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TRANSMISSION, REFLECTION AND DIFFRACTION OF LOVE
WAVES IN WELDED LAYERED QUARTER-SPACES WITH A
: PLANE SURFACE (THEORETICAL)

*M.H. KAZI
Department of Mathematics Pan jdb University
} Lahore, Pakistan 1
Summary

In this paper we investigate the two-dismensional diffraction
problem associated with the propagation of plane harmonic Love waves,
normally incident (from either side) upon the plane of discontinuity in
the horizontally discontinuous structure consisting of welded layered
quarter-spaces with a plane surface. Formulae for complex reflection
and transmission co-efficients are obtained for the plane wave approxi-
mation and their variational improvement is sought through the
Schwinger-Levine variational principle by means of a technique pre-
viously used by the author (vide Kazi (1978a, b) in the treatment of a
similar -problem associated with a structure consisting ofa half-space
with a surface step.

1. Introduction

- In a previous paper (see Kazi 19784) the author used the method of
integral representation and Schwinger-Levine variational principle to
describe, by means of a scattering matrix, the diffraction of plane,
harmonic, monochromatic Love Waves, incident normally (from either
side) upon the plane of discontinuity in a structure consisting of a half-
space with a surface step—an idealized model of a continental margin.
Approximate expressions for the elements of the scattering matrix were
obtained through the plane-wave approximation and their variational

* At present-workingin the department of Mathematics at- the University ‘of
etroleum & Minerals;,- Dhahran, Saudi Arabia. :
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improvement was sought through the Schwinger-Levine variational
principle. Complex reflection and transmission co-efficients were
obtained through a transmission matrix related to the-scattering matrix.
Numerical computation of these results were presented in Kazi (19785)
for a model considered previously by Knopoff & Hudson (1964) and
also by Alsop (1966).

In this paper we use the afore-mentioned method to derive explicit
formulae for the reflection and 'trans'mi's'sion co-efficients under plane-
wave as well as variational approximations for the similar Love Wave
transmission problem associated with the structure consisting-of welded
layered quarter-spaces with a plane surface.: This problem has elso
been considered previously by Alsop (1966). In another paper we shall
present the numerical computation of our results. o

2. Equations ovaofion,

~ Let us suppose that a quaﬁer-spabe consisﬁng of a material -of -
rigidity wg, shear velocity B2 and densxty P2, overlain by a layer df
depth #, density p;, rigidity 1 (< p2) and shear velocity B1 (< B2), 1s
in welded contact” with a similar quarter-space of material of ngldxty

¢, » shear velocity B, and density p; » overlain by a layor of depth h:

density p; , rigidity p} (< y.’ze) and shear velocity B; (< B, (see fig.).
We take the vertical plane of contact between the two- structures ‘to be
x=o0 in {the co-ordinate system shown in-the figure and regard the top
plane surface z=o0 as stress-free. All the materials are considered to be
isotropic and homogeneous : ' ‘ ‘

We con51der tWO-dlmenSIOJJal problems of the diffraction of tune-
harmonic Love wave normally incident upon the plane of contact (from
cither side). Agam the wave-motion is entlrely SH in character.. The
ﬂdlsplacement fields in the regiong I (,x<o) and. II (x>o) (see ﬁg) are
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denoted by e‘lmt v (x, z) and e—zwt v' (x, z) respectively, where

—iaf ~fof
e Py (x, 2)=e ! Vi (x,2),0€2z<h,  x<o,

—iot L
, =e vn{x, 2), hgz. x<o,
and ‘ -
™ )

—iat —iot T
e v (x,2)=e vy (x, 2), og2z<h, x>o.

~i

“'yy 2, k< x>0,
~ (e being the angular
frequency)
respectively. 7
The conditions at the free surface z=o and the plane of welded
contact x=o imply :

3 v v
1 — pand —— = o at z=0 (2.1a)
0z
v=1Vv at x=o0, 2> 0, : : Q2.1p)
® (2) %= v @ % at x=o0, z2>o0, - 2.1¢)
where
p@=p,0<2<h x<o,
= 2, h <z x < ’0, - . o (2.2)
and ' B '

K@), =pr,0Kz<h x>o0
=py, h <z x>o. ’ 2.3)

The complete solution for the displacement v in domain I can be
expressed in terms of proper and improper eigenfunctions of the Love-
wave operator for a homogeneous- half-space of rigidity 2 and shear
velocity Pg, subjacent to a homogeneous layer of depth h, rigidity gy
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and shear velocity B, (formulae for proper and improper eigenfunctions
are given in Kazi (1976). Like-wise, we can write the complete solution
for the displacement v’ in terms of the proper and improper eigenfunctions
of the Love-wave operator for a homogeneous half-space of rigidity

p, and shear velocity B, overlain by a homogeneous layer of depth A,
rigidity p; and shear velocity p; . Thus

in DOMAINI (x <0,z > 0):

v (x, z)=—[m;_l (Am e_ikm | %] 4B eikm | %1 ) Xm (2)

/B> . .
f cod® ¥ o e na
0

[e 0]
+§ B yena] -
0y | | |

and in DOMAIN II (x>0, z>0)
-i k' x ik, x)

s
v'(x,z)=[ S (Aje ™ 4B e
m=1

X (2)
off" ‘i K.

+) coreF o e
0

o .
HSfoEeven]l 0 ey
0 et



S

where (using formulae derived in Kazi (1976).

Im@) = ¢™ (), o<z<h
=™ (), h<z | (2.6)

X (D= (), o<z<h

=@ h<z, S @n
Cos (o(m)’ z) A
¢(m) (z)=Fp ——o, ("‘) (2)=Fpy e c("‘) (h—12), 2.8)
Cos (o(m)' h) : : :
2 0(2'”) (BI’ ~u: C;; ) L S
Fp= vt - - o 2.9)
(s -15) S
Cos (og'")’ 2) (m) -
'(ﬂ) (Z) (m)a (Z)-F' 0' . (h—Z),
" Cos (o™ K) L
(2.10)
; F’ 2 o;m): ‘ Ul(—l)’ ) c;’(.—l) *
m ""2 ’ B' (—3) Bl(—z)
(2.11)

(Um; U;  are the group velocities and - Cp, C,, are the phase velocities
in the m-th modes), -

| o B w2 i
01 (M) = [E;z—— A] , 0 () =(a— E’—)* @.12)

1 .t Ps
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O{m)= 6 (Am)s G(M) = 02 (/\'n): . - (2.13)
Am = krzn E km > 0, 4 | (2'14)
: and similarly for 0'("‘)’ cg"')’ and A .

The eigenvalues A == 2, = k:‘. m=1,2, . ... r, satisfy the Love wave

dispersion equation

1 o1 tan (o H)— g 02 = o, 2.15)
whereas A=A =k2 , m=1,2,..... ...s are the roots. of the -
dispersion equation

ny ojtan (c) Ay~ "'2 o,=0 A (2.16)

¢ (z, k), the 1mproper eigenfunctions’ correspondmg to the i 1mproper
eigenvalues ) = ()2, k > o are given by

- Y@z K) =41 (@ k), oszgh

=2z k), h<z, AL
where ; :
o - Cos (o(k) 2)
$1 @ k) = G ————, 0Lzgh, (2.18)
Cos (ci h) P PO
Sin Ié"" - sg’*’ @~h)}
Y3 (2, k) = Gp, - . — s z2h, (2.19)
with
Gy = \/24: Sne® ‘@29

7’-(‘ (k)



s(k? = (ﬁ—,\)% re_él and positiVé (A=Qk5,’k>o)z
| @.21y
and

s(k) "Cot o(k) h E
) 2.22)

(1P
(%) = tan™1 (
By o(k)

Owing to ‘the factor Skixl /in " the integral containing ¢ these
represent non-propagated modes. SR ' R

Similarly, ¢’ (z, k'), the improper eigenfunctions corresponding to
the improper eigenvalues X" == (i k'2), k” > o are given by

V@K =¥ @ k), o<z<h

where
Cos (c'gk ) z)

¥, @ k) =G —, 2.24)
Cos(o’gk ) :
and ‘
sin {6 —s'*) (z-h) ) .
¥, @k) = G —— ; a2
S sin’ g% S
with |

o Pty
6’ ®) = tan- i , ' (2.26)
"'1(k )- 0_;.

