerically when the incidence
of Love waves on the vertical interface is different from normal. They
conclude that the amplitude transmission curves show almost no depen-
dence on the angle of incidence except when it is large. In this method
the boundary conditions on the surface and on. the horizontal interfaces

are disregarded and the boundary condition at the vertical interface only
is taken into account.

The variational method due to Schwinger and Levine (see Moisei-
witsch 1966) which has been used with success to treat wave problems in
theoretical physics has only recently been applied (by Lapwood et. al.
1973, 1975a, b) in studies on the passage of elastic waves through an
anomalous region, Miles (1967), in his paper on the diffraction of gravity
~ waves in water at a discontinuity in depth, describes a method, based
upon an i_ntegral equation formulation which leads to a description of the
diffraction of gravity waves by means of a scattering matrix and the use of
the Schwinger-Levine variational principle to estimate the elements of the
scattering matrix. This method in conjunction with the spectral represen-
tation of the Love wave operator (Kazi. 1976) has been used by Kazi (1977)
to investigate the two-dimensional problems of diffraction of plane
harmonic Love waves, incident normally (from either side) upon the plane
of discontinuity in the laterally discontinuous structure consisting of a half-
space with a surface step-an idealized model of a continental margin.
Diffraction of Love waves is described by means of a scattering matrix
and approximate expressions for its elements are sought through the
variational method. Complex reflection and transmission co-efficient
can then be obtained through a transmission matrix related to the scatter-
ing matrix, This method has the additional advantage that body wave
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contributions (neglected in earlier methods) which are of considerable
importance are also taken into account.
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SOME RESULTS ON Z CLASSIFICATION STATISTIC

‘ BY
AHMED ZOGO MEMON
University of Lagos, Nigeria

1. Imtroduction

Given p-variate normal populations =y : N (my, 3y) and
mg : N(it2, 54;) with unknown means g;, pg but specified covariance
matrix 3;,, independent randem samples (x;;, xy2,..... , X1n1) and
(xa1, Xag. .. enn. , Xon2 ) from =y and w4, ard a vector observation x
arising from =; or =, one of the criteria for identification of x with its
relevant population is the statistic

=ﬁl§-‘§-l (x~%y) 'E'{: (x=%y)~ N_:r:-f (x~%2) '2'1'1‘ (x—x2)
where ¥, Xa are the best linear unbiased estimators of #, pg. Some-
times in addition to above knowledge of discriminators it is possible to
secure information on a q dimensional covariate y that has the same mean
in both populations. The concomitant variable when available may not
be ignored but utilised somehow for improving the precision of classifica-
tion. The problem with augmented information is then as follows :

’,

. x\.
The observation ( y ) is known to have come from one of two popula-

tions =, : N [( t:i ), 2], i=1, 2 with specified covariance matrix

_ (31 212).
2 (sz Sge/’

the samples drawn independently from = and =3 are

(58052 ) oo ) o, 2
Ji1 Yia YiNt

and it is required to classify (;) into its original population. For
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it, Memon [3] proposes a modified statistic

t
-

N;
N, +T X~%) 'Q X=Xy - 1 ~ o7 X~%s) 'Q (X—Xe)
Q being (34,342 2;21 Sg9y)"1; which he obtaiqs by replacing x by
X =x—313 35} ¥ in Z statistic, According to it the observation is

. . o 3 . .
classified into w; if Z has a value not exceeding zero, otherwise into

*
ma. This paper investigates Z making studies as in Memon [4], Memon
and Okamoto [5] for the case of Z statisticc. We discover following
properties of the statistic under consideration.

Theorem 1 : The statistic Z has an alternate form
@) b {X-X146 e-X)]"'QX~-x3+a (X2—-X1)]—a (a+1) T}

if N; # N
where T=(X1—-%2) '‘Q (Xi—Xe)
a=Ny (N +1) / (N;=Ny),
b=(N;—Ng) / (Ny+1) (Na+1)
() -2N/N4D) W if Ny = Na=N

where Vt’=[X-—($(1+7(2) /2] 'Q (X1—Xe) is a criterion due to
Cochran and Bliss [2] for the same classification problem.

