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THE LOVE WAVE SCATTERING MATRIX FOR THREE-LAYERED
STRUCTURES CONSISTING OF WELDED LAYERED
QUARTER-SPACES WITH A PLANE SURFACE

- By~ ;
M.H. KAZI AND A. NIAZY
| ABSTRACT

In this paper we use spectral representation of the Love wave
operator for a three-layer model comprising two homogeneous, in- '
finite strips over-lying. a uniform half-space, along with a method
based on an integral equation formulation and Schwinger-Levine
variational principle to describe, by meaas of a scattering matrix,
the diffraction of plane, harmonic, 1wuncchromatic Love waves, inci-
dent normally (from either side) upon the vertical plane of discon-
tinuity in the three-layered struciure <consisting of welded layered
quarter-spaces with a plane surface. Approximate expressions for
the elements of the scattering matrix are obtained through the plane-
wave approximation and their variational improvement is sought
through the Schwinger-Levine variational pr’incip‘le in such a way as

“to incorporate the contributions caused by body-wave conversion.
Complex reflection and transmissioh coefficietits can be obtaitied
through a transmission matrix related to the scattering matrix. ‘,W'é _
obtain the form of the transmission matrix (under both approxima-
tions) in some simple cases. -

1. Intreduction

~ In our previous work [Kazi (1978a,b), Niazy and Kazi (1980,
1982)] we used a method based on an integral equation formulation
‘ahd Schwinger-Levine variational principlé to describe, by means of
a scattering matrix, the diffraction of plane, harmonic, monochroma-
tic Love waves, incident normally upon the vertical planes of discon-
tinuity in laterally discontinuous struetures such as a half-space with
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a surface step and welded layered quarter-spaces (involving single
top layers) with a plane surface. The method presupposes the exis-
tence of a complete set of proper and improper eigenfunctions, in
terms of which the displacement fields on either side of the vertical
plane of discontinuity may be expressed. Such a set of functions for
the two-dimensional Love wave operator, associated with the pro-
pagation of monochromatic SH waves in a half-space overlain by a
single layer, has been given in Kazi (1976). In order to be able to
extend the method to laterally varying structures involving two
layers over a half space, we need explicit spectral representation of
the Love wave operator associated with monochromatic SH waves
for a three-layer model comprising two homogeneous, infinite strips
overlying a uniform half-space. Such a representation -has been
found in Kazi and Abu-Safiya (1982). In this paper we use this spec-
tral representation tc extend the method of integral representation
and Schwinger-Levine variational principle to investigate the two-
dimensional diffraction problem of plane harmonic Love waves,
incident normally (from either side) upon the plane of discontinuity
in the three-layered structure consisting of welded layered quarter
spaces with a plane surface. The wave field is described by means
of a scattering matrix, and approximate expressio'ns for its elements
are obtained through the plane-wave approximation and their varia-
tional improvement is sought through the variational principle of
Schwinger and Levine. Complex reflection and transmission coeffi-
cients are obtainable through a transmission matrix related to the
scattering matrix. The form of the transmission matrix in some
simple special cases under the variational approximation indicates
that the variational procedure incorporates the effects of propagated
and non-propagated modes arising out of the continuous spectrum,
which corresponds to body waves, and is, therefore, of considerable
importance. Numerical computation of the reflection and transmission
coefficients for backward as well as forward transmission in the

welded quarter-spaces problem and other related problems will be

given in another paper.

Equations of Motion
Let us suppose that a quarter-space consisting of a material of
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rigidity p3, shear velocity 83, and density p;, overlain by a layer of
uniform depth Hj, density p,, rigidity p, (<#s) and shear velocity
B2(<Ps) and another layer of uniform deptk H;(<H,), density oy,
rigidity pi(<u,) and shear velocity Bi(<fz), is in welded contact
with a similar quarter-space of material of rigidity u’;,shear velo-
cityp’s and density p’;, overlain by a layer of uniform depth H,,
density p’,, rigidity w'2(<w’s) and shear velocity p'2(<p’s) and
another layer of uniform depth Hj, density p’y, rigidity p'y(<p’s)
and shear velocity B’y (<B’;) (see Figure 1). We take the vertical
plane of welded contact between the two structures to be x=0, the
plane of welded contact between the upper two layers to be the
xy-plane in the co-ordinate system shown in the figure and regard
the top plane surface z=-—Hj to be stress free. All materials are
considered te be isotropic and homogeneous. :

We consider two dimensional problems of the diffraction of
time-harmonic Love waves normally incident upon the vertical plane
of contact (from either side). Again, the wave motion is entirely
SH in character. The y-components of the seismic displacement
fields in the regions I(x <0) and Il(x>0) (see Figure 1) are denoted
by e o, (x, z) and e—mtv’(x, z), respectively, where

—i . —iot _
e mtv(x, Z)=e o vi(x, 2), —H;1 €250, x<0,
=e_lmvz(x, 2), 0<z<H;, x<0,

=e—lwtv3(x, 2), H<z, x<0,

— W] —jwt
and e : tv'(x; z)':e v'l(x, Z), —“HI <Z<O, x>0
—iwt
=e V2%, 2), 0<z<Hy, x>0

—iwt
=p v'3(x, 2), Hi<z, x>0,

(o being the angular frequency} are the solutions of the Love wave
differential equation

0% 0 ov F ov
P =z +@gr |40 3 |

in the two regions on either side of the vertical plane x =0,



.
The conditions at the free surface z=—H; and the plane of
welded contact x=0 imply

24 0 and 31‘— =0 at z=—Hy, e
y=y’ at x=0, z> —H;, ' _ (19)
(L(z) 8 '(z) v at x=0, zz~H;, (1e)
where
u(Z)='m; —H; £2<0, x<0, L
-plz, Q<Z<H2, x<0, ‘ ) . . ' (2)
and

p(2)=p"1, —H,; £2<0, x>0, ‘ \
=p'y, 0<2<H, x>0, , o &)
=p';, H<z, x> 0.