G, s;(k’ have expressions similar to those for Gk, -?gk), but ia primed

potation.
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$ (2, k) and §’ (z, k), the improper eigenfunctions belonging to the
improper cigenvalues A = k2, A = k2,
o<k g —w—w, o<k’ < i) respectively, have expressions similar to
8. B |
those for ¢ (z, k) and ¢ (2, k'). Owing to the form of x-dependence in
the integrals containing ¢. ¢’, these represent waves travelling in the
x - direction. ' ‘

The orthonormality relations amongst various proper and improper
eigenfunctions are given by (¢f. Kazi 1976) ;

) f B En @ Xn (@) dz =8’ L <M<, (27a)
b
) (v 0]
f 1 (2) Y (2) & (2, k) dz=0, 1&m<1, o<k<—B%~ (2.27b)
g .
[+ ]
J 8 @%@ @B dimo, 1<msr, o<ks 5 @.270)
5-
4 w .
J B LS (@R Y (2 k) dr=o @.27d)
@ 7 |
| bf RGN (R § (1) (dz=S (k=1). o<k, I< @.27¢)
0 o
[ 100G Dd=8 kD, o<k IS @.271)
¥ ) o

The orthonormality relations :amc'm'gst
) o

L (@m=1,.0..94¢ ) (o< k' & W) and
§’ (z, k') (0< k' € ) are identical to (2.27af) but in primed quantities:



3. Integral Equation Formulation 7

‘We proceed as in Kazi (1978a). If we denote the component
ey Of stress at any point of the vertical plane of contact x=o by 7(2),
then.(2.1¢) implies H

= | =r@3r| =@ I |s o @
.. X=0 X=0=- - X=0--
we'Have both ‘
T (z) y.(z) , = (z)[ ik (A -B,‘) Xm (z)
~‘ x—w—
G/ﬂz
+ ftk {C (k) =D (k)} ¢ (z:k) dk + f k.E & ¢ (z,k) dk] 3.2
and b

e ao Rl p— (z)[ 3 i (AL —B) % @)
x—>o+

o/fs’ '
+fzk{c k')~ D(k)}«ﬁ(zk)dk’+fk’E’(k)4:(z,k)dk] (33)

OH multiplying equation (3.2) separatély By Zm (2) (m=1,2...7),

é k) (o<k<% ) and ¢ (z,k) (o<k<o), and integrating with: -

respect to z from o to oo, we obtain (using orthonormality relations
2 27)

=]
—ikp, (Ap=Bp) = f (1) %m (1, m=1, 2,. (3.4a)

)

—i% {C (k)-D'()j= f o ¢ 68 d, e
0



- 10
and
~kE®={ 1) 6.k dn - (3.40)
0

A similar procedure, applied to the equation (3.3), leads to the
following : :

[+ 0]
- ik (A} - B) = f T X, @) dnm=1,2...... 5, (3.4d)
0
~ik {C' (€)=D" (KD} = [ * () ¢ (1, k) G4
0 |
and
w .
—K B (k) = f a ()Y (n, k) dn B.4f)
0

Eliminating D (k), D’ (k'), E (k), E’ (k) (assuming C (k) = C' (k) = o
and invoking the matching condition (3.1c), we obtain '

r s
z (An+Bi) X (2) + | 3 A, +B ) x (2

o0
= f rmg@mdn 3.9
0
where :
2@ =G@n)+ig(),
-~ k) k & k' k')
g(Z, ')) == f‘p (2, k‘l’ (1, )dk +j‘¢ (Z’ I)c:p (’7’ )dkc (3‘7)
0 0 ’ :
and

B v M
£@ n)=f—‘3§-’-’-7c—?-(—"’—)dk + £ Wol gy @8
0 0
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Equations (3.4a, d) and (3.8) constitute the integral equation formulation
of the problem. The scattering matrix formulation is the same as in
Kazi 19784. Moreover, the approximate formulae for the elements of the
scattering matrix and the resulting reflection and transmission co-
efficients, arising from the approximation based upon the neglect of
modes corresponding to the continuous spectrum and the variational
approximation based upon the Schwinger-Levine variational principle,
are identical in form to the formulae derived for the continental margin
. problem in Kazi 19784. We shall, therefore, omit details already
covered in Kazi 19784 and restrict ourselves to the derivation of explicit
expressions for the reflection and transmission co-efficients for some
simple cases under both approximations.

4. Formulate for Reflection and Transmission Co-efficients.

(i) Approximation Based Upon the Neglect of Modes Corresponding to
the Continuous Spectrum

The transmission matrix T is (cf. Kazi 19784) given by the formula

(-e]” [
NN
, L R R J
Ewhere Q:and R are given by
: r 1 ‘ | M1 P vese XSIPsl : T
1 0 Il M2 Py, ceen A Pg
. | :
Q= | :
' B
L ] I r
L o 1 | Ay Py vers Agr Prg J
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. and
- P Py, }-1 S Y
)\llv ) Arr I - .
P2_|_ sz l
Azg P P | .
R= |
- | ’
ol :
Py Py | .
. ~Asy o ,)sr | =1 »

The particular forms of T in the special cases r= 1> land-r>1,
s =1 are given:by

4 '
~=2+N =2A Pyy s ﬁ'zkaiBsx
~2Pu _4p? . —2P11 A1 Py
By <Py, AN M1

1 —2Py  —=2Py Puan, , ~2Py Ay Py
—_— Ag; . A
1 N 4\5-1 .21 e | .21
: e - 4
“2bi)sl o ";2P31.P11 Xn ) o
. . . . . __2 Pz N )

Uiy A , s1 + J

where

N=1+P} + P} + .0 .. P2, -
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and
e 13 AIZ btV ]
.ZP_H_AEEE ~N + 2P, —2P13 A12
hu
‘ ? o
T=wx
2 Pll .Al;r‘;Pll 2P12 i)lf AIT -2P'
A1l AL2 tr Atr
2 Pll -2 P12
' =N+2
L A1y »):lz J
where . o
N=1+P% +PL +..... S

All the formulae for the reflection and transmission co-efficients, which
were derived in terms of he coupling co-efficients for various special cases
in Kazi 1978a remain unchanged for the present problem. We must,
hovgever- re-evaluatqtha coupling co-efficients A jm Pim

Here

0
=2 in P ,m=j' RE %@ Xn @Dz, =128, Aimem, [
m
m=al, 2. ..., r “.1
where ¥, (z) and:i(m (z) .are given by (2.6) - (2.11).
we Write
h
h B L A ,«,;{4’;2)

=Il +IZ;
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whereI; = o gCos (o} ) 2) Cos (o™ 2) dz
Cos (a'k) Cus (oi™ 1)
(using (2.8), (2.10))
& FiFy l“ tan (gi‘."’h) +tan (e k)
2 L Wi o
tan (0" h)—tan (o{™ h)’}
1 1
o;([i)'_ o.gm) !
F, P

-— B w0 tan (4 b )=y 6™ran (o )

£ (1 s - pimel)
mitky, — K'2) +w? (~— -1y
B B
(using the dispersion equations (2.15) and (2,16) together with the
relations

(cgm)ﬁ LT

/] m
1
and
(n 2 W .
) pr2 k ) 4.3)
1

and
o

 Tasmpy ' Fpy S( o 4ol ) (k-2)
h e dz

(using (4.8), (4.10)



i$
b F; Fm
agi) + cgm) k

(I)I ('ll)
o, }

#2 Fy Fn {0 (4.4)
= s 2 - 2 2 ___1_ — ___1,_ ’
(57 B wipel -
~ P
 (using the relations
' 2
(D) =k 2 -2
B}
and
( 0(’!))1 =k2 - w3 .~
’

whence from (4.2) to (4.4.) we obtain :

Aim Pim = i 2 "
L ”x
W 2 (,(,). _ ; m) ’}
2 _ we
(k‘ )+ bz '
|
“.5)

with _L=_L....1_,and R S I ; Foaid F,

58 B ¥ 8 By

are givon by (2.9) and (2.11) respectively.
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" In the particular case when r=1, s=1 in equations (2.2) and (=3) (e
the frequency here is such that there are Single (fundamental) modes in the -

left-hand and right-hand domains shown in Fig.) then we find (See Kazi
19784) that

B=T.A,
whére *
1+ P2,
T‘ v uls s .
1.+P121 T = 2Py,
A ALy
)
[ A
A = ,
Al
- ¥
STy
_ {“Bx
B =
B
L J

(Here Ay, By are the c0eﬁic1ents of xl m equatlon (2.2)and A , Byare: -

the coefficients of y; in equatlon Q. 31)

(’) Fi Fy sin (o3 W 6)

An Pil—
&} —-k ) cos (c(‘)hl) cos (c(‘) )

- .