Theorem 2. The asymptotic distribution of the statistic Z is normal with
variance 4 D2 and mean —D2 or D2 accordingly as( ; )e 7 O 79; D2
being the Mahalanobis distance between the populations w; and g,
Theorem 3. The statistic i remains invariant under any linear transforma-
mation ( ; ) —A ( ; ) 4+ C where A is a (p+49) by (p+g)
nonsingular matrix and Cis a (p +¢) by 1 vector.

The above results are not very dlﬁicult to obtain, and so we omit
their proofs.



47
Theorem 4: 1f the sample means Xy, X,, y;, 32 are fixed and ( ; ) € my,

%*
the statistic Z has the characteristic function

, ¢ b p ,
(i) exp [—-cp ab@H)T +1yp 3 of =L log (1-2 9 )

if Ny 55 Ng
where ¢ = it
w =M[ Ry — 3123 ;2‘ 0—-X{+a (Xz~X1)]; the vector

comprising the components o; ;
and M is a nonsingular matrix such tkat

MQM’ =1
’
() exp[e £ {1~ %12 33} 0 ~ H (=)} Q (Ri=FTa)+1e%? 7]
if Ny =Nz =N
where g = — 2N /(N+1).

Proof (i) Using an alternate form of Z from Theorem 1 and Lemma (2.3)
in Memon and Okamoto [5], the result follows.

(i) Under the given restriction, the statistic w has a mnormal
distribution with mean [ By — Sz z;z' w—1} (T(x-?(z)] Q (X-X2)
and variance T.

» 3 . . *
Since by Theorem 1 the statistic under study is linearly related to W, so
its distribution is also normal with mean and variance as g and g2 times

that of W.
Theorem 5 : If D>0 and ( ;) € m;, then an asymptotic expansion of

the distribution function of (f +D2)/2D is given by

. 1 dsg a aga dpa
) (l+ N1+ N, +N2 + "y +NN+ ...... )¢(u)
1 2
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where
ay = 3} D~2(d4 + Dd3 + pd?),
as = $ D2 [d++Dd3-(D2-p) d2—-D3 d],
ay1=4 D [d8 + 2D a7 + (D2 + 2p + 4)d6 + 2 (p + 2) Dd5
—(4D2=p2-2p) d4—-4D3 d3 -4p D2 42}, 4
axp=%D74{d84+2Dd7-(D2-2p—~4) d6+42 (2D2—p —-2) Dd5
— {D*+2(p+4)D2-p2-2p} d4+2(D2-p—-4) D3 d3
+ (D4+4D2—-4p) D2 d2+4D5 d],
a1a=} D™ [d84-2Dd7+2 (p+2) d6—2 (D2—p-2) Dd5
— { D4+ (p+4) D2—p2~2p } d4—(p+4) D343 ~2p D2d2],
¢ (1) is the cumulative normal distribution function of N (0, ) and
d
du’
by

) by W "
(if) (1 Fht g Feeeees . )¢(u) if Ny=Ng=N

d=

where ]
b, = D72 [2d44-2Dd3—~ (D2 -2p) d2—D3d],
by = 4D 4[4d3+8D d748 (p+2) d5 -8 (D2-p-—~2) Dd5
— {3D%+4 (p+5) D2—-4p2-8p} d4+2 (D2—2p—10) D33 -
+(D4+44D2 - 12p) D2d2+-4D5d),
¢ (4) and d are same as above.