The complete solution for the displacement (x, z) in domam

I ésee Figure 1) can be expressed in terms of proper and unproper
eigentunctions of the Love wave operator for a homogeneous half-
space of rigidity p; and shear velocity B,, overlaid by two infinite
strips consisting of a layer of depth H,, rigidity #,(<us), and
shear velocity B, (<@;), and another layer of depth Hj, rigidity
1 (<p) and shear velocity B,(<@;). Kazi and Abu-Safiya (1982)
" have found explicit formulas for these proper and improper eigen
function and have shown that the spectrum of the corresponding
_two-dimensional Love wave operator is the disjoint umion of the
discrete spectrum, which corresponds to the ordinary Love modes, and
a continuous spectrum {corresponding to body waves) which is the
~ interval (— o0, w2/32;) on the real axis of the complex A-plane, where
A=k k belng the wave nuniber and « the angular frequency. Like-
wise, we can write the comptete solution for the dlsplacemeut v'(x, z)
in domain IT in terms of proper and improper eigenfunctions of the
Love wave operator for a homogenous half-space of rigidity '3 and
shear velocity i's, overlaid by two infinite strips consisting of a layer
of depth H,, rigidity w', (<p's), and shear velocity §'2 (<p’s) and
another layer of depth Hj, rigidity #’/;(<®’;) and shear velocity
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B y( <p'2) Using the formulas derived in Kazi and Abu-Safiya (1982) N

7 YA "H]

; ////3/
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P’sz ‘

Z= ‘Hz

Figure 1 : The Geometry of the Problem
we have in Domain I (x<0, z=—H,)

W, 2 )“Z(A ”"'"‘*+B ”"‘"“) ey

m-1
o[B8 '
+S {C(k ~iklx] +D(k)e’k l=1 }oa ik

and in Domam Ii (x>0 z> ""H.l)
s

: '(x’ z), (2( Ao ik’mx_FB; ik’ ..x) (z)

m==1
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0

oo
+§ B X ¥tz ke (%)
0 e
where .
xm(2)= @1™(z), ~H; <z<0
=g M), 0<z<H;
=02 3"'(2), Hz <z (6)

cos (a,"'Hl)
mcos {o,m(z—H,)}~ uscs"'sm{oz"(z—Hz)}
cOs (G‘zmnz)
0<zg HZ’ (7b)

@ ™( z) =Gy 202

ugosMe —63"‘(2-1'12)

%) 3m(2)=G COS (GZMHZ) ’ ZZHZ ' (7C)
p..—[{ } | ®

)A Am ' : '
G".=LMF,., | | )
M=,6,+ 303 tan (s2H,), (10)

A=pq0111202 tan (6 Hy)+p1011303 tan (Gsz) tan (o,Hj)
—93039-2024-("202)2 tan (o.Hy) (11)

2 w2

61(7\)—( W 7\)* Gz(:\)"‘( -~ ) » 63(A)= ( A2 By )* (12)
ci(Am)=0¢™, i=1,2, 3 (13)
and Ag=kn2, ks >0 are the roots of A=0, L)

which is the dispersion equation for Love wave propagation in two
layers over a half-space (see Ewing et al., 1957, p. 229), and where
- R k. cos {o1*(z+Hj)}
¥z, M=z, )‘)==G. “292 cos (o1FH}) cos (0FHy)'

—H;<z<0 (15a0)




G*
=42z, M= 08 (5,5Hy) {u202* cos (0z¥2)—p 01¥sin (02*2) x
tan (ClkH])}, 0<Z<Hz, (ISb)
sin {0%+s.¥(z—H,)} A
=¢s(z, N)=— et} H,<s, -_
q’S(Z ) '\/‘N(LgS;k sH2=2 (] SC)
where ’
_V/ 2ku3ss* cos 6
Gl Ye— 16
n ‘\/ 03535 (16)
§i¥= (—p_f )é (real and positive) 1Y)
—tan=1 | 9 .
ok = tan™1 (—E), (18)
P=i0:¥p20,%tan (o, ¥ Hy) 41,2 (o,%) tan (0,FHy), (19)
g=p,61%pos5%tan (62FHy) tan (o*H;)—p o5k p3ss® (20)
w2 © '
i @1
—k| x|

Owing to the factor e in the integral containing ¢, these
represent nonpropagated modes.

2(z, k), the improper eigenfunctions belonging to the improper
eigenvalues A==k2, 0<k < /B3, have expressions similar to thosz for
¥ (2, k). Owing to the form of x—dependence in the integral con-
taining @, these represent waves travelling in the x direction.

The orthonormality relations amongst various propér and
improper eigenfunctions are given by (cf. Kazi and Abu-Safiya

(1982) ).

g w(2)Xm(2)Xn(2)dz=84n, 1 <m, n<r, (22a)
_Hl

(s 6]

S 2(2)xn(2) 2 (2, k) dz=0, 1 <m<r, 0<k<alBs (22b)
— Hl ’

[s 0]

S W22z, k) dz=0, 1 Sm<r, 0<k<eo (220)
—-— Hl



S p(z)\P('., 06z 1) dz=8 (k=1), 0<k I<o  (22d)

(e o]

i S Kz)z(z, k) ¢ (z, k) dz=0 : S (22¢)

—H,
o0

J varo@bac, ndz-s(k—n,osk ISalts  (221)
—H, ‘

. The corresponding expressions for x'm(z), $'(z, #') and &’ (2, k')
und the ortbonormality relations amongst these are the same as for
X(2), $lz, k) and (2, k), given dbove, but in primed notation. )

