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' DR. MUMTAZ HOSAIN KAZI
o AN OBITUARY

Dr. Mumtaz Hosain Kazi was born on First December, 1938.
He came from a family with a long tradition of academic excellence.
He received his M.A. from the University of the Punjab in 1958.
M.S. from Harvard in 1964 and Ph.D. from Cambridge in 1974. He

‘started teaching at the University of the Punjab in 1958 and served

as Chairman, Department of Mathematics for brief period from
1977 to 1978.. . He was the Editor of the Punjab University Journal
of Mathematics from 1976 till his death. -

In the late sixties -he took active part in the .movement to
modernize the syllabi and courses of mathematics in the Pakistan
Universities. -He was highly, proficient in various branches of the
subject and' gave courses on topics which spanned pure as well as
applied mathematics. He was a brilliant teacher and even the most
indolent student in his class could not fail to feel interested in the

_subject. He inspired many of his students to become research

mathematicians, some of them are now well-known at the inter-
national level. As a man, Dr. Kazi was an extremely nice person.
He left alasting impression on anybody who ever happened to meet
him. He was humane, kind and considerate. He would go- to any
length to help his students.

In 1978, Dr. Kazi joined the Faculty of Science of the Uni-
versity of Petroleum and Minerals at Dahran (Saudi Arabia). Soon
after he became ill. His disease was diagnosed as Multiple Mycloma
(a form of blood cancer) at Ash-Sharq Hospital at Al-Khobar,
Saudia Arabia. The diagnoses was confirmed by Prof, Bridges of
Royal Victoria Hospital, Belfast, UK. In 1980, eversince he re-
mained under regular treatment at King Faisal Specialist Hospital
and Research Centre at Riyadh, Saudi Arabia. Despite the treat-
ment the disease continued. Although it was clear that he would.
never be well again, the awareness of his impending end did not, in.
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any way, dull his spirits. Rather he became more active as if to
make the best use of every minute he was left with. Inspite of his
bad health and o't]'ner'f)cfsuits, he continued to edit the Punjab
University Journal of Mathematics with dedication and selflessness.
Towards the end of his life, he published profusely. He and his
collaborators applied the Wiener-Hopf technique to the problem of
Love Waves in the Earth’s crust and were able to solve some out-
standing problems. His name is still considered to be an authorlty
in the field. He published in international journals of high standard
on topics which include selsmology, functlonal analysis and mathe-
matical statistics. ,

Dr. Kazi was recommended on 12th July, 1979 for appointment
as Professor of Applied Mathematics by the Punjab University
Selection Board. However anticipating better medical care at
Riyadh, Saudi Arabia, he could not join the Mathematics Depart-
ment of Punjab University. The Punjab University granted his
request for retirement from service on medical grounds w1th effect
from September 1, 1983.

Dr. Kazi died at Riyadh on 19th June; 1987. He was burried at
Janat-ul-Bagii, Madina Munawwarah. He left behind a widow, a
son, two daughters and countless colleagues and pupils who will
always cherish his memory for his forbearaace, gracefulness cheerful-
ness, pursuit of excellence and most of all, for his fortitude in the
face of awful suffering and inevitable death.

FAIZ AHMAD
Govornment College Asghar Mall
Rawalpindi—Pakistan.
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CONCERNING THE CONVERGENCE OF
NEWTON’S METHOD
By.
IOANNIS K. ARGYROS
Department of Mathematics,
New Mexico State University
Las Cruces, NM 88001

Abstract

We assume the existence of a simple zero of a nonlinear operator

equation in a Banach space. Under the assumption that the Frechet-
derivative of the nonlinear operator involved is only Holder conti-
nuous, we answer to the following question : given that the equation
has a simple zero, when is it true that the Newton iterates converge
to that solution. An example is also provided.

Key words and phrases :

Banach space, Newton-Kantorovich method, Holder continuity.
(1980) A.M.S. classification codes : 65J15, 65H10.

Introduction
Consider the equation

F(x)=0, (1)
where F is a nonlinear operator from a Banach space E into itself.
The most popular iteration for solving (1) is given by the Newton-
Kantorovich iteration, namely :

xﬂ+1=xﬂ_(F, (Xn) )_1 F(x")’ ﬂ=0, 1! 2: """ (2)
for some initial guess x; € E.

The main theorem proved here answers to the following
question : given that F has a simple zero x* € E, when is it true that
the interates given by (2) of nearby points converge to x*? Such a

1



2

question is clearly of interest in numerical anal‘ys'i‘s s:i‘n’c»e' mény
numerical problems can be reduced to the problem of locating
solutions of (). -

Sufficient conditions for the convergence of (2) to a simple zero
x* of F are given by the famous theorem of L. V. Kantorovich [ 1],
[21, [7]

‘ An extensive literature on the Newton-Kanforovich method can
be found in{ 6].

One of the basic assumptions for the convergence of (2) is that
the Frechet-derivative F’ of F is Lipschitz continuous. The guestion
raised heére has beeh ahswered in{41].