*
Proof : As Z is invariant under any nonsingular transformation in
Theorem 3, we may take p, =0, pa=u,, 0=0, s=I where pyisa I xp
vector (D, 0, 0,......... , 0). With these substitutions, the con-

ditional characteristic function of 2 is then left as a function of
X1, xg only. The resulting expression and the one obtained by Memon[4]
become identical except of course that the Mahalanobis distances are
different. So the same arguments as in [4] are applicable to this
situation as well. These considerations immediately lead to above
theorem. '
The case (i7) is also dealt with similarly.
Corollary : The probability of misclassifying an observation( ;) g
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into population mp by the use of the classification statistic Zis given by

NP az a11 Qaz 92
W [1 ( N; + N2 t N + N2 +N1N2 L ) # ]“=D/2
1 2

if Np# N,

. b b
(if) [l— ( 2& + KN%“‘— ) ¢ (u)] u=D/?
| if Ny = Np = N
where ay, a3, .., by, by are as in above theorem.

Proof : The probability of correctly classifying (;‘) into w is

X -
Prob (2 g 0) = Prob (Z~2+3D-2—< %) that is, the value of the

distribution function of (Z+D2)/2D at D/2. So the results follow.

Since the interchange of N; and N, in 7 leads to ~Z, the
probability of the second kind can also be immediately obtained from
the above corollary.
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EXTENSIONS OF CERTAIN SYMMETRIC OPERATORS*
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1. Introduction

One of the most important problems in the theory of operators is
that of extension of a symmetric operator to a self adjoint one, so that the
spectral theorem can be applied. Von Neumann (see for example[l] and
[5]) gave the necessary and sufficient conditions for a densely defined
symmetric operator to have a self adjoint extension in the same Hilbert
Space. In case of Hermitian Operator when the domain of the operator
is not dense in the Hilbert Space, it is not possible to apply Von Neumann
theory as such. Coddington [3] overcomes this difficulty by applying
the theory of linear relations defined on a Hilbert Space (Arens [2]).
We use Coddington’s approach to construct a prcof of the extension
theorem (see [3]), on the same lines as Von Neumann’s proof [5].
In section (3) we use Coddington’s extension theorem to prove some
results stated by Michael [5] concerning finite dimensional extensions.

2. Coddington’s Extension Theory

(2.1) Some Preliminaries

Let H be a Hilbert space with inner-product <,> and H2=H x H be
the product Hilbert space having usual linear structure and innerproduct
defined in it. We call a linear subspace A of H2 a linear relation on H,
The domain D (A), range R (A), and null space N (A), of a linear
relation A are defined as follows :

DA) = {x: xeH, (x,y) €A}
R(A) = {y: yeH (%)) €A}
NA) = {z: zeH, (z0) €A}

* The results presented here form a part of author’s M.Sc. dissertation, written
under supervision of Dr. LM. Michael, presented to the University of Dundee, UK.
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If A is single valued, then A becomes graph of a linear operator.
We define orthogonal complement A of a linear relation A by

={x: <X, y> =0 VyGA}.

For a linear relation A on H, the adjoint of A, A* is defined to be
the subspace

A* = {(hk) eH2: <g,h> = <fik>y (f,g) € A}

A is said to be symmetric if A < A¥, and self adjoint if A= A®,
Define

A, =08 eH2: (0,8) € A}
and Ay = A G A ,s0 that
o0
A = As@A00

"A,: is called the single valued part of A because we have the following :
Theorem

A, is the graph of an operator, and D(A,) is dense in (A* (o)l ).
From above theorem it can be shown (see [7]) -
(Ag* = (A?), ifand only if A(0)=A*(0).

(2.2) Extension Theorem

For a symmetric subspace A of H2, we define subspaces
ME = (k) eA*: k =+ ih)

MZ are called Deficiency subspaces of A"', and dim (M* ) are called

Deficiency indices.
We have (see [7] for details)

{1 M? are graphs of single valued operators.

2 M7 are closed.
B I Me=A* o A thenM = M+ D M~
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Theorem

Let S be a self adjoint subspace in H2 with S=Sy S Then
~ oo

(S*)oo = Soo’ and Sgrestricted to R2, where R=(S (0) )"', is a self-

adjoiht densely defined operator in R.
For proof see [7]. ,
The following theorem is due to Coddington [3], we present here a
proof based upon the von Neumannextension theorem.