7 Integral Equatmn Formulatlon
Let r(z) denote the component of stress at any point of the
vemCal plane x=0: : : ~

T('z)—v‘y/x 0= @x /xr-O“ “(z) ax x#Of’ |
e > Q)
we bave both

ms=]

m/ﬂs - d
+ Stk{cac) Djet k)dk+S KEWD ¥ 2, k)dk] 24

H)=nie) *a‘/x =D [2 zkm(Am—Bm)x,,.(z) |

and
s

=) 2oy o=t @Y KA B @)
m=1
wff’s e'o) -
S K(C (k") —D'(k )2 "z, ’)dk + ey (z,k)dk’] @5
0

0
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On multiplying equation {23) separately By Xaul2) (m=1, 2...r),

#(z, k) (0<k<—;’;) and ¢(z, kKNO<k< ), and integrating with

respect to z from —Hj to o, we obtain [using orthonormality rela-
tions (22a) to (22f)]

» |
—ikn(An—B)= § *(n)xn(n) dn, m=1,2,...r, (264)
....I-I1
S
~ikC(k) Dk} = § W2, kydn, (265)
-Hl
and
—kE(k)= S o{n) ¢ (1, k) dn (26¢)
N,
Prdc'eeding similarly, equation (25) leads to the following
w ,
— ik’ (A B )= S wn)x' (n)dn, m=1, 2,...5,  (27a)
_..:[—I1 ’
. -
*ik’{C’(k')—D’(k'}——:S «(n)o(n, K)dn, - (27B)
—H; .
e 8]
~kE k)= n) ¢’ (o, k) i (27¢)
_:[-I1

. Eliminating D(k), D'(%"), E(k )E’(k’) [assuming C(k)=C '(k')=-0
and applymg the matching condmon (io)], we obtam

r [¢.4]
Z(Am—f-B Jonla) + Z (At B'mdx'n(2)= s()G*(zm)dn (29)
me=1 m=1 —Hl

where _ _
G*(z, n)=G(z, n)-+-ig(z, n), (29)
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Oz, ny= [ HERURD) 4 (VEIVVOK) g (3
an=]

and

el o &) o
g(Z, n)= S @(?, k)kg(n’k) dk+ S @'(z, k 3‘? (n, k") dk
E))

It may be noted that G*(z n)isa Green s function type symmet-
ric kernel, whose real and imaginary patts correspond to non-
Propagated and propagated modes (respectwely) arising out of the
continuous part of the spectrum.

The integral equation formulation of the problem is given by
equations (26a), (274) and (28). If the amplitudes (Am, m=I, 2,...,
ry A'mym=1,2,......, 5) of incident Love waves are specified, we
have to find the amplitudes of the transmitted and reflected waves
from the above mentioned (r+s-+1) integral equations. Using
“matrix formallsm,we recast the problem in terms of a scattermg,
matrix’ in the next section.

The Scattering”Matrix Formulation
Introducing n x 1 vectors .

[ A& Y (BY) [ s ]
Az |- ¢ sz : xZ(Z)
N
A= Ar . B=| B | X@2)= xA2) (32)
AL B ] o |
Als B's x'«(2)
L J L J L
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and the nx n diagonal matrix

[ ki ]
ky (8]
K== ky . s n==r+s, (33)
k'
0 ) N
. k's )
equations (26a), (27a) can be rewritte n
o0
—ilk.(A—B)=1S X (n)s(n)dn (34)
, “H,
and equation (28) as
B o]
AT +8Tyx()={ G¥(z, mitrrdn, 2> —Hy - 35
. 2y, , |

where the superscript T denotes the transpose.

Equations (34) and (35) imply that both A—B and the unknown
stress 7(2) on the vertical plane x=0 must be linearly rélated to
A+4B. Consequently there exists an nxn matrix S= || sij | and an
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nx 1 vector
[ w2 1
2= | =) (36)
v1(2)
L ‘C's(z) J
such that
K.(A—B)=iS.(A+B), : (37
and .
#z)=(AT +B1).1(2). (38)

The matrix S= lis;y Il is the SCATTERING MATRIX.
Equation (37) can be rewrittep

B=T.A (39)
where
T=(K+iS)" ' (K—iS) (40)
provided K+ /S is non-singular. Substituting (38) into (35), we get
o0
T ,T .
A 4B (X(5) -] G nydny=0, ~Hi<z, @)
—H, _
whetice
o
X(2)=§ 64, npmyan, —H1<, (42)
—H,

on account of the arbitrary choice and linear independence of the
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components of A+B. From (42), we obtain the following n un-
coupled integral equations for the determimation of () :

m .
xne)= § G, nynladn, m=1, 2, r, 2>~Hiy, (43

0

0
wm(z)=§ G, mmlr)dn, m=1, 2,005, 7> —Hy. (44
0

Substituting (38) into (34), we get
)

K.(A—~B)=1 § XN(AT +B), (i,
o

whence from (37)
00
s.(A+B)= | x(HAT+BY). sldn,

0

and so
.
Si3= Sx‘(n)fl(n)dns (G, =1, 2,..., ryr+l,., n=r+s), (45)
¢

where:
Xree=x"t  and  Tre=t'y, 1SILs.

The problem has thus been reduced to the solution of the
integral equations (43) and (44) and the subsequent determination
of the scattering matrix § from (45) and the related transmission
matrix T in (40) which yields the required complex reflection and
transmission coefficients (after appropriate normalization) through
equation (39). The formulation of the problem is exact at this
stage. Unfortunately, it i not possible to solve the problem
exactly and we must resort te construct approximate solutions, In
the next section we shall proceed to the plane wave approximation
neglecting the propagated and non-propagated modes arising out of
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the continuous spectrum. In the subsequent section, we shall
- construct expressions for the elements sis (of the scattering matrix)
to which variational principle of Schwinger and Levine applies and
then improve the earlier approximation ih such a way as to incorpo-
rate the effects of propagated modes (which correspond to body
waves) and non-propagated modes indirectly.