(The terms appearing in (4.10) and (4 11) have the same meanmg as
Section 2.) _ slLEELA Tl L,
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‘Thus if the incident wave is travelling from right to left so that

]

then the tl'a.nstSSIoll coaﬂiclent

By= ~2a3 Py
14 P} 11
and the reflection coefficient
1- Pi1
B, =
14}

If the incident wave is travelling from left to right with

L]

then the transmission coefficient
-2Pn _ _lfL_
A (14P) )¢ ky

B = B,

and the reflection coefficient
Ph—-1
By = ——— =(~1) B}
1 +P’l’1

(#) Varidtional approxirhation

(4.12)

4.13)

@.14)

(4.15

The variational formulatlon of the problem can be achieved in- exact-

ly the same manner-as.in Kazi 1978a. -

In the simple case when r=1, s=1 in equations (2.2) & (2 3) then

(cf. Kazi 19784)



, A:-";‘ 1 . ; ‘ o
A= II B= (4.16)
! ,

{ P:l -1 I;l - 2Pll 'xll"
T o= 1 l Co
- . Ty 4.17
1+Ph = il | -2Py 1-P —ir { @10
L All 11 11 J
Py and Xy are given by (4.10) and (4.11) and
4k, oV (;Z—U;nl C;.l){-)cn o
I, = - 5 | f (H, (k)2 dic’ i
B B -(B'; - B3 ) ¥
ofB,’
§ moapae @y
0
where
@2, - k2t
Hy (k) , i X
wk 2 _k'2) tan2 (—“’:-_ — k2t B :{—-:;-k2')}}
By B1 B,

3 2
[{n. by (K = k2 +§2—~)—n2;ﬁ1 *F +k2 +—"ib;)}-0; ()
2 1

1 ' , 1 19
tan o, (A") h+m.y_._2qg) o2 (.___; - —4
' by b3

- { B +—"’é~} | {(kfmk'zw-»bi:-} N
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and
(2
e 2
H, (k') <p'2(__+k2)tan2{(‘—-+k2) h}+f"2( +k.2))%x
By B ﬁz, ‘ ,

2 ll)z ’ .
[0 8y 03402420 —h s (K 42420 )01 ()

by by

, 1 1
tan o (= a0+ g2y o w2 1]
BB

{ @+ k) +—“’:€} | {@ +ry +:l:_§}

(4.20).

Vanous notations appearing in these formulae have the same meaning as
in Section 2. For an incident wave travelling from left to right with

1]

we obtain the reflection coefficient .
P} —1-iTy
Bj=— @.21)
L4+ B ~ i1,
and the transmission coefficient
B! = —2Py
A1x (1+P2 - lI'

@4.22).

Similarly for an incident wave travelling from right to left with

A-=[?' ;’ ]
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we get the transmission coefficient

|
B =21 Py _ 1 B (4.23)
S L TR |
and the reflection coefficient
1-(FY +i1;) ‘
(4.24)

Bi
.2 . vy
1-‘]-P11 - lln

(00}
it may be remarked that the integral |'{ H, (k) }2 dk’ in (4.18)
el .1

corresponds to the non-propagated modes arising from the negative
improper eigenvalues belonging to the continuous spectrum. The integral
and { (Hz (k') }? is of the order of kl,3

regular throughout the domain., The integral is therefore convergent.

for lafgc values of k' and is

The second integral {T {H, (k') }2 dk’ in (4.18) corresponds to the pro-
0 L

pagated modes arising from the improper eigenvalues of the continuous
spectrum belonging to the intérval (o, 02/[3'22_'). and represents a con-~

tribution from the body waves. This integral is also convergent. Both
the integrals must, however, be ovaluated numerically.
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ON FIXED AND COMMON FIXED POINTS OF MAPPINGS

‘BY
S. L. SINGH*
Department of Mathematics, L. M. S. Goveriiment College,
Rishi Kesh, Dehra Dun, India.

Introduction

In this paper some results on fixed and common fixed points of
mappings in a complete metric space and in a space with two metrics
are obtained. Theorem 1 of this paper generalizes many common fixed
point theorems. In fact the theorem contains many classical results
which are proved by the method of successive:approximation. The other
results are generalizations of some of the common fixed point theoreths
of Kiyoshi Tséki [1, 2].

Let P and Q be two mappings of a metric space (X, d) into itself, and
suppose that ‘ ' ‘
(L.1) d(Px, Qy) <a d (x, Px)+az d(y, Qy)+asd(x,Qy)

a4 d(y, Px)+as d (x, )+ a6 d (¥, QPy)
-+a7d (Px, QPx) +ag d(y, QPx)+a9 d (Qy, QPx)
for all x, y in X,
(12) a0, 1] and 291 @< 1,
(1.3) as-ag=as+aq.

The well known mappings mtroduoed by Banach, Reich, Hardy and

Rogers and others are particular cases of [1.1].

2. Common Fixed Point Theorems ip a Complete Metric space
Throughout this :section 1et (X, d) be a complete -mettic space.
Following is the maln result of this section. .

*This work is supported by the University Grants Commlssnon, 'New, Delhl
(Code No. 7574).
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Theorem 1. Let Ty and T, be two mappings from X into itself,
Suppose that

(2.1) the condition (1.1) holds for P=T;, Q=Tj, i=1, 2, j=1, 2 with
i £ j, where the constants @k are as in (1.2) and (1.3). Then Ty and T;
have a unique common fixed point.

Proof : Let xp € X. Define a sequence {Xn} in X by setting
x1=Ty %y, X,=T, xq, and inductively for each n € I+ (positive integers),
Xsn+3=Ti X2n, X2n+2==T32 Xn+3. Then taking i=1, j=2 in (2:1) we have
d (xg, x)=d (T1 %, T; X9)

<ay d(%y, Ty xp)+ a5 d(xy, Tp x1) +az dxy, T, x1)+ag d(xy, Tlxo)
+asd (xo, X)) +66 d (X0, To Ty Xo) 44 d(T, %o, T Tq Xo)
+agd(xy, T2 Ty Xo) +a9 d (T3 x1, To Ty Xy).
Simplify to get
d (xy, x2) < p d (x0, X1).
where ‘p=(a1+a3 +as+¢16)/(1 —ag —ay—dg—ay~ ag).
Conditions (1.2) and (1.3) make p<1.

Further by taking i==2, j=1 in (2.1) we ha&e
d(x,, x3) € pd(xy, X2) € p2d(xg, xy1).
Inductively, d (xa, Xn+1) < p"d (X, Xy).
4 Thus {x»} is 2 Cauchy sequence and by the completeness of X, it
converges to some point u of X. We show that u is a fixed point of T'.
For each n € I+ and i=2, j=1 in (2.1), :
d(u, Ty w) <d(u, Xan+2)+d (T3 Xgn+1, T1 2).

< d (4, Xsnin)+ a1 d(Xans1, Xon 1) +az d (u, Ty )+ a5-d (Xsne; Ty 1)

- 4a,d ;X0 +2) ¥asd (Xonisy, U)+86 4 (X2n+1s Xonvs)
+a-, d (X342, X2n +3)+08 d (4, x2n+3) +09 d(T 14 x2n+3)

Letting n—+oo, we get




5%
(l—az—a3—ag) d (u, Tl u) < 0
a contradiction to (1.2) unless Ty u=u. Similarly, we get Tp.u=y.

The uniqueness of the common fixed point follows easily.

Remark : Since the Banach contraction principle was published,
many special cases of the above theorem have been obtained. Here it
is not possible to state these results appeared in literatures, but the author
only mentions the results of C.S. Wong [7], and S. Ranganathan [5,
Theorem II. 4]. Wong’s result is obtained when ap=0 (k=6,7,8,9)

and (without any loss of generality) i=1, j=2. Ranganathan s result
is obtained when T;=T,=T.-

Corollary 1. Let {T}} ieI* be a family of mappings of X into’
itself. Suppose that there is an my € I+ for each T, such that for all
x,y in X and every pair i, j with iz%j, '
(2.2). d(U; x, Uj y)<ay d (x, Ui X)+az d(, Uj y)+as d(x, U y)

' +ay d(y, U; x)+a5 d (x, y) +ag d (x, Uj Ui x)
+a7d (Ui x, U; U; x)4-a3 d(y, Uj U; x)+a9d(Uj y, Uj Uix)
holds, where U,=T;"i for each'i € I+ and a’s are as in- (1.2) and (1.3).
Then the family of mappings {T;} { €1+ has a unique common fixed point.