Theorem : Extension Criterion

Let S be a symmetric subspace of H2, M == S* © S. Then §; C 5,
where S; is a self adjoint subspace of H3, if and only if, there exists an
isometry U of M+ onto M~ such that S;=S @ (I-U) M+,

In other words, S has a self adjoint extension in H2, if and only if
dim (M*) = dim (M").

Proof

(1) Consider some subspace T of H2, such that S ¢ T < S*%
We assert that T is symmetric if and only if T & S is symmetric.
(@ If T is symmetric then T & S being restriction of T is
also symmetric. k
{b) Now suppose that T © S is symmetric and, by assumption S is
symmetric. The elements of T & S can be written in the
form (f—h g—k), (f 8 € T, (h k) € S and

< (f—ha g—k:) (h’ k) > = 0.
We have

<g' -k f-h>=<f'-W,g—k>
forall (f'—HK,g'-k")eT 6 8.
Or <g',.f>—-<k',f>—-<g', h>+<k',h>
=<fl,g>—<W,g>—-<f'k>+<k, k>. )]
Also by symmetry of S
<k', h>=<MW, k> holds forall (¥, k') € S.
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Now (f, g) € S*, so far any (h', k') ¢ S
. <k'! f> = <h’n g>.
Hence (i) reduces to
<gf>=<f' g> for all (f',g) e T.
This implies- that T is symmetric.
2 M= S*o S, So
TeSaeM M =M
Hence (f,g), (h,k) € T © S are of the form
SO=U4ifD 4+ =if)
hky=tih)y+ 0, —ib)
Then T © S is symmetric if and only if
<fHh>=<f,h>for feD(T & 58)
If T © S issymmetric, then
(fedeT oStk eT oS imply <k,f> = <h,g>
Or<iht=ibh,f+*4 > =<ht4+h, if*r —-if >
= — i<h* 4+ h~, f¥* - f~>
=—-<ih++ih—, f+"f—>
So that, cancelling terms, we are left with
<h*, f+> = <h™, [™>.
For converse retrace the steps.

So in particular, for (f, g) = (h, k)

[f*42 = f7(2 forall feD (T ©8)

Thus symmetric relations (subspaces) of M+ ¢ M~ correspond to
isometries from some subspace of M+ into M~ ,

The converse of this statement is that for any isometry from a sub-
space of M+ into M™, there corresponds some symmetric subspace of
M+ @ M-,

For, f+, f— defined as above, if
[f* 2= 12 when (f+,i f*) e M*, (f, =i f7) eM",

we have
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If* + k2 = | f~ + h7)2
and [f*+ = h*|2 = | f~ = k7|2, so that
R <f* B> = | [+ b2 = |f+ - b2
‘ 4

!

If~ + f'ﬂ24— [ A
=R <f_, h >,

where R <,fi , hE > is the real part of <fi, hEs.

Similarly Im < f+, A* > = Im <f~, h~>. These results
together imply that < f+, A* > = < f~, I~ >.

So that T © S is symmetric by the necessary and sufficient
condition shown before.

(3) Finally, we have to prove that a self adjoint subspace corresponds
to an isometry with domain whole of M+ and range M™.

Suppose that T is self adjoint and that the V is the corresponding
isometry introduced above whose domain a proper subset of M-+,
This means that there exists a non zero element of M+, say (f+,i f+),
which is orthogonal to D(V).