Plane Wave Approximation

If we neglect the propagated modes &(z, k), @'(z, k') and the
non-propagated modes {(z, k), ¢’(z, k') corresponding to the con-
tinuous part of the spectrum, then we can set G*(z, n)=0 [see
equations (29) to (31)] in the preceding formulation and assume ' the -
following expansion for <(z) in terms of the whole set of ,propagated
discrete modes in the left-hand domain :

, _
{)=4@) { § Dusn(s) | )
mel
Substituting this into equation (34) we obtain

P~

x1(n)
x2(n)
[« o] r
—~iK.(AB)= .| W { 3 Dnwnt) an a0
-H, m==l
x(n)

x'y(n)

LX)
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or
[ kA=B) Y [  Di )
kx(A2—T2) D;
—i k«{Ar—By) D, 48)
k'y«(Aj~B') r
' IZDnPim Aim
m=:]
k' (A’s—B's) . [
J
r .
Z D,y Pym Asm
[ m=1 J
because of the orthonormality relation (22a), where
im= (1) =L 25 s m=1, 27, 49
o0
and \iyp Pim=S u(n) x'«(n) xm(n) dn, i=1,2,...5s; m=1,2,..,t. (50)
—H;
Substituting G*=0 in (35), we get
(AT+8D).x()=0,2>—H, (s1)
Eliminating Dy, D3,-.., Dy from (48) and simplifying, we obtain :
R.(A—B)=0, ' (52)

where the sxn matrix R is given by :
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([ Pu Pp Py . I O )
Arr M2 Ay .
P21 _P_22_ Pzr
A1 Az A ’

. —1
R= ) : N EE))
P_Si, _PLL Py
At Asz 7 Asr . -1

. J

————————J —r

sXr $X§

Calculating the first moments of (51) with respect to p(z) xi(2),
i=1,2,..,r,we obtain a set of r simultaneous, linear, algebraic
equatons equ1valent to the matrix equation :

Q.(A+B)=0, (54) -
where the r x n matrix Q is given by
[ M1 Py Ay Pagdsa Psp )

! ’ TR SURDYTR STRR VPR 2

Q= ' . ‘ (55)

Arr Plf Aar Pzr'--/\sr Psr
- -
Y . Y

rxr rxs
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Combining (52) and (54) into a single matrix equation, we get
‘ Q -Q
(R).A-=( n)"’ .

n-T.Awhere'r-('.‘g)" (2) | (7

The matrix gives the reflection and transmission soefficients,
We now proceed to compute the integral ‘equation (50) to find
AMtm Pym . ‘

Rewtite equation (%0) as

«©

I=\m Pym= S w(2) ¥'((2) xm(2) dz,
-H; '
0 H;

Tmpy §2'1) om(0) ditua) 240) o (2) de
-~H; 0’

- -]
+43 § o' H0o D) de=lit T, (5B)
H,
with

0 .
L=y S 2,4 (3) .21"(s) ds

—~H, |
E F'iF N S
™ cos (a1 lx) ¢0s (&;"H,) Scos {01"(z+H))}cos {d,'m(z.;.ul)d,:

—H [using (7a))

A (o tan o H) o™ e (i, (59
: H,
Lr=us S ¢'2(2) 22" (9) dz
]
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_ UZGi'Gm
= cos (o,™H),) cos (_c';

o
A) } L0008 {o"(r—Hy))

_ —wsG3™sin {0, (z—H))l.
Fa'a;'bcos (o z‘(l—'Hz)}"P 30’ sim (o’ 2'(e—Ha)llds
- N [using (75)]
_' whnch ynclds after somewhat lengthy but stralghtforward calculation:

L= (s -)zzG ‘(f"':)zl" 2H{ueap’ z(ﬂz"')’+i‘:#3 03"03") tan (0, Hy)
o --n"'ﬁl-zuz (a2 )’+Psl‘3 a3™a3'i} tan (2" "Hy)
{" 213’0y (7 )’—Ps"z 03"(02 )2} tan (,"Ha):

tan (a; *Hy)
ﬂz ) ‘(ﬂwz o™ —iiaits 0y’
" cos (a;"H>) cos (cz Hg) . o
0%, (— 7 p303™ sy 03 ‘}]n o S (60)
: ® . o . - '
Iy=p3 S 2'3(z) 2™(2) dz B
H, ’
¢ GuG'_ |
=p3. S WH; co; © z‘Hz) Bakty’ 6270, ‘¢ (°3'+°3 ')
R o - fusing (7¢))
GGy oty 830276, i(63"™ ~03'%) ’ (61)

= o8 (52"Hy) cos (o2 Hy){o3"F—(03")%)
_ whencc from equatxons (58) to (61) we obtain

| “-P'""‘ - L 'F" - [° 1 tan (ﬂx'ﬂn) -
, - "01"“ (’l.Hl)l .

(""""""’)*"”("’1"“'?}“

+paps’ o3 "a;'¢) tan (o2 $Hy)—a'2 {papa’ (o2 )2
+papn'303% 0’34y tan (Gz"Hz)+{P~3P- 285’ 2P
o' 30”3%(02™)?} tan (6;™H) tan (o’ z‘Hz)




|
|
|

|
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' az"'a 2‘ .