Proof :  Note that the hypothesis permits that U; and Uj can be
interchanged in (2.2). For any fixed i, j we apply Theorem 1 to get a
unique common fixed point of U; and Uj. Then there exists a unique
p in X such that Ui p=Uj p=p.. We therefore, have

Ti p=T; (U p)=U; (T p)
which mmphes that T; p is a fixed pomt of Ui. Similarly Tj p is a fixed
point of Uj- By-(2.2), . R
d(Tip, Tj p)=d(U;(T;p), Uj (TjPp))
<(a3+as+a) d(T;p,Tj p)+(a5+ a7)d (Tip, Ui (Tip))
+(ay+9) d(Tjp, Uj(T;p))



which implies
@3) (t-as—as=a9 d (T; p, Tj )

<(@g+ap) d (T p, U T )+ +as) d (T p, U3 (Tep),
Again by (2.2), : :
d(T;p, Uj Ti p)=d (U; T, p, U; T, p)

<(az+az+ag-+ar+ag) d (Tip, U;Tip)

which means |
(24) d(Tip, U;jTip)=0 ie. Uj T,-p;‘Tip.
Hence (2.3) yields (1 ~ag—a,—ags—az—ag) d (T; p, Tj p)y <Oy

a contradiction unless T, p = Tj p. Therefore T; p=T; p is a
common fixed point of U; and Uj. But the common fixed point of
mappings U, and Uj is. unique. Hence Ti p=Tj p=sp, which means
that p is 2 common fixed point of T; and T ;. If such ap is not unique, let
there be another point ¢ in X such that T; g=Tj g=¢q. Then,

since p=T; p=T:"i p-=U; p, (2.2) implies
d(p, 9)=d (U; p, Uj q) < (a3+as+asta3+-ag) d(p; g)..
Hence p=q. Thus T; and Tj have a unique common fixed point-in X.

To show that the ‘family of mappings’ under consideration has a uni-
que common fixed point, let p, z be common fixed ‘points of Ty, T; and T,
T, respectively. To prove p=z, We may suppose iz=k.

Then in view of (2.2), z=U} z and p=U; p imply
d(p, 2)=d(U;p, Uy 2)X(a3+a4+as) d (p, 2) +(ag+a7) d(p’ Ukp)
+(ag+a;) 4z, Uk p).

By virtue of (2:4) Up p=p. Hence d(p, z)=0 giving p==2z. Thus fixed
points of every pair Tj, Tj coincide uniquely.:
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Remark. ' The result of Iseki. [2, Theorem 1] is obtained as a parti-
cular case of the above corollary when ‘a;=aa, ay=ay, ag=0 (k="6,
7, 8,9).

. Corollary 2. Let T; and T, be two mappings of X into itself.
Suppose that for i=1, 2, j=1, 2 with i%j and for all x, y in X
(2.5) d(TiTixTiT,y) < a1 d(x, T; Tjx) + a2 d(», Tj T; )

+asd (5, Tj Tiy) + a4 d (0, T; Tj x) + asd (x, »)

+a6d (x, T TZ Tj x) + a7 d(T; Tjx, T T2 Tjx)
+agd (T T Tjx)+apd (Tj Ti y, T T2 Tj x)
hold, where a’s are as in (1.2) and (1.3). Then T; and Tz have a unique

common fixed point in X,

We remark that if T; and T, commute, then the relations (2.5) may
be replaced by a single relation obtained by taking i=1, j=2.

Proof : Let U;=T; Ty and U,=T, T;. Then, since
T, T2 T,=T2 Ty Ty T,=U, Uy and Ty T2 Ty=U; Uy,

relations 2.5) can be written in the form of
26y d(U;x, Usy)<ayd(x, Us ) +a2d (3, U §) + a3d(x, U y)

+agd(y, Us x)+asd (x,y)+a6d (x, Ut Us x)

+a;d(Ugx, Uy Usx)+-ag d (p, Us Ug X)+ay d (Ugy, Up Ug x)
where s=1, 2 and z=1, 2 with s%¢. Hence in view of Theorem 1, there is
a unique common fixed point p (in X) of Uy and U,. Then

Ty p=Ty (U2p)=T1 (T2 Ty p)=T; T2(Ty p)=U; (T1 p).
Therefore Ty p is a fixed point of Uy. Similarly T, p is a fixed point of Uy,
Putting s=1, t=2, x==T; p and y=Ta p in (2.6) we get

47 T, )=d (U [T5 2}, Uz [T2 2D
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7) g(as+ag+as) d(Typ, T p)+(as+a7) d(Ty p, U2 [T1 P)) -
+(ag+ag) d (T, p, Uz [T, p).
Since d (Typ, Uz [Ty pl)=d (Uy [Ty p), U: [Ty p)), applying (2.6) again
-we have d\(Typ, Us(Ty p)) < (az+ay+ag+a;+ag) d(Ty p, Uz [Ty p])
which implies that Ty p=U, (Ty p). Therefore, from (2.7) we get

d(Ty p, T2 p)=O. Hence Ty p=T2 p, and by the uniqueness of the
common fixed point of Uy and U, we obtain p=T; p=Ts p.

The uniqueﬁess of the common fixed point of T, and T, follows easily.

Remarks : In case ay=a,, ¢3=dy, ap=0 (k==6,7, 8, 9) and (without
any loss of generality) i=1, j=2, we get the result of Isé€ki [2, Theorem 2]
as a particular case of the above corollary,

Corollary 3. LetT;(i=1,2,.....,n)be a \\iamily of mappings of
X into itself. Let ' ‘
P=T1 Tz ..... Tn and Q Tn Tﬂ Tooees Tl

If {T;} satisfies the conditions: P cofnmutes with every T;, and relation
(1.1) holds and also holds when P and Q are interchanged, where a’s are
as in (1.2) and (1.3), then T; (i=1,....... ., ‘1) have a unique common
fixed point. - '

Proof : By Theorem 1, P and Q have a unique common fixed point
p in X. Forany T;, T; p=T; (Pp)=P (T; p). Therefore T; pis also-a
fixed point -of P. Then by the condition (1.1), we have

d(T;p, p)=d(P (T; p), QP)
28) <(@sta,tas d(Tip,p) + (as+an d(T;p,Q Tip)
+(az+45) d (P, QTi p).
Furthermore,

d(T, p, QT; p)=d(P (T; p), Q(Ti p)) < (92433 +44 +a7+as)d(TzP, QT p)
which implies that T; p=QT; p. Hence (2.8) yields 4 (T; p,p) =0. and
consequently T; p=p (i=1,2,,....., ). The uniqueness follows easily,
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Remark. Results of Istratescu [3, pp. 100—105] and Isé€ki {1, Th. 2]
‘are particular cases of the above corollary. The former is obtained by
taking ay=a,, ap=0 (k=3, 4, ...., 9) while the later is obtained by
taking ay=az, ay=a,, ar=0 (k=6,7, 8, 9).

Corollary 4. Let T, (i=1,2, ...... ,n) be a family of mappings
of X into itself. If T,(i=l, 2, ...., n) satisfy
T; Tj=T; T; (i, j=1, 2, ..... , h),
and there is a system of positive integers my, Mg, «...:. , My such that

(1.1)—~(1.3) hold for

—_p._ml m2 mn
Q=P==T7 Ty e Tu s
then T; (i=1;v2,' ..... , n) haVe a unique common fixed point.

Proof : By a result of S. Ranganathan (5, Theorem I1.4) (which is
also obtained by taking Ty=T,=P in Theorem 1), P has a ﬁnique fixed
point p in X. Therefore T; (Pp)=Tip (i=1, 2, ...., n). Hence the
the commutativity of {T;} implies that P (T; p)=T; (Pp)=T,p. This
shows that T; p is a fixed point of B. Since fixed point of P is unique,
we obtain Ty p=p, i=1,2, ...., n. Uniqueness of the fixed point of the
family {T;} follows easily.

. Remark. We mention a few particular cases of the above corollary.
If a1=az, az=a, fand ar=0 (k=6, 7, 8, 9) thcn we get Theorem 1 of
Iséki (1]. In case ay=a, and ap=0 (k=3, 4,...., 9), we obtain a result
of Istratesqu [3, pp. 100—105]. Theorem II.5 of Ranganathan [5] is
obtained by taking P=T; m; Tama, ;
3. Common fixed point Theorem in a space with two metrics.

Following is theorem is the main result of this section.

Theorem 2. Lec X be a space with two metrics ¢ and d. Suppose that
G.1) e(x,y)<d(x,y) for all x, yin X, o
(3.2) X s complete with respect to @, -
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(3.3) two.mappings Ty, T5: X—X are continuous with respect to ¢, and
Cfari=l1, 2, j=1, 2, i=£j, the condition {1.1) holds with P=T; and
Q=T; where a’s are as in (1.2) and (1.3). : :
Then T; and T2 have a unique common fixed point. -

‘Proof: Let x, € X. Define a sequence {x;} in X by setting
Xan+1=Ty X2, Xonis=T2 X3p,q for each "positive integer n: Then
proceeding as in Theorem 1, we find that {x,} is a Cauchy sequence with
respect to d. . Therefore, by (3.1), it is glso Cauchy sequence with respect

to ¢. By the completeness of X, e) there exists a point p in X such that
Xp—>p. We now use the continuity of Tl to infer that p is a fixed point

of T1

T1 p=T (lim xgn)—lim Tl x2n=lim Xons41=P. .
Slmllarly, D is a fixed point of Ta. It is trivial that the common fixed
‘pomt is unique.