Now any (x,y) € T is of the form

(e, ) =k) + (, i h*) + (b, =i k)

(hk)eS,(h+,i h*) e M+, (h~, ~ i h") e M.
Nothing that (f+, i f+) is orthogonal to the domain of V, and that
(h*, i h*) belongs to the subset of M+, which constitutes the domain of
V, we have
<), (fYif)>=0

So that <x, f*> =i<y, f*>
Or <x, i fr> = <y, fr> forall (x, y)e T.
This implies that (f*, i f+) € T*

Since (f*, i f+) is orthogonal to D(V), it can not be in T,
which shows that T is not self adjoint, a contradiction.
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Similarly if the range of the isometry V is a proper subset of M=,
we have a non zero element (f-, —i f™) which is 01thogonal to the
range of V. As before

< ¥, (f~ = i f)>=0forall (v,y) e T,

from which it follows that (f=, ~ i f™) € T%,
which again shows that T cannot be self adjoint.

To complete the proof, suppose that V is an isometry from M+
onto M~ and let T be the restrlctlon of T*, which in this case coincides
with ;.

Since S ¢ S; < S: o S¥, (x,y) is of the form
Ot ixt) 4 (7, = ix). ‘
With (x*, ixt) € M+,
(x*, ix*) £V (x+,ix*) e Sy,
and so<(x+, i x*) 4+ V<(x*, ix?), (x4 ix*) + (", ~ix)> =0
Or
< (xt,ixt), (xt,ixt)> + < V(xt,ixt), (xt,ixt) >
+<(xt, ixt),(x", - ix)> + <V (xtixt), (x,=ix)> =0
Since V (x+, i x*) € M-, '
<@t ixY), O ixY) > + <V @ ixd), (5, = ix)> =0
Similarly ' '
L@x*, ixt), (x+,ixY)> + <V (xtix), (¢, = ix)>=0
andso <(x*, ix+), (xt, ixt)> = 0.
A similar argument, using V™1, shows that<(x™, i ¥7), x™ =i X 1> =0,
and so (x, y)=s0. : :
This completes the proof of the theorem,

3. Finite Dimensional Extensions
In the extension theorem in section (2), we considered extensions of
the symmetric subspaces in the same Hilbett space H. If, however, the

deficiency indices of S are not equal, then there always exists a Hilbert
space Hy, such that H o Hy, and S has a sclf adjoint extension in
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Hy. Such an extension is called finite dimensional if dim (H; .5 H)< eo.
The results presented in this section were given by Coddington [4], but
we give here an independent and much simpler proofs of these results.

Let S be the graph of a Hermitian operator in H, i.e.
, <Sf,g>=<f,Sg> forallfand gin D(S),
such that D(S) is not necessarily dense in H but such that R(S) < D(S).
Suppose that an extension of S, A say, exists. Then A is the graph of an

operator self adjoint in D(Ay). All the self adjoint extensions of S in H
can be described in this way, since we have the following [6]

Lemma
Let K be a closed subspace of H, and let A be the graph of an
operator such that D{A) = K and A is self adjoint in K. In particular
R(A) = K. Let
B=A@® {0 ge¢H: gek')
Then B is a self adjoint subspace in H2,
Proof

. . . . 1
First note that since K is closed, we can write H = K @ K™, seo
that any element x ¢ H can be written as x = x; + Xa, where

x; € K, x5 € KJ'_ and < Xy, xg > = 0.
Now let (x, y) € B,{x, y)is of the form (A, Ah +g), where b ¢ D(A)

and g € KY. Forany element (4, A’ + g) € B we have
<Ab'+g', h>=<Ab', h> + <g', h>
—~<WK, Ah> = <}, Ah + g>
Since <AW, h>=<HK, Ah> , (h, Ab)e A, which is self adjoint.
Hence (x, y) € B* so that B < B*. Conversely, let (x, ) € B*
so that '
<Ah+g, x> = <h, y> for all (h, Ah4g) ¢ B

where (h, Ah) € A, g € K*. )
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Also B¥* < A* implies that

=

<Ah, x> = <h, y>

forall h € D(A). )
So that using (2) we get from (1)
<g, x> =0 for all geKH". 3)

x e DA) if x 0, sothat (x, Ax) € A.
Suppose that g' =y — Ax.
To show that g’ € Kt :