T cos (o,"Hy) ¢ cos (e z‘Hz) (y. 320’ 3""*"3“' 253"')
—o™;0 z‘(#zt* 2073 =papge™)] e
+ HZP- 2&'-3620 z‘GmG '(¢'3$—0™3) :
cos ("2 Hz) cos (o'1Hy) “ K2 kmz)+,,, )](52)

A check on the valndlty of these formulae is prov1ded by the _
fact that in the limit as Hz-e-O Ra-dUa, W 3->y. 2, 62 203,.0 2—>a 35, the'~ i
expression for MmPim in (62) reduces- to. correspondmg expresslon T

. found in Niazi and Kazi {(1980)[¢q. (41)]} for the welded quarter- :

. spaces problem 1nvolvmg single upper layers -
The form of the transmission matrlx T in (57). in: the follong_
special cases can be shown to be :
M r=1, s=1: S
—14+P2yy - =2hiPy o}

I B
y - |l P - (63)
- 1+P 11 -2 11 1 P2, . o ’
L A7\1.1 l P 11
(II) r—l s=2: . -
; —1 +P211+P221 "—2)\11P11 ’ : ' —2121P21 .
1| -2y pr --.-zpn‘.zzaPu' 1
311+P211+P21.l l A',l_l P 11+1+P % ==
[:.&21 o —2P21P117tu Z P2, +1+P2u
Azt 221

Vanatnonal Formulatlon and Du'eet : Approxmatlon Lo

Returning to’ the scattermg matnx formulatlon of the problem '
we shall construct expressions .for the elements of the matrix in such
a way that the variational principle of Schwmger and- Levine

becomes applicable. ~

Multiplying the equations

Coxl2)= S G*(z, myrin)dn, i=1,2,..., ni=r+s
—H, '
[(43, (49)]
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by 7¢(2), /=1, 2,..., n and integrating with respect to z over the
(nterval (—Hj, o), we obtain
o @w @

Siy= § i drm §§ nooe oty drdn 69
"'Hl "‘Hl "'Hl ‘

By equation (45). Since the kernel G*(z, n) is symmetric [see

squations (29):(31)] it follows from (65) that sij=s; and so the
seattéring matrix 8= || s | is symmetric. Thus we may write
© ® y :

-

s‘x.(z:) )(2) ds. S x;(n) 1.-(n)dn
mgle—=HA
{ § w6 o) dz an
-H, -H, =~
If we intrcduce the notations - ..
<f u>'=S fu dz, G*u= s G*(z; n) u (n) dn,
) —H; ' —H, ‘

then : .

<G*, v>=<u,G*»> V¥ uv

and we may rewrite (66) as _

' sip=(<xe, 11>, <x1,7>) (<G>, 75>) ’ (67)

As in Kazi (1978), we have the following ;

Theorem ; Let F(u, v)=<xj, v> + <xy, u>—<G*, v>.

Then F is statipnary for varigtions of w, v about w=ttj, veat; where

7y, 7j are the solutions of the integral equations

R :
x(2)=Gtry= S G*(3, n) 7 (n) dn
—H, _ o
and
w _
x)(z)=G*zy= S G*(e, ) 75(n) gn, s i
—H, _ : |

respectively. Moreover, the stationary value of F is s45(v4, 1)
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Corollary (Schwinger-Levine Variational Pringiple) : Let R(u, ¥)==
(<x4y 4> <xi, v>)/(<G'%, v>). Then R is stationary about ymawty,
ve Bty where &, f are arbxtrary non-zero constants.  Moreover,
Roariy,8r5) = sig(7e, 71). '

By invoking the above theorem we obtain vanatxonal improve-

ment of the plane wave approxxmanon used in the previous section
by assumirng the expansions for #(2) :

n(e)m Y Dole) 1y(s), 11,21, (68)
p=1
and considering

o ’ .
F(w.fg)- <xy, 2 Digi(2) xp(5)> +<xi, Z Djgu(2)xq¢(2)>
p= l qml

. _<G‘ﬂ,1';> :z D,,,<x;. F(Z)XP(J)> + 2 D;q(la,

VV(Z.)J:CQ(Z)>—_- 2 X'DipDJqu’ ' (68)
L ‘q=] p=al
where
_ 0 @ '
Ig= SH{ § a2, nxylutain Ju@nata) e, (70)
-H, —-H, :

 The requirement that the co-éfficients D;p and Dyq in (69) make
F(r, 14) stationary implies

'0, p=l, 2.0

L
aD(p -
and
oF
oDjq

—09 'q='19»29"" r,

which lead- to a set of _r') linear algebraic équations for Dip, =1,
'2,..., r and another. set of r linear algebraic equations for Dsq, ¢=1,
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2,50, Solvmg for Dip’s and qu s and substltutmg in (69) we get
the entry s¢; of the scattering matnx Suitgble expressions. for the
integrals Ip, are constructed in the appendix.

In the specxal cases '

@) when r—l s=--l'

Iy o It
S=-1 . Mo 2 | s - (1
o _l Py APy ' . Cf
e T e

~and
T=(K+IS)'“l (x—-z.s)

oo f o Pu?=1—ilyy —2Pgny )
1 o, )

= (l +.P1_12,—-‘_i.l’u) . L _A—'l—l—_ g g Pu -] Ill J

where I’ u=kllu and Iu is gwen by (A10) when m n=1
(ii) when r=1, s= 2

The scattermg matnx S and the transmlssxon matnx T are
given by ' :

f ..l_ o 7\111’11 7&111’21

: ‘1
_ : ‘Iu e Iu S l
' P AuPu s 7\11’1’11 Manl?\zlel !
=1 Wm0 T T I L

1 APy luPqule; : :3-’21112_1_- o

and : ‘ | . . | -

_ *1+P211‘H’221'-11u -2)\111’11 —2/\211’21_
-2P -
1. _—2P 1+1+P221—11 i 2P11A21P21

R ED DTS s ol RRFFR R

1

|

[ —2p, ?.P P |
- 11 -

B e LT T

(73)
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On comparing the forms of the transmission matrix T for the
. special cases discussed abave [see equations (72) and (73)] with
- those under the plane wave approximation [see equations (63) and
(64)], we find that the latter can be recovered from the former on
substltuting I'11==0 and so it follows that the parameter I';; incorpo-
" rates the effects of propagated and non-propagated modes which
arise out of the continuous part of the spectrum.

Numerlcal computation of our results undcr both ‘approxi-
- mations, and for several special laterally dlscqntmuous structures
involving double surface layers will be presented in another paper.