Remark : In case ay=day, ag=ay, ﬂk =0 (k-6 7.8,9and (w1thout
~ any loss of generahty (i=1, j==2, we get Iseki’s result which is mentioned
in his paper [2, page 104]

© “Corollary 5. If Ty=Ta=P then under the hypotheses of Theorem (2)
P has a unique fixed pomt. ,

" Remark : The result of M.G. Maia [4] is obtained as a paxtlcular case
of Corollary 5 when P'is a contractlon :

‘ The conc]um_on of the above corollary can be obtained under much
less restricted condition. We do not require the continuity of P with
respect to @, just the contmulfy ata pomt w1ll serve the purpose Con-
sequently we have the following, - ' )

Corollary 6. Let X have two metrics ¢ and d, and the followmg
conditions be f ulﬁlled
(B4 e (x,y)<d(x, y) for all x, y in X..
(35 P: X—»X is such that (1.1) holds with P= Q, 3



(3.6) P is continuous at p € X with respect to ¢,
(3.7) there exists a point x; € X such that the sequence of iterates

{Pm xg} has a subsequence {Pmf xo} converging to p in (X, ¢).
Then P has a unique fixed point.

Proof: Itis easily seen that:{x,}, the sequence of iterates-is a Cauchy-
sequence with respect to d. By (3.4), {xa} is also a Cauchy sequence in.
(X, ¢). Since the subsequence {xp;} of {xa} converges to p, xp—>p under
the metric 2. Also. since P is continuous at p, we have

Pp=P lim xp=lim P xp=lim xp;i=p.
Uniqueness of the fixed point p follows easily.

Remark : The result of Singh (6, page 17) is obtained as a parti-
cular case of the above corollary, when P is a contraction. 'We obtain
slightly new results when P is replaced by Pn in Corollaries 5 and 6 for
some integer n>1,

Corollary 7. Let X be a space with the metrics ¢ and d satisfying
(3.1) and (3.2), and let {T;} i € I* be a family of continuous mappings
of (X, @) into itself. Suppose that there is an m; € I+ for each T; such
that for all x, y in X and every pair i, j with iz}, the condition (2.2) holds,
where U;=T; m, for each i € I+ and a’s are as in (1.2) and (1.3). Then
the family of mappings {T;} i € I+ has a unique common fixed point.

Proof : Note that each U, is continuous with respect to ¢. Then
in view of Theorem 2, for any fixed i, j (iz%j) there exists a unique point
p such that U; p=Uj p=p. The rest part of the proof follows on the
corresponding lines of Corollary 1.

Remark : Theorem 3 of Is¢ki [2] is obtained as a particular case of
the above corollary by taking a3 =az, a;=a, and a3,=0 (k=6, 7, 8, 9).

We thank Prof. V. K. Gupta, Department of Mathematics,
R.L.S. Yadava College Aurangabad—D Gaya (Bihar—India). Finally
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manuscript,
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COMPARISON OF POISSON SAMPLING WITH SOME.
SELECTION PROCEDURES FOR UNEQUAL PROBABILITIES
By '

MUHAMMAD HANIF AND K.R.W. BREWER
El-Fateh University, Tripoli, Libya and National University of Australia

: SUMMARY

‘In this paper the poisson sampling variance is compared with some
selection procedures using a straight forward Horvitz and Thompson
estimater and a modified form of the estimator on three artifical popula-
tions given by Yates and Grundy (1953). Stability of the variance of
poisson sampling is also compared with other selection procedures, '

1. Introduction -

.. Hajek (1964) defines po1sson sampling for unequal pI‘ObabllthS as a .
selection procedure in" ‘which each unit in the populatlon is given a prob-
ability of inclusion in sample, and a set of N Bernoulli trials is carried out .
to determine whether each unit is actually included in the sample or not.
The ith unit is included in the sample if the ith trial results in a success
and excluded otherwise.

Brewer et al (1972) redefine the Horvitz and Thompson (1952)
unbiased estimator of a p0pulat10n tota.l as .

y;,s = 2 Vil co @

i=1

where m is sample size, y; is the value of the ith unit in the sample, and
m; is the probability of inclusion in the sample of the 1th populatxon
unit. They derived the vanance formula

N y’ « ) .
Vafps()’nr) = 21 (l-ﬂ)-——- @

fa=
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and an unbiased variance estimator of (2) which is

2

m ,
varps (»'mr) = _2*1 (=) "(3)‘
N N z=

)

When the sample size is a random variable they have suggested using a
the ratio estimator '

v ool m Yps 1 mEO
Yes o @)

0 otherwise
m , .

where n=E (m) = 3 m. The mean square error of (4) is

| i=1 .
" Y Y ‘
varps (y HT)'—' 2 T (1—7“) (T —~n—) + Pa Y2 (5) .
1

where Po=Pr (m 0) A consistent estimator of (5) is -
Vatps ('ur)= z = (- %“3)+Poy;§. ©

2. Empirical Study

The three typical populations widely used in literature for coms
parison purposes have been considered to compare - Poisson - samplmg
with the following selection procedures. ‘

(i) PPS sampling with replacement (PPSWR)
(ii) Midzuno’s selection procedure (Midzuno)
(iii) Rao, Hartly and Cochran (RHC)

(iv) Brewer, Durbin and Sampf‘ord (BDS)

(v) Goodman and Kish (G-K)

(vi) Narain’s selection procedure (Narain)
(vii) Raj’s selection procedure (Raj)
(viii) Murthy’s selection procedure (Murthy)
(ix) Poisson sampling (Unbiased)

(x) Poisson sampling (Ratio estimator)
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The three populations are reproduced below with common selection
.probabilities, : ' :

POPULATIONS

Unit P; A B c
1 0.1 0.5 0.8 02
2 0.2 1.2 1.4 06
3 0.3 2.1 1.8 0.9
4 0.4 3.2 20 0.8

The variances of the estimates of population total have been calculated
for all selection procedures and are as follows,

TABLE 1
" Variances of population total of various selection procedures

Variances
Selection Procedures ’ A B C
PPSWR 0.500 0.500 0.125
Midzuno . _ 2.88 . 0384 .0.240
RHC 0333 0333  0.083
BDS 0.270 0.275 0.058
GK 0.370 0.370 0.033
Narain 0.323 0.270 0.057
Raj , - 0.365 0365 . 0.088
Murthy : " 0.312 0312 - 0070
Poisson (unbiased) 8.67 8.67 1.40
Poisson (Ratio) ' 2.13 1.63 0.29

Table 1 shows that the efficiency of poisson sampling (unbiased) is poor
regarding with other selection proczdures in population A and B, but in
population C the performance is little better. The efficiency of ratio is
betterthan unbiased. Inpopulation A, the performance of Poisson (ratio)
is \‘bc_t,ter tha;n that of Midzuno’s, in population B the case is reverse and
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in population C both are almost equally efficient. Although Poisson
sampling is less efficient but selection is strictly proportional to size,
applicable for sample size greater than 2, selection procedure is simple
though lengthy, wij takes the simple form, simple for rotation and
estimation is simple ' :

3. Stability of Variance Estimator of Poisson Sampling :

The linear stochastic model '
( Yi=BZ 4+ U;
where E* (Uj)=0, E* (U, U;)=0 for i# j and

E@U)= o222, 1 < V<1 - ™
Z, is measure of size 5 Z;=Z
is used to find the stability of variance estimator E* denotes the

conditional expectation over all possible hyothetical population and 0‘2
" is constant over these populations for any particular value of i, From
(7) and (2) we obtain

N

Evar () )=B222 | [n4n2 iil(zi/az+z(%m‘l) o ];Q -8

J
where P; = Z;/Z
and from (2), (3) and (7) we obtain

r ' (3 1 2 2
E E* [var (g, —(Var (5;)] =B? 24(717 t o T)
' 2B47Z2 BAZ2\_ .4
+( n - n2 )S‘ Zl

+B4Zn 137} +(B2~-BY) s 522722 -B4 35 7}
. N . . .
i =1

~2B4Zi-t 5 3 Z2Z)



n

1B n3 3 Z;7Z-nZi) 0?4 5 (K3 Z;S (Z-nZ)®

21271 2 (0~ 2 of + 33 n%: ;f"z(z-nz,)(z-nzj) ?o? ()
7=j

" where K is the kurtesis of U;. Putting B=0, K=3 and c,’ - g2 Z?.l
in (8) and (9) the relative expected variance is

E* [var (y_,)—Var (y;n)]ﬂ ‘
B or )
- -1 o1 A Zi—~7j 7 n7:
S [Bn3+20 227 Z-n2) Z) 7 +3 znZZ; 7 (zfnz,) (Z-nZ;)
2zt zenzpzle No)

Brewer and Hanif (1969b) considered the stability of various selection
procedures using Horvitz and Thompson Estimator and also using special
‘estimators. The same population of 4 units has been considered here to
find the stability, The values of the population are Nsad, #=2 and Z ;=

1, 2, 3, 4.