For 1 € D(A)
<g, h> = <y-Ax, > = <y, h> - LAx, h>
(1) impliess< y, A > = <x, Ah+g> so that

<g',h> = <x,Ah4g> — <Ax, h>
= <x,g> = 0 by (3).
Hence g’ € K. So any (x,y) € B*isof the form (x, y)=(x, Ax+g’),
where g’ € K, so that (x, y) € B. Hence B* < B.
This proves the lemma,
To find connection between possible extensions of S in D(S) and
the extensions in the Hilbert space H, we denote the adjoint of S in D(S)
by S8’. Let D,, D_ be the spaces defined by
Dt = {gSg)eS: Sg=1Hig}.
Then according to the extension theorem, S a has a self adjoint
extension in D(S) if and only if dim D, = dim D_.
LetX* = {(h, +ih): heH o DS)}.
Then we have the following results
M+t = D, @ X+
. M- = D_ @ X
We show first of these, whereas the second follows on exactly similar

lines,
(/) D+, X+ are orthogonal :

Forany(g,ig) e D*,g € D(S’) and any (h, i k) € X*,
heH © D(S),we have
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<, ih), (gig> = <hg> + <h g> =0
since <h,g> = 0.
(ii) Forany(h,ih) € X* h ¢ H © D(S), and (x, ») €S
<y,h>=<x,i h>=0 forall(x,y) € S.
This is because R(S) ¢ D(S)and % | D(S); sothat X* € M*. The
factthat D, = M+* needs no proof.
(i) Let (f,if) € M+, where f € H, and so
f =g+ h geDS), heH o D).
So that
(f,if)eS* implies <y, f> = <x,i f> for (x, y) € S.
Or <y, g+h>=<x,i(g+h>
But <y, h> = <x, h> =0
since y,x € D(S) and h ¢ H © D(S),
hence <y, g> = <x, ig> forall (x,y) € S,and so (g, 7 g) € S'.
This shows that every element (f, i f) of M* can be written as sum
of an element of D+ and an element of X+,
From (i), (it), and (iii) follows that
M+ = X+ @ D+
From the above discussion we deduce

Theorem

Let S be a densely defined closed symmetric operator in H with finite
but unequal deficiency indices, and let Hy be a Hilbert space such that
H C H; and such that S has a self adjoint extension in Hj.

Then this extension is not finite.

Proof

We have dim X+ = dim X~ = dim (H © D(S)). Thus if
dim D, = dim D_, both being finite, we see that dim M+ = dim M~
is not possible unless dim (H © D(S) ) is infinite.
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ESTIMATION OF THE SCALE-PARAMETER FROM THE TYPE Il
CENSORED RAYLEIGH DISTRIBUTION
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University of the Punjab, New Campus, Lahore, Pakistan.

1. Introduction

In the literature, samples are said to be truncated whenever all the
record in the truncation portion is omitted and censored, when the count
is known and not their individual values. Tt occasionally happens that
some observations are not available. For example, we may not be able to
record observations above a certain level T on account of the limitations
of our recording instrument. The only information we gather is that the
unrecorded observations are greater than the recorded observations and we
know their count. We thus have a distribution which has been truncat-
ed on the right and the number of sample observations in the truncated
portion is known. Sometimes, we may terminate the experiment after
observing some fixed percentage of observations simply because of cost.
Gupta (1952) calls the former case as Type I censored samples and the
Tatter as the Type I censored samples. In the latter case, the point of
truncation is a random variable while in the former case the point of
trancation is not specified to be random. The samples can be singly or
doubly censord. Hirai (1971) considered the estimation of the scale
parameter from the complete one parameter Rayleigh distribution whose
p.d.f. is given as :

2 2132
p(x)=‘,\_§‘e"x}‘ 0< x<oo; A0 @)

The following methods of estimation were discussed to estimate the
unknown scale parameter ) of the complete Rayleigh distribution.