- Appendix
Substituting R
G*(s, )=G(z n)+ig(z, ,,) L s )

G(z, )= S t¥s, £ e, e+ S (i "f = _"{,"-'_%' ""lff"'-- o

l.'(l "= S z [2(z k 5("- k)ldk "'S z'(z, k’)z'(n, k’) dk ( 31)

..in (70) and usmg the prthonormahty relatlons [see (224)-(22{)] we
obtaln

im= | Su(n) vor k')xm(n)dnS W ¥ B) s

"'Hl ' L Z—Hx PR
. “/ps ' - o
+i S Su(n) 2'(n, k’)xm(n)dnSu(z)z (z, k’) x.(z)dz (A1)
0 . —H; o =H
Nﬁxt, we cvaluatc xntegrals of the form
)

I, = § w(eden(a)2 (s, k) do
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and 7
©
Ik my= § weam(z) 42 k) dzy, mm1, 2,0, 7,
. ‘ ~H, o
whi¢h occur in (A1),
0
Let I(K', m)= S W2)xm(2) (2, k') ds
H;
"‘IS 2"s(2 K )z"’,(z)dz+y.‘ j @'s(s, k)5 "(2)ds
—-H,
[e o}
+¢3 S @ y(2, kK'Y2™4(2) db

H ,
=Lth+l,  (V=k? 0<K<ulfy) (A2
where :

L=y S 2'1(2 k') 2m(2) dz _
—H, _ _
IFm 3 é"'l"“y.
“¢os(s;™H,) ' cos _(a',"'H,) cos (c?

' 0
H )Scos {c"'l(z+ H;)} x

cos {o'\¥' (24 Hy)}dz

| [using expressions for om (z) from equation (7a) and for 2 "z, k')
similar to §,(z, ») in equat}on (lSa) ’

B0 k!
= ulOE:(dC :'E ﬁ ; (q !i j]._, cm"? [G lk' tan (‘ 1' Hl)

O —atan GMH)L  (A3)
L=w § o'sz KYom(s) &z
]
k! Hz |
40 On H)S fzo™s cos (omae—H]

=cos (aﬂ'sz) cos (o,%
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—u30™3 sin {o;,"(z—H,)}]
[(J.Z,GZIH ¢os (Gz,kIZ)’—'[J.IIO'l'k,Sin (GllzkIZ) tan (Gllk,Hl)]dZ

[using expressions for @ ,™(z) from (7b) and for &,'(z, k') similar to
Pa(z, A) in (15b)]
- #2G*Gm 1
— cos (6,"Hy) cos (62" Hy) * (6,2 —(a,"¥
Fp303m, "0, oy ¥ tan (0% Hy) . sin (6mHz) —{rapz 62" (02"*')?
303"y 01 #'a,™ tan (o Hy)} sin (o2'¥ Hy) 4 {02315 03" )
—p1 126, 51 6, '%” tan (o8 H )} cos (o2 Hp)—cos (o, Hy)}]

) [{ran'2(a2m)%0, %’

(obtained after considerable simplification), (A4)
0
=y, S @3'(z, k') 2 3m(2)dz
H,
0
k' &
fin (07 4557 c—Ha)e
_ —#3Gmpa,™ H,
COS8 (O’zmﬂz) * '\/n“3s3/k'
[using expressions for @ ;™(z) from (7¢) and for @ 'y(z, k') similar to
¥3(z, ) in (15¢)).
— _,113Gm0-2m 1 l Et ik'
005(0;"Hy) T /sy E " ("R (s Y [(cos &)ss
GnG'¥ , : +(sin 6'%)5;™},
—3Gm i P' a™ rpr 7
= TN ° 7 s Y T ’ h) tane—t"‘,

—G3m(2— Hz).dz

%)

obtained on using the relation

e, [seé (16)]

kl
G’k P'[(uy's3" ) cos ¢'F= —
'\/Tts_v,' H3

From (A2)—(AS5) we get
S

I(k", m)y= S wW2)xm(z) @'(z, k')dz

_._"H‘fl.
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— i FmG¥ 1ty 0y ¥ —_
T r) 1 l o
[ (sz,-.—k 2)-!-0)2 (—p? ———51'2“) ]COS (02"¥"Hy) |
[cl'k' tan (o,'*'H;)—ay"tan (UlmHl)]
I 7 < S S —
+ COS(szHz)COS(O'zlk,Hz) (klz—kmz)'+ @2 ( .El_z __-El,—i«).

[{«“2”2'(027")202""+"303m5"1'02""€71"“' . tan (o,'F'H,)} sin (s;"H>)
-—{F2u2162m(02'k')2+y'363m}‘1'Gllklczm tan (Gllk'Hl)} sin (0‘2'k H2)
{130,003 05—y Bp0,™ 0y /0% tan (o ¥ HY)).
{cos (5,'¥ Hy)—cos (a2"Hz i
—P3GuG'k _r . o™
cOS (CZMHZ) “3’53’16' k 2"_k,2 +(l)2 (_’1___-—\_1‘_)
(km ) B2 T Bs?
[53'% +(tan 6%)s3"]  (A6)
[on using relations of the type given in equations (12), (13), (17)
and (21)].