‘ Here we on1y assume that F' is Holder (e, p) contmuous (to be
prec15ed later). Our results can be reduced to the ones in [ 4] for
r=1 , '

Finally wo provide an example where the Lipschitz cont1nu1ty of
F’ is not satisfied whereas the Holder contmmty is. :

We will need the following :

I. Preliminaries
We assume that Fis once Frechet-differentiable [ 2 ] and F’ (x)
is the first Frechet-derivative at a point x £ E. It is well kitown that
F’ (x) € L(E), the space of bounded linear opetators from E to E.
We say that the Frechet-derivative F’ (x) is Holder continuous over a
domain Eg: ¢ E if for some ¢>0,p €{ 0,1 |, and all x, y 6 Els
IF'()~F W I<elxe—pl?. . -~ 0 (3
I this case, we say that F’ (*) & Hy '(c\,p).» s

We will need the followmg result whose proof can be found
in [ 21. o
Lemma 1,

Let F: E— E and E, c E. Assume E; is open and that F' (")
exists at each point of E;. If for some convex set E; < E;, we have

|
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.
F(7) EHE {c, p), then for alt x, y € E,
2

[FG)— B~ F' (x) (gl € S flx g2, @

14p
II.  Main Results -
Theorem 1. LetEycEand F:E, — E. Assume F()¢Hp (¢, p)
‘ sume R

on a convex set By — E;.  Let xo be such that :
IF” (x)—F” (xo)ll Seullx—xol» - 5
for all x € E, and some ¢; >0. , )
Assume that F’ (x;) has a bounded inverse F/ (x¢)™1 & L(E) with

HE" (x0) )7 <d, ‘ : L (6)

I (x0) )™ FCxo) <70 | | ')
and that the function g defined by '

— dp g1t derg? ’

glr)y=deirir? 4 1+p —1 Jr—deiror?+rg - (8)

has a minimum positive zero r*>rq. k
Moreover, assume that :

dey(r®p <l ' : )

then '
der o <l. (10)

1= TFp) U=de; (r 7))

If U(xq, r *) < E, then the iteration (2) is well defined, remains in
Ul(xo, r *) and converges to a solution x* of (1).

Proof
By the Banach lemma F’(x) has a bounded inverse, since

IF/(x) = F(xo) [| < cxllx—xoll? <cy(r ¥yp <,

and

o g ‘ |
HE' @S g - (1

The operator p given by
P(x)=x—(F’" (x) )1 F(x)
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is well defined on U(x,, r*). Assume now that x, P(x) € U(xo, r *) and

using (4), we obtain
IP2A(x)—P(x)l|=|l—(F" (P(x) )) TXF(P(x) )l

d 14
S 1= g P —mep LIFP )= F@)—F() R0~
2 g R

1—do[P(x)—x7 14p
=g(IP (x)—x I, [IP(x)— Xqll),

where
20, W)= 1 dewtt?
U W= T deyr T 14p

Define the real sequence { sz }, k=0, 1, 2, ...... by so=0, s,=rp and
s —s = 1 I (s —s )1+§z.

Bt kB l—dc1sk’J I+p "k ka

We now have
Sr—81=qre<lry,

sst1+qro=r0(l+q)<—lf~_°7]—. _
Using (10) and g(r*)=0, we get ro=(1—¢)r*. That is
Sa<<r*.
By induction we can easily get
s —s <q(s —
ki1 Sk q(sk Sk-l)’
s =8 <7’y
k41 k
and
r¥,
Sk+1<
That is,
lim r
= ¥ 0 %
ko0 k5 1—q -

By the basic majorant theorem 2.3 of Rheinboldt [7 ], there exists an

x* € U(xo, r*) such that
lim

xp=x*,
k=00 ¥¥T¥

P(x*)=x* and



Finally,
IF(xe)ll < IF"(x) —F '(x0) ) (%% :1— XM +[IF (x0) (xk+1 —xE) |

<[allxe—xoll +F'(xo) | lIx  —x |
k+1 k
<(er* +IF (o) Dllxs1—xklls
since xk € Ij(xo, r*), Lettingk -3 oo, we easily obtain from the above
inequality that
F(x*)=0 .
since { xk} is a Cauchy sequence and (¢;r*+[|F’ (xo)l ) is a constant,
The proof of the theorem is now complete.
Theorem 2 Let E; ©E and F: E; —» E. Assume F'(*)¢ HE (cp)
~ 2
on a convex sct E; € E;. Let x* be a simple zero of F such that :
[F" (x)=F (x¥) || < eallx—x*[[* (12)
for all x € E; and some ¢;>0.
Assume ;
(a) there exists d;>0 such that
i(F* (x*) )71l <dy, (13)
(b) let xo € U(x*, ), where e=(2c,d;)"1/? and assume that the
function defined by

deyrg?
ql(r)='dczr1“’—]—[ —l%’p—-—l ] r—dcyror?+rg (14)
has a minimum positive zero r* >r,, where, ' v
_. _ pt1l—cadiplixo—x*|I? " \
"= A—cdlx—x*P) (p+1) o~ % (15)

and

_ d
=T dcm— (16)

If U{x*,r*)C E,, then the hypotheses of theorem 1 are satisfied
for each xo € U(x*, r*). ‘

Therefore the Newton sequence { xs }, n=0, 1,2, ... exists and
remains in U(x*, r*) and converges to x* such that F(x*)=0.