(i) Maximum Likelihood Estimate (M.L.E.)
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(if) Best Linear Unbiased Estimate (B.L.U.E.)

(iii) Approximate linear Estimates.
-The sampling distributions of these estimates were also studied for a
sample size n € 8.

In this paper we discuss the estimation of the scale parameter from
the Type II singly censored Rayleigh distribution.

2. Estimation of the scale parameter from the censored Rayleigh
distribution. .

Rayleigh distribution is extremely important in communication
engineering. For example, the envelope of a narrow-band Gaussian
random process and the amplitude of atmospheric radio noise caused by
the radiation due to lighting discharges in storms have p.d.f’s given by
(1). For small enough values of x, the reliability of a Rayleigh component
decreases with time more slowly than the reliability of a commonly
used component (a component whose failure rate is constant). For large
x, the reliability of a Rayleigh component decreases with time more
rapidly than in the case of an exponential component.

Consider an experiment in which » ‘“identical’” Rayleigh components
are to be simultaneously put into operation at time x=o0 and the failure
times are to be recorded. The sample data will be ordered. If initial
observations are lost (for example, due to the fact that initial observations
are often used solely for making checks and adjustment on all devices used
to perform the expesriment to assure that they are functioning properly),
the sample is said to be censored from the left. If final observations are
lost (for example, due to the experiment’s being suspended before all
components have failed), the sample is said to be censored from the
right,

We thus estimate the scale parameter from Type II censored samples
from the Rayleigh distribution for the following two cases.

(i) Right tail censored.
(ii) Left tail censored.
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P , . (n) (n) (n)
Case (i) Right tail censored : We suppose Xy <Xz < - < X2
are the observed observations where xg.';) is the largest observation out
of sample of size n where rg is fixed in advance from the Rayleigh dis-
tribution given in (1). The likelihood function is given as

(n) m) \2° n-r2
ra 2 X ’2("(&)) f 2 x x
n - e /)Lz
Lo =1 A2 Xp[ ,-__551 Az dx

(n) Az
('2)

@

Differentiating log L w.r. to A and equating to zero we obtain the
maximum-likelihood estimating equation

dlogL 2, , 2 T2 ( (n))2 2(n—ra) (w) )2_

o a Tw 3 Vo)t (x =0

; '\3 (2) (3)
Hence we get
rg
(n)
" / ,_zl(xo)) + (1=r) x(
A = \/ “
ra
Let ;
) . 2
E ( (,(;)) a2 W E( x, ) Az W )
Thus we get ’
, o
92 logL -2 r 2 "1t 6 (n—- r
E( 8 a2 )_ A2 2+61~1a2 + ( 2 vian ©).

The asymptotic variance of 3’ is given by

2
var (') = A

Iy
~2rg + 6 21 w(ﬂ)+6(n—3)w,.2,2 )
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The following recurrence relation is true for the Rayleigh distribution i.e.

re ) re
R e R R TR SR CRC
== 1=

The table (2.1) shows the variance of 3’ for the right tail censdred for
different values of ry for a sample of size n € 8 from the Rayleigh dis-
tribution. The variance of § from the complete distribution is given as

Var (3) = 2 ©

The var (}’) given in (7) is greater than var (3) given in (9). The
recurrence relation given in (8) can be utilized for other desired
censored values for example when rg = 4, n==8 we have the same result
as ry =4, and n=35 given in the table (2.1).

Table 2.1 : Showing the variance of {’ for different values of rg. Each
value should be multiplied by a2.

I, 1 2 3 4 5 6 7
n=2 0.2500 S

n=3 0.2500 0.1250

n=4 0.2500 0.1250  0.0833

n=5 0.2500 0.1250  0.0833  0.0625

n=6 0.2500  0.1250  0.0833  0.0625  0.0500

n=17 0.2500 0.1250 0.0833  0.0625 0.0500  0.04167
n=3 0.2500 0.1250 0.0833 0.0625 0.0500  0.04167 0.0357

Case (i) Left tail censored : We suppose that out of random sample of
size n, ry are missing observations in the left tail. It is assumed that the
missing observations are the smailest one and the observed observations
are arranged according to ascending order of magnitude i.e. .