Thus
o0 o]
S #(1) @ (1, k")Xm(n) dn SF(Z);Z'(Z, k) xn(2)dz=X(K', m) IK', 1)
—H; —H; (A7)
Likewise
o8] oo
§ ) 4/, K yntldn § 1) 4/, KYxa(2) dz=T/ G, ) YK )
- —H; | —H; | (A8)

where the expression for I'(k’, m) can be obtained from (A6) on
replacing k'2 by —k'? i.e.,

V(' , m)=IGk', m) (A9)
From (A1), (A7) and (A8), we finally obtain :
«© o off’s o
I §LEMTER. gy, § IEMIELD g, (a10)

0 0

where I(k’, m) and I (k’, m) are given by (A6) and A(9) respectively.
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The real and imaginary parts of Iua correspond to the non-
propagated and propagated modes arising from the continuous part
of the spectrum. The integrands in the integrals occuring in (Al0)
are regular. These integrals are convergent. However, the

integrals will have to be evaluated numerically because of the
complicated forms of the integrands.
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ON A THEOREM FOR FINDING “LARGE” SOLUTIONS
OF MULTILINEAR EQUATIONS IN BANACH SPACE
' By
TOANNIS K. ARGYROS
Department of Mathematics
" The University bflowa
Iowa City, Towa : 92242

Abstract. A new iteration for finding “large” solutions of the
multilinear equation in Banach space is introduced based on the
same assumption used to prove existence for the “small’’ solution.
Introduction. We introduce the literation.

I k—17) —1
xn+ 1—_—- ’lLMk (xn ) J[ (xn —y) s n=0 , 1 s 2 ,k.>_2 (1)

for some x; in a Banach space x to find solutions of the multilinear

equation,

x=y+M (¥, k=2 (2)

in x, where y € x is fixed and M, is a bounded symmetric k-linear

operator on x [4]. Itis well known [3}, [4] that if

1yl <tp,
where
ITM
p= k-1 / §
v k(k—1)
then equation (2) has a ““smaill” solution x ¢ X such that
Ilx]l <p

The above estimate raises the natural question. Is it true under

29
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the same assumption that equation (1) has a “large” solution x € X
such that || x| =p. ;
The answer is positive under certain assumptions. The basic
idea is to introduce a convergent literation such that_if
il Xy il =p then || X, I2p,r=0,1,2,......

It is shown that (1) satisfies the above property.
We now state a well-known lemma [4].
Lemma 1. Let L; and L, be bounded linear operators in a Banach
space X, where L, is invertible,and J L;”1]. [ Ly || 1. Then the

linear operator (L;L,)™! exists, and 3)

_ 1L
ML L™ = gy

Definition 1. Assume that the linear operator Mk (z)k_"1 is in-

vertible for some z € x. Define the real polynomials a(r) , E(r) by

k=1 k—2
a (r)=ak__ 1 +ak_2r +oennntariairtag

and
a(r)=a(r)—1
2 (k=17
where g, = | M, 1 || (M, (z)(k—l) Lhz™" J]
(m—1
m=0,1,2 ...  k—1
By Descartes rule of signs [2] , the equation
a(r)=0 ()

has two positive solutions s; , 52 or none.
Lemma 2. Let z € x be such that :
(a) the linear operator M, (z)k"—1 is invertible ;

(b) the eqﬁation (4) has two positive solutions s, , s,
with 5.<s; If k>2 (one positive solution s, if k=2).
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Then the linear operator Mk (x)k_1 is invertible for x € U (z, r)=

{x2x| lx—z) <r} and for some r € (s;, 5s2) Ifk>2(r€(0, 52)
if k=2) and

—1

T, Gy
k—1 ©)
1M, x= "<

a(r)
Proof. We have

M, (F =M (—2)+2F

k=1 [ k—1)
=Mk (x—2) + |L | Jle (x—z)k_2 Z4..

[ k=11 _ —
=+ | ) Jle (x—z)zk 2—f—Mk * I

The hypotheses of Lemma 1 for

L, =M, @F L
k—1 |
L,=M, (x——z)k+l+ { | J M, (x—z)zk—'z-l- ......

k—11)
+ {- | M, (x—Z)zk ~2 are satisfied if
(k=2 )

a (r) <1 and M, (2 Lis invertible.

which are true by (a) and (b).
Finally (5) follows from (3).

Definition 2. Let z € x be such that M k (z)k =1 is invertible.

Define the real functions ¢ (r) , ¢ (r) , b () and d (r) by

c(rym—— 1 [ P Nt U
7oy 1M @Y e @Fhr
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( _ k-3
+ e, T M gz |l F2 40+ 120)

- ]
ot 212 nzu] My, 2 P |

where
P (=M, @F +y-z,
c(P)=c(r)—r,b(r)=r+1z1,
and
1 [ k=1 _
A== "=+ 12—y 1) ¢+ 12D F oM, @F 7
a(r)y | alr)
. , 11
ME | — 1M, @F Ty -

Finally , define the operator T on X by
T @W=M, G117 -

We now state the main result.
Theorem 1. Assume that there exist x € X and r >0 such
that :
(Ha@r)<0,c(r) <0,dr)<1;
(i7) the linear operator My (z)k ~1 s invertible on U (z, 1).

Then the literation (1) converges to a unique solution x of )

inU (z,r).
" Proof. Tis well defined on U (z, r).

Claim1. T mapsU (z,r)into U, r).
If x€ Uz, r) then

T (x)—z=(M, xk—/'l)_1 (x—y)—:z
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==(Mk (x)k—l)“1 [x—z—M, z(xk—l—-zk_vl)—P\z)

1

=M, FH7T ga-m, F Y

M, z(F 2 F TR g —P ()

Now using (5) and the estimate.

Lxlf=ll(x—=2)+zll < lix—zli+1llz0 <r+llzll==b(r)
it is enough to show that

IT@)—zl <c(r)y<rorc(r)<0,
which is true by (i).
Claim 2. T is a cantraction operator on U (z , r).

Ifw,UeU(z,r)then

T w)—T W=, "D~ w—p)=M, 0 H~1 )

=M, WEH ! w1y, W H T )

+oa, W H T -1y, T -0

=M, F 7T (=)Mo T2 A

+F 2 -y M, 0T 2tz

Asin claim 1,
I Tw)—=TE)II < d(r) Tw=—vl
So T is a contraction on U (z, r) if d (r) <1, which is true by
hypothesis (i), The result now follows from the contraction map-
ping principle,
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Therem 2. Assume :

(@) The hypotheses of Theorem 1 are satisfied for some
r>0;

(b) The real equation j (+)=0, where
Yy 11 k—1 o
F@=p M .67 —=t+lyll
has two positive solutions ¢, , t, with-¢#; <'txif:k > 2 (one positive
solution if k==2) ;
@[p,b(M]city, 2] ifk >2(p&[t,tyif k=2);-and

@ Iyl <p
Thenifp <[ x5 It <5(),

(Mp<slix, | <b,0),n=0,1,2,..;

(i) the solution x of (1) is such that
p< lixll =b(@r).