TABLE 2
Relative expected variance for various selection Procedares

Procedure , Relative expected variance with

N=1/2 Ne=3/4 Ne=1
PPSWR | ; 3.81 3.39 3.29
G-K (Systematic) 10.34 10.65 10.95
Narain 7.60 6.27 5.29
BDS , 8.17 6.61 5.43
Raj . 3.08 252 2.26
Murthy 3.20 2.57 227"
Yates—Grundy at : :
(Theoretical Optimum) . . 6.44 5.90 - 5.21 -

. Poisson (unbiased) 9.07 151, . . 6.23
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The relative expected variance of Poisson is somewhat larger than

Yates and Grundy variance estimator in all three cases but it is more
stable than Goodman and Kish selection procedure. ‘

4.

10.

11,
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THE STRICT DUAL OF C (X, E,)

By
LIAQAT ALI KHAN
Department of Mathematics, Federal Government College, Islamabad
(Pakistan)

1. Imtroduction

Let C (X,E) be the vector space of all bounded continuous functions
from a topological space X into a topological vector space E (over the
field K of real or complex numbers); when E=K, this space is denoted by
C(X). The notion of the strict topology on C(X,E) was first
intreduced by R.C. Buck [1] in the case of X locally compact and
E 3 locally convex space. He also proved that the strict dual of
C(X) is isometrically isomorphic to M (X), the Banach space of all bounded
regular Borel measures on X ([1], Theorem?2). This result was later extended
to the case of X, a completely regular space by Giles [2] and, indepen=-
dently, by several other authors. In this paper we characterise the strict
dual of C(X, - Ey), where By is an n-dimensional vector space, Qur result
generalizes a result of Oates [5] which was originally proved for X, a
compact Hausdorff space. '

2. Preliminaries
.- The strict topology p on C(X,E) is the linear topology which as a base
of neighbourhoods of O consisting of all sets of the form ;

U (y, W)= {fe Ck(X,EV) (%) f(x) € W for all x €X}.
where y € B, (X), the set of all bounded functions on X which ‘vanish at
inﬁnity.’ and W belongs to a base of closed balanced neighbourhoods of

The author wishes to thank his research supervisor Dr. K. Rowla.nds of the University .
College of Walés. Aberystwyth (U.K.) for his help and guidance, and the Government of
Pakistan for a research grant.
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Oin E. (For details, see [4]). When E==(Ep,] |»), the pB—topology ofi
C (X, E,) can alternatively be defined as the locally convex topology gwen
by the semi-norms

f=>lysfl= sup | WS [n
X €X

‘where y varies over B, (X).
We denote by M+ (X) the set of all positive measures in M (X).
We shall require the following result due to Giles ([2], Theorem 4.6).

Theorem 1. Let X be a completely regular space. If L is a B=con-
tinuous linear functtonal on C(X), then there exists a unlque o€ M(X)
such that :

L(¢) = f ¢ du. ()

© for all ¢ ¢ C(X). Conversely, for any 1 € M(X), the equation (1) defines
- a B—continuous linear functional L on C(X). :

3.. The B—dual of CX, E,)

In this section we establish the following théorem which: extends ([5] :

Proposition 1).

Theorem 2. Let X be a completely regular space. If L is a B-continuous
linear functional on C(X, E,), then there exists a i € M*(X) and an
Ey-valued function h on X, each of whose components is- p-integrable,
such that | h(X) |n =1 for all x € X and

L) =f,(himdn (feCKEy, - @
X. ' -

where ( . ) denotes the usual inner product in E,. Conversely, for any

b € M* (X)and Ep-valied function h.on X with the above properties, the

equation (2) defines a B—continuous linear functwnal L.on C (X,En).

3
e
3
i
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Proof. Let L be 4 B—continuous linear functional on C(X,'E,). If f

, n

is any function in C (X,Ey), then we can expressitas f= 3 f; @ ej,
Jj=l

where ey ... e, is an orthonormal basis for Ey, f1 . ..., fn € C(X)are the

-~components of f, and f; @ ¢; (x)=f;j (x) ¢ for all x € X. Therefore

L) = 2 L(fi@ej) = 2 Lj (f5, 3)
Jj= j=

where Lj (¢)='L (¢ @ ¢;) for all $-€ C (X). Since:L is f-continuous on
C (X, E,), there exists a ¥ € B, (X) such that [ L (f) | <1 whenever
feC(X,')Ep) and |y S| < 1. Now, if ¢ € C(X) and [y ¢ < 1, then
lv (¢ @epl=|y ¢ -leiln<1 (1<) <), and so|L; (¢) [=|L($@ e)] <.
Hence edch Lj is a ‘B—continuous linear functional on C(X). By
Theorem 1, there exist pj (1< <#).in M (X) such that

L) =[x edn @
for all ¢.€ C(X). ‘

Now, by the Jordan-decomposition theorem, we can write fﬂjaﬂ:.n

(2) +z p.( O y.( , where each p.jk) (k-==1 . 4) €M+ (X). Lét

\ ;
== jgl ( F,(l) + 91(2) -+ 93(3) + #;4) ) Then 7€ M+ (X). and, for each

7 =1, . ..., n0k=1,...,4, F(k) is absolutely continuous with respect to

n. It follows from the Radon-Nikodoym theorem ([3], p. 128) that
there exist k-valued 9-integrable functions ¢j,r (j=1,...,nke=l, ... 4)
on X’such that

f pd = f ¢ ik dn | RS
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forall ¢ € C(X). Define an Fy-valued function g on X by

g = 2 (95]’1 ¢J,2+i ¢j13—i 951‘94) ® eJ"
J._.
It follows from (3), (4), and (5) that

L= [ 3 5 G tiatitia=isidn=[x (i) d.
x /=
This holds for all fe C(X, Ep). Let A={x e X: g (x) 5= 0}, and define

h(x)= "gg((x)) I if x € A, and h (x)==¢; otherwise. Then

L) =f , Goydr={ , (/ @ k@) lg@]n dn.

For any Borel subset B of X, define p (B) =rfA lg@)|ndn.
Then p e M* (X) and, since p(X—A)=o, if follows that

L(f)=I o, By de.

It is clear that the function A is @- mtegrable and that [ A (x) fn=1
for all x € X.
Conversely, let @ and h be as given in the theorem, By Theorem 1,

the equation .
T@) =i ¢dn (4 € C(X))

defines a B—continuous linear functional T on C (X). Hence there exists
a y € By (X) such that | T(¢) | < 1 for all ¢ € C(X) with [y ¢ | < L.
Now, torcach x € X, | (f(x), k() | < | SD]la - [ |n =1/ () |ns
and so, if f € C(X, E,) with | v f|| < 1, then

L] < J‘ 1f @ln dp = T( f |n) < 1.

i
{

X

where || fln € C(X) such that | f |5 (x) = || f(x) [[,. (x e X) Thus L is
P—continuous, as required,
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A GENERALIZED DERIVATION OF ARITHMETIC FUNCTIONS
, ; By :
L. M. CHAWLA

Department of Mathematics, Kansas State University.
Manhaltan, Kansas 66506, U.S.4. .

Abstract ;—In this note we define a generahzeddenvatwe of an arith~

metic function g(n) by g(m)=g(n) .f (n), where f(n) is a completely
additive arithemetic function and prove the usual properties of deriva-
tion of arithmetic fuctions leading to a generalized form of Selberg’s

identity.

Let f(n) be a real or complex valued completely additive
arithmetic function on the set Z of natural numbers so. that f(1)==0
S(m.n) —f(m)+f(n) for all m, n ¢ Z. Thus f(1)=0 and

. 4
St pk*"’C) = 21 ai f (p:)

"~ for any positive integer n=py *1... . pr %k > 2." -

" Define A 7 (@) = { f(p), when n=ﬁm, paprimeand m>1
0 otherwise
Theorem 1.1
f()= 3 Ag(d).
din
k% k%

Wo. have | ‘f Nr(d)= - 2 s fpim)=. 3 1-, f(m) =

lm—- : z= me=] .

k .
izl a, f (1) == ()

=
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ﬁf"lleoljem 12
7 :If n }71, then "
= d) f (n)d)=— ' ‘
As () d|2n & (d) f (njd) dlzn ® (@) f d)

We have :
S (W)= dlz Ay (d) by Theorem 1.1~
n . .