() () ()

+(n) 7 .
X1y < Xrpagy <ooo <X such that X(r1+1)

is the known smalfest observation.
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The likelihood function of this is given as

(n) r M 5§ [ym
X(ri+1) " 1 2xM 3 ( /A2,
Loc [ %e_x /22 dx] n (') - =T+ Q] )
Q

II 32

=T +1
(10)
Differantiating log L. w.r. to ) and equating to zero we obtain the
maximum likelihood estimating equation.

2 4=
(56 m) 12 (0 )
- ci+)  2m-n)

dlogl.  —2rye

n = ' ) )
A3 (1— - (f1+1)/“)
2
2 3 (x("’ ) =0 (a1
=141 \ 0 ' .

The solution of (IT) yields.

x
(n) 2 ( T1+1 ) /&1 %
* (n) 3 2n |\ Xerreg (1+1)

. 2 —r "
it (x?:;-#l)) /A2 Vn 1
1—¢"
(12)
Taking the second derivative of log L and putting
(n)
x(?l_‘_l),A —ZJ N _] = 1 2
such that
(n) 2 2 (n) 4 4 4
x@.) | =RE@?) and E (x(,m)) = A4 E (Z4).
Thus we get,
22logl\ 4n (24 e z2 ) 6ry (22 e %2
E( a2 )“‘ BYE E i =72 = )2 E 1 _e—zz)
4r¢ 74 ¢7x2 2(n=-ry) n 2
A2 E((l—e-zz)z)' PR T (Z‘/‘\‘_z) 3
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Gupta (1960) has constructed the thoments of the k th order statistics
of the Gamind distribution.

g(x)=e:%%ll 0< % <ooi (14

whére r is the parameter assumed positive. The exponential distribution
- i8 a specidl cdse of (14) whén r==1. If we denote thé k th moment about
the origin of the rth order statistics of Rayleigh distribution as py(rm) -
then we have

, nd [(1+k/2) 51 fr—1 :
0= =i 5, (7)Y g, 09

If we put k=2k i in (15) then we obtain the kth moment about the origin
of the rth order statistics fforn tlie exponential distribution which we

denote as v, (r, n).
Hence wé have

i o ATk et (e . i
U, (r, ) *—'(n—r).(r;— ) Eo ( i )('—1) WW (16)

Thus we have

62 logL . 4 rl- ' . - 6r (nf"l',! Txl) s
—E( aAZ )— Az (rl+l) Ué ("l'l"ls n) ("i—{;l)lz Ul('1+l’ f‘l)
4ry (== (a—-r-2) , 2(n— "1)
T T nF) e (L m T

+ 6 =

g U; (i'l + L n) (17)
e v ’

R
Variance of A for large samiple is givén by

;.[E (?f%‘:)}—l : (18)
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Table 2.2 has been constructed to give the variance of :{ for a
sample size # < 8 when the missing observations are in the left tail.
These variances are also greater than the variances of 3§ from the
complete distribution for given values of n. We can also compare the

*
Var (R') and Var (A) from the Table 2.1 and 2.2 and conclude
that as n becomes large the efficiency of 3}’ increases with more
missing values as compared with ;

Table 2.2 Showing the variance of x for n < 8 for various values
of ri. Each value may be multiplied by A2.

rs 1 2 .3 4 5 6 7
n=2 G.1428
n=3 0.0861 0.1111
n=4 0.0635  0.0784  0.0952
n=>5 0.0505 0.0518 0.0557 G.0855
n==6 0.0420 0.0425 0.0439  0.0482  0.0787
n=7 0.0359 0.0362 0.0368 0.0384 0.0429 0.0738
n=3§ 0.0314 0.0316 0.0319 0.0326 0.0343 0.0389 0.0699
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