Proof. We ‘have,
k—1

Lx, =yl =0M, (5l 1 = uMy s, 157 N,
or
Tx, =¥ Tall, W=y |
ETY = 2
T T My e, 15N g s, R
Assume that p < x, Al <.b(r)-for all k;O ol ,2, . , 1.

Since || X, =z p=Iyl,it is enough to show

I, 1=l

12?7
My DL 15




kY
or. fllx, ) = 0.which is true by (c), so

p< Hxn || foralln=0,1,2, ...

Now the x ‘s ¢ Uz,r)y, n=0,1,2, ..,s0
Il *n | < b(r).

which-compfetes the proof:ofi(i).
Finally (i) follows from (2) and (7).

Remark., The literation (1) can be written as-
—1
—1]

(
Xt 1=%, = ILMk (x'n)A

§ _ ]
n ILIMk (&, )k 1(xn )+y—x, JI >

n=1,2,..(6)
The Newton-Kantorovich method corresponding to. (2) can be
written as,

-1

- , fe—1
=z, ~ lLkMk @, )k—1_1J y

[ )
Int1 IL.Mk (z,) (z,)try—z, J ,
n=0:1.,24..... @)

The latter literation is faster and easir.to usz most of the time,.
but if we choose an x) such that ||x0 = p,then (7) does not

guarantee that the limit w= lim z,, is such that {wjj < por |wl < p.
n >0

This is exactly the advantage of iteration (6) when compared with
(7). The basic defect of (6) is that each step involves the solution

of an equation with a different invertible operator M, (x)k_l. For

this reason one can easily prove theorem for the modified method.
( k—1) -1 k—1
*n41™ % T ILMk (xp) JI ILMk () &, ty—x, )is

n=0,1,2,.. (8
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1 is in-

for some X € x such that the linear opeartar M, (x 0 )k"'

vertible.

We now provide a simple example for Theorem 1.

Example. Consider the quadratic equation.
x=.2 x2—1 in X=R 9
Here Mpx?==2x2 , y==—1 and 1—4|M,|.lyll £0. Then accord-
ing to Definitions 1 and 2 for z=35,
a(r)=5r—1
E_(r) =.2r2—r+1
and
d(r) = (04) r2—(4) r41.96
Theorem 1 can be applied provided that '
1.38196601 < r < 1.8377225

and (1) becomes
[ 19 ,
xn+1 =3 l 1+ '—'—'I an=0’1:2’ oo

X
n

Choose xy=z=35.Then x=x;,==5.854101966 is the large solution
1
of (9). This is true since lix, | = Sand llx, || = p=2M,| 2
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UNIQUENESS-EXISTENCE THEOREMS FOR THE
SOLUTIONS OF POLYNOMIAL EQUATIONS
IN'BANACH SPACE
‘By
IOANNIS‘’K. ARGYROS
Department of Mathematics
University of Towa, Towa City, FA 52242

Abstract. -In this paper we classify the polynmial equations in
Banach .space in'three distinct kinds:by use:of the Frechet deriva-
tive. -For:the two more:general kinds, necessary .and sufficient con-
ditions ~will ‘be igiven for their :solution -by .means of formulas
involving the nth root of linear .operators. *Some -uniqueness
.1esults.are also.obtained.

Tntrodaetion.  Let X -and ‘Y ‘be -real -or-complex linear:spaces
wover-the field F-of real-or complex “mumbess - and -consider -the -abs-
tract polynomial equation.of degree n.on X.

P .(x)=.0 1)

where

P, (=M, x" +M__ "t +Mp MM, @
or

P, ()=P, (3 )+P, ' (xg ) (r=xg JH—3—P, * (x5) (x—x, 1

T +% P (x) ) (n—xy )" 3)

for any X0 € x,where the M k “s-are k-linear:.operators.on X,

39
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k=1,2, ...,n, M0 is fixed in X and Pn () (x0 ) denotes the nth
Frechet derivative of Pn at X0 € X.

Obviously (1) is a natural generalization of the scalar polyno-
mial equation to the more abstract setting of a linear space.
This class of abstract polynomial equations includes a number of
interesting differential and integral equations [11, [3], [4], [5], which
contain nonlinearities consisting of powers or products of the un-
known functions, mingled with linear or integral operators.

In this paper, we classify equation (3) by use of the Frechet
derivative, in three distinct kinds. For the two more general kinds,
necessary and sufficient conditions are given for their solution
by means of formulas involving the nth root of linear operators.
Some uniqueness results are also obtained.

Definition 1. Denote by L (X, Y) the linear space over the
field F of the linear operators from a linear space X into a linear
space Y. For k=2,3, ...a linear operator from X into the space

L (xk_l,y) of (k—1)—Ilinear operators from X into Y is ‘called
k-linear operator from X into Y. For example, if an k-linear operator
Mk from X into Y and k points x; , x5, ... , x € X are given, then

z==Mk X1 X2 Xp

will be a point of Y the convention being that Mk operates on x,
the (k—1)-linear operator Mk x; operators on x; , and so on. The

order of operation is important. Finally denote L (X, Y) by L (X)
if X=2Y. :
Notation 1. Given a k-linear operator M, from X into Y and

a permutation i=(it , 7z ... . i; ) of the integers 1, 2,...k, the nota-

tion Mk (#) can be used for the k-linear operator from X into Y such




















































































































































































































