Hence inverting this by M8bius inversion formulae,

A= 3 w@/f(@nd)
din -
= I r@UM-@)
din - :
= d) — d
@ df,. ® (d) dlznu(d)f()
= fmIm- 5 s @,
d—n

where I(n)=1 when n=1 and I(n)=0 for all n>1, is the usual identity
function. This proves As(n)= dz w(d) f (njd)y=— dzl #(d) f(d)
| n n

2. Generalized Derivation. . , 7

Let g(n) be any arithmetid function then g:(n)=g(m)f(n) is called
‘the generalized derivative of g(n). '

It is evident that the usual derivative of g(n) given by g*(m)=g'(n).
log n and the distributive function G(n)=g(®\f(n),*[2], in which g(n) is
necessarily multiplicative are both special cases of the  generalized
derivative g-(n).

Since T (1) f (n)==0, we have I{(n)==0 for all #. Let U(n)==1 be the -
unity arithmetic function so that U(n)=1 for all a. Thus

U (m)=U0n) f()=f ()

Hence the result of Theorem 1.1 ean be written as




A9
Lomma 2.1~
Ar % U=U"

where 4 denotes Dirichlet multiplication.

Theorem 2.2 ‘
For g(n), h(n) arithmetic functionsi,wej}ave :

@ (g+h) =g +h.

® (Gxh=g xhtgxh

€) (g)=—g % (¢ % £, provided g(1)s£0.

(@) follows immediately since (g+h) ==(g—|-h) f =g f +hf =g +h.
To prove (b), we have

G WO= 5 €D hwDS @
= 3, 6D h@D @+ Feid
= 3 g Df@hmd+ 3 gd) h(d)f@d)
din d|n

=g (n) % k(M+g®) % k@)
This proves (b). |
i To prove (c), we have
1-(i)=I(n) f (")=0 for all n.
Hence, © I)=(g % £)'=¢ % g'+g % @V'=0.
or g *(g I)==g* % g71. By multiplying by g~! on both sides,
we have ,
(gD m(~g % &) % gl=—g % " x &N
—=—g % (& % &7
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This proves (). We next prove a generalized form of Selberg’s identity {1
in .
Theorem 2.3
For n>1, \s(n).f ")+ df Ar@) As(@]d)
n

= % p(d)Sf2(n/d)
dln

From Lemma 2.1, we have
Ar % U=U
Applying Theorem 2.2, (b) we get
As % U+ As % U=U~ or since U=Ar % U,
N % U+As % (Ar % U)=U~
Multiplying both sides by p = U~1, we get
As+ As % A=U* % &.
’_I'_hi,s completes the proof.
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RINGS EMBEDDABLE IN A RIGHT FIELD

By
, M.A. RAUF QURESHI
Department of Mathematics Karachi University Pakistan

Introduction

In this paper R will stand for an integral domain (net necessarily
commutative) with unity element different from zero and R* for the set
of all non-zero elements of R. Furthermore, all modules will be unitary.
For homological concepts and undefined terms we refer to [1] and [5].

Looking into 0. Ore’s theorem _[6] and the results given by E. ‘R.
Gentile in [2] and (3], the following conditions are equivalent :—

. (a) Ris aright Ore domain (see next section) ;
(b) R can be embedded into a right field of the form R (R*)™1 ;
(¢) R/A is a torsion module for every right ideal A of R ;

(d) In every right R-module the sum of two torsion elements is

a torsion element.

If R is a right Ore domain, it follows (see the proof of the theorem in
the next section) that

(e) For a torsion element x in a right R-module M, x R is a torsion
subimodule of M. :

The aim of this paper is to show that (e) is equivalent to the requirement
that R is a right Ore domain. To prove this we shall make use of the
properties of the maximal right quotient ring of R in the sense of

Y. Utumi [8).
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2. Torsion Elements

R is called a right Ore domain, if for all @, b in R¥, a R* n bR* is

nonempty (Ore condition). Consider a right R-module M and write
TM)={xeM| greR*s x r=0}

and call each element of T(M) a torsion element, M is called torsion
(respectively torsion free) module, if M=T (M) (respectively T (M)=0).

Let I be the injective hull (see [5] of the right R-module R and H the
ring of all R-endomorphisms of I. Then R can be regarded as a left
H-module by defining, for % € H, i € I, hi by the image of i under h. The
biendomorphism ring Q of I, ie., Q=Homg (I, I), is called maximal right
quotient ring of R. Maximal quotient rings were first defined by Y. Utumi
[8]. For details we refer to [4] or [5]. What we need about Q are the

following facts :
() R can be regarded as subrmg of Q;
(if) for Oz£x, y in Q there exists € R such that x r 5420 and yr eR; '
(iif) Qu, i.e., Q as right R-module in injective. Regarding right Ore
domains we require a result of [7], which we state as
(iv) R is a right Ore domain if and only if R can be embedded into a
torsion free and injective right R-module.

Theorem. The following statements are equivalent:—

(1) R is a right Ore domain ;

(2) For a given right R-module M, whenever x € T (M) it follows :
that x R ¢ T (M).
Proof : Let us assume (1) and consider a torsion element x in a right
R-module M. Then there exists an element r in R* such that xr=0.
Now for 7 € R¥, Orc condition yields elements ¢/, ¢’ € R* satisfying
-rr'=1t¢, Thus .

=0 2’ = (x 1) r’ = 0, which implies x ¢ ¢ T (M), .

and it follows that x R is a torsion submodule of M.
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Conversely, suppose that (2) holds and Q is the maximal right quotient
ring of R. In view of (i), (iii), and (iv) it is enough to show that Qg is
torsion free. Suppose, on the contrary, there exists a non-zero element
g in T (Qr). Then by (i7) and (2) there is an element ry € R such that
Oz£gr€eRNT (Qp). Thus (g ry)#y=0 for some ¢ e R*. This is
impossible, since R is an integral domain. Hence Qg is torsion free.

Corollary.  The following conditions are equivalent :—
" (1) R is a right Ore domain;

(2) for any right R-module M, x Ris a torsion submodule of M,
whenever x is a torsion element of M;

(3) for any right R-module M, T (M) is an Abelian subgroup of M;

(4) T (M) is a submodule of M for every right R-module M.
All these characterizations of a right Ore domain are laid down in terms of
torsion elements. However, several necessary and sufficient conditions

are given in [7] utilising torsion free modules. Some others will be given
elsewhere making use of divisible elements.
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CONVERGENCE IN REGULAR ORDERED BANACH SPACES

By
M. NASIR CHAUDHARY
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Lahore 31, Pakistan.

In this paper a relation between norm convergence and order con-
vergence is discussed. It is known {4: IV.2.4] that the notions of norm
convergence and relative uniform *-convergence are identical in a
Banach - Lattice. It is proved below that the same holds for Regular
Ordered Banach Spaces. . : :

Let X be an ordered Banach Space with positive cone X, .

X is called regular by Davies {2] if it safisfies the foﬂowmg two
conditions :

RY: -x<y<x—|yl<lxl;

- (Re): Given y€ X and € > 0,3 xe€X, such that -
y=y<xand x| <|ri+e.

A sequence {x,} in an ordered Banach space X will be called
relatively uniformly convergent to x,€ X if there exists an element
ue X, and a sequence {An} of positive real numbers decreasing to zero '
such that

| Xp = Xo, Xo = Xp < Ap- U, n=1,2, ..., .

A sequence {xp} in X will be called relatzvely uniformly * ~convet-
_ gent to x4 € X if every subsequence of {xn} contams a subsequence that
is relatively uniformly convergent to X,.

Proposition:  _

Let X be a regular Ordered Banach Spape A sequenoe {*a} in X
norm converges to x, € X if and only if {x,,} is relatlvely uniformly

«~convergent to xe. T
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Proof : -

. Let {xy} be relatively uniformly convergent to x,,  there exists
u ¢ X; and a sequence {An} of real numbers which decrease to zero and

Xpn==Xo, Xo - Xn < Aot B=1,2....;
ie. —Mu{ Xn—Xo < Anu |
Since X satisfies (Ry) we have
Txn =Xl < tanl: fufe

Thus {xs} c_ohverges to X, in norm. Since a sequence {yn } in X.
converges in norm to-v if and only if every subsequence of {y,}
“has a subsequence that converges in norm tp v, we see that relative
uniform ,—Convergence implies norm convergence. .

Conversely let {x,} converge to iere in norm. -We will show 'that
any subsequence of {xp} has a subsequence which is relatively uni-:
formly convergent to zero. v . -

Let {yn} be a subsequence of {xp}. -Since X satisfies (R3), there are
zm ¢ X, such that — yp, ym < Zm and .

Hzmﬂ A ymi +~——- for all m=1;2,3,...... Thus ?z,'n--fO and there

exlsts a subsequence o T

{zm } of {zm} with |[k Zm,‘ll g For given p, q>0

q p+q
k k
| k=§+l Zmte | pf | zm I )
1 1 ;
< 2p+l + ------ + 2P4q
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which implies that{ kgl k. zn, } is a Cauchy sequence in X and
hence converges to an element z € X, .

Thus Zn, < —Il?— z for all k ; which means that {zn, } converges re-

latively uniformly to zero. This further implies that {xn}is relatively
uniformly , ~convergent to zero.

In {1] and [5] compactness of certain subsets of an Ordered Banach
Space is considered. Above Proposition is helpful to establish comp-
actness of certain subsets of a regular Ordered Banach Space.

REFERENCES
1. Chaudhary, M.N. and Atkinson H.R. “Ordered Banach Spaces with Compact
Order Intervals™, J. Lond. Math. Soc. (2) 17 (1978), 107-109.
2. Davies, E.B. “The Structure and Ideal Theory of the Predual of a Banach
Lattice™, Trans. Amer. Math, Soc. 131 (1968) 544-555.
3. Jameson, G. “Ordered Linear Spaces™, Springer-Verlag ; Berlin-Heidleberg-
New York, (1970).

4. Peressini, A.L. “Ordered Topological Vector Spaces’, Harper and Row ;
New York, (1967).

5. Wickstead A.W. “Compact Subsets of partially Ordered Banach Spaces”,
Math. Ann, 212 (1975) 271-284.






ON AFIXED POINT THEOREM OF GOEBEL KIRK AND SHIMI

By
S. L. SINGH*
Department of Mathematics, L.M.S. Government College,
Rishikesh, Dehra Dun 249 201 India.

Generalizations of a fixed point theorem in uniformly convex spaces
of Goebel, Kirk and Shimi [2] have been obtained by Bogin [I] and
Rhoades [3]. We present another extension of their result.

Theorem : Let X be a uniformly convex Banach space, K a nonempty
bounded closed and convex subset of X, and F : K—»K a continuous
mapping satisfying for x, y e K :
MIFE -FO | < a {x=y[+a ([x-F &0l+[y-F D
+a3 ([x=F ()] +]y—~F (x)]) + a4 x ~F2 (x)]
+as|F(x) = F2(x)]| + 4]y - F2(x){ +a7|F(y) - F2(x)|
where a;'s are nonnegative real numbers such that
Q) ay+20,+2a5ta4+ ag+agta;=1 and ay=a, with a;=0
implies @5=0. Then F has a fixed point in K.

It may be mentioned that the result in [2] is obtained by taking
ay=as=ag=a;=0 in (1). We shall follow the same line of argument

and notations as that of [2].

Proof. Putting y=F (x) in (1), we get

[FG) = F2(x)] < ay % = Fx)[ -+ ay([x — FGo)| + [F(x) - F2(x) )
+a3(x ~ F2)[ +a4]x~ FA(x)| +as[F(x) — F2(x)|
+as | F(x)-F%x) |

* This work is supported by the University Grants Commission, New Delbi,
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wﬁich gives - +
[F()-F2)|< plx=Fx)]
where p= (a1 +cata;+ay)

(1—a3—a3—ay—as~ag)
By (2), p=1. Hence
G) [Fx)-Fx)| < [x=-F)|
and consequently
4 P21 (0)~Fi ) |<]| F (x) =Frr1(x)], i=1,2,3,......

Assertion:  inf || x—F (x) [|=0.
xeK

To prove the assertion, we assume  jnf  [x=F(x)[]=d>0.
A xeX

Let € > 0 and choose x €K such that || x~F(x) | < d +e. Using
uniform convexity and assumpticns on K, we can find a real number

a, 0<<o<1, as in [2] such that
5 [F1@)=Fr1)] < 20fF 1 @=F ()], 0<a<l.

Writing j for i—1 in (5), we obtain
6 |JF1(0)-Fi*2(x)| <20 |F (x)=Fitl(y)], O<a<l. -
Case 1. a3 or a4 5<0. : ' ' ‘
By (1), '
IF! () =F*1(x) | < (0+a) | F (x) = Fi=t ()]
+ (a2+as+ag) | Ff (x) —Fi+1 ()]
+ (a3+ay) | FH1 () -F7t (x) |.

Therefore by (5),
(I=az2—as—ag) | F* (x)—Fi*1(x) | ; .
S(@tat20(agtay)) [ F ) -FriQf.
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Hence (1 — 8y —d5—0¢) d € (ay+az+20(az+ay) (d+¢).
Since €>0 is arbitrary, we have
(l—ap—as—ag) d < (ey+as+2a (a3+4ay) d.-
his implics
1-a2—a;—as < a;+ax+20 (a3 +a)
which, in view of o < 1, contradicts (2).
Case Il @3=a4=0. Note that a;=a4=0. Let
m=(F! (x)+Fi+1(x))/2. Then by (1),
| m=F@m) |<271 || FF (x)~F(m) [|4-271 | Fi+1(x)~F(m)]
<27 (ay [Fr1 ()= m] 4 2,(JF1 () ~F4 () ||+ [on = () )
+a5 [F! ()= Fi#1 ()] +ag Jm=Fi+1 (x) |
+271 (0 [Ft (1) = m] +ag ([F? (2) = F#+1 (|4 [ —Fm) [)
+as | F1+1 (x) = Fi+2(x) | 4ag [m=Fi+2 (x) |)
that is
(1—a2) | m~F (m) | < 271ay (JFF1 (x) = ]| -+ [Fi (x)=ml)
+ag (|m—=Fi+1(x) || +[m—F1+2 (x) )
+ag (JIFF-1(x) = F# (x) ||4+]] F? (x)~Fi+1(x) [))
+as (|[F* () =Fi+1 (x) [+ Fi*1 () =F+2 (x) )
<47 (g (JFFL ()= B2 ()[4 IF L () = Fr+1 (x) ||+ [P (x) Fi+ 1 (x){)
+aq (IFF (x) =Fi#+1 (x) [|+|| Fi+1 () = F?+2 (x) ||+ F? (x) - F*2 (x) |))
+271 (@ (1 F71 ()~ Fi () |+ F? () =Fi+1 () |
+a5 (| Fi () =Fi+1 () | +] Fist () —=Fir2 () ).
Hence appllying (5) and (6) we have
(1-a2) d < (1/4) (a1+20. a1 +ay +a6+a6+20 ¢6) (d-+8)
+ (1/2) (@+6y+as+as) (d+8).
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Letting e—>0 we obtain
(1-a)d € (1+0)ay/2+ag+as+(1+a) a/2) d
that is, if ag or a3 % 0,
1 —-a;;<al +as+as+ag
which contradicts (2).

Case IIl. ag=a,=a7=ag=0,=a5=0.
In view of Soordi’s result [4] this case need not be considered. Thus the
assertion is proved.

Now for € € (0, 1) assume
Ce={x :||x—F(x)) < ¢} and De={x € Cc : || x || <d+¢}

where @ = lim a(Ce) and a (Ce)=inf {x|| : x € Ce}.
€—0

Since F is continuous, the sets Ce and (so) De are closed and by the
assertion they are nonvoid. The proof is completed by showing
n Ce = 4.
£>0
Ifd=0then0e N Cec # ¢ and we are finished. Therefore we
£>0 :
may assume 3>0. Letting vy, v ¢ Ce we have by (1) and the triangie
inequality, fori=1, 2,
(D Mui=F((y+u)/2D] < g =B+ F(ury) = F((ry +2)/2)|
< € +ay|lug — Uy +ua)/2l + as((|vy — Fu)l| + |y 4 u2)[2

—F((uy+ug)/2)]l) +a3(|y — F (g +u2)/2)])

+ Iy +u2)2 = ]|+ [y = F@y)|) - ag((luy = F )|

+1F (1) =F2(up)]) + as||F(uy) — F2(uy)|]

+ag(ll@+u2)/2 - ug|| + [lug — F@) [+ [F (1) = F2(uy)))

+aa(lIF (g +42)/2) ~ uy)| + |ty = F(up)]| + [[F(eg) = F2(4y)].
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We note that by (3),
IF() ~F2@)ll<lin-Fa)l<e
Also since
| 11 +u2)[2=F ((+u42)[2) [I< .maxz fl 41— F (@1 422)/2) [,

i=l,
we obtain
(1-ay—a3—ay) _maX2 4y —F ((u1+u2)/2)]|

i=l,
< (1 +aztay+2a4+ay+2a5+247) &
+(ay+a3+ag) ||ug —u)|/2
so [luy—F ( (4 +43)/2) <o &4 |lug—u2))/2
where a=(14a,+a;+2a5+ a5+ 2ag+2a7)/(1 — a2 = a3 =~ ay)
and B=(a; +a3+ag)/(l —ag—ay—ay). '
By (2), 8 < 1. Therefore
lltiy = F((uy+12)/2)]| < @ &+ug = u3l/2.
Now the rest part of the proof follows as in [2].
We remark that if @, or a4 or a5 # 0in (2) then the fixed point is
unique,
We thank the referee for his valued suggestions for the improvement
of the paper.
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