Prroof
By the Banach lemma, F’ (x;) has a bounded inverse, since

, ; 1
IF'(x*)—F"(x0) || € €allx®— Xol|? <cp(r *)P < a0

for xo € U(x*, r*) and

IF G0 H1Z g
We bave
| 1
F(x¥)—F(x0)=F (o) (#*=%0) + { "o+ t(x*—x0) )
: 0
—F'(x0) ] (x*—xo)dt.
So,
1
—(F /(o) )™ R(xg)=x*— %o H{F'(xo) )71 § [F"Coo 1030 = x0) )
0
~F/(x0) 1 (¢* —x0)dt,
axd‘thus
1
(" (xa) )R Ceo)| <[ 1+ desix* —~xolir § £2d Tk —x
0

< p+1—c2d1pllxo——x*l'p
I—CzdIHXQ ’C*lp)(p—{—l)

It follows that for x, £ Ufx*, r¥)
dex(r*)P <1,
hence (9) holds. |
The hypotheses of Theorem 1 are mow satisfied for each
xo € U(x*, r*) and. the result follows. ,

Proposition
Under the hypetheses of Theorem 2, the: otder of conve&genﬁ:ﬂ of
(2) to a solution x* of (1) is. 1+ p.




That is
1Xn+1—x* < csllrn —x¥|[1*2
where,
T 1y
Proof
We have
Xns1—X*=xp—x*—F'(x2) 1 F(xz)
1 .
=F(x,)! { (LF G —F G+ era—x%)) }(xn——x*).
0

Hence,
1

Xa41—x*] <d { S [F Cxn) —F/(x* 4+t (xa—x*) )2 } floxn—~x*|

1
< p‘_’fj { §lca— st tCtamxYipdt Jlixa—s7)
0
1 .
<G e {1ty
0
L N T

Tt ptl
= c3llan— I,
HI.  Applications
To illustrate Theorems 1 and 2, consider the differenrial equation
x'* +x147=0.p€[0,1]

x(0)=x(1)z=0. ‘
We dxwde the interval [ 0, 1 ] into » submtervals and we set
h i . Let { Vk} be. the points of subdwtswn with

0=v0< vl < L) <v”=l.
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A standard approximation for the second derivative is given by

vr_, Xi_1—2Xi+Xi4g

Xi = i ,X{-'—'—"X(Vi), i=l9 2, ...,n—1,

Take xy==x,=0 and define the operator F ; R" 1»R7»"1 by
F(x)=H(x)-+h2 ¢ (x)

g 3
I 2 -1 I
—1 2 0 |
H= . . . I '
l ‘ |
! 0 -1 |
L -1 2
[ x 7Y
x21+P
P(x)= . ’
14p
Xa—1 J
and
[ x .’
X2 |
xX== . |
I
. {
L oxg  J
Then -
[' x1? 0 ]
x? |
|
F'(x)=H+h(p+1) { ;
| O ' xr
L n~1
Newton’s method cannot be applied to the equation

F(x)=0.
We may not be able to evaluate the second Frechet-derivative
since it would involve the evaluation of quantities of the form x;™?
and they may not exist,
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Let x ¢ R*"1, He R"1xR"™1 and define the norms of x and H
by

el=y w151
J<na 7T
n—1
oy MAax
M= 1< jen— 2 el
k=1

For all x, z¢ R"1 for which [x; [ >0, |z | >0,i=1,2, ...,
n—1 we obtain, for p==} say,

IF'(x)~F/(2)=Idiag { (1+b)—zD) 3 |

3 fp  max P A 30 U
=2 <icn—1 1% 7F | SW[max]x 7z ]

2
=3 5, 3
= 5 Plx—2 "
Given z; € {R*"1 Nowton’s method consists of solving
F'(zﬂ) (Zn—2n+1)=F(Zn), n=0,1, 2, ..
as a system of linear equations.

We choose n=10 which gives 9 equations. Since a solution
would vanish at the end points and be positive in the interior a

reasonable choice of initial approximation seems to be 130 sin =x.
This gives us the following vector :

[ .40172211E4-02 )
.76412079E4-02
.10517221E4-03
.12363734E+03
zp= .12999998E+-03
.12363734E+4-03
.10517220E 403
.76412071E+02
[ -40172215B4-02
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The iferdates z;, 2; will then be given by
[ .33957119E +02 )

.65958946E 02
92615190 E+02
.11048508E +03:
zy= | .11676437E +03
.11048503E -+03
9265187E  +03
.65958832E +02
L .33957062E -+02 J

and
[ .33577446E4-02

.65209305E + 02
.91575623E+02
.10917905E+03
Zg== .11537511E403

.10917908E+03
.91575668E+02
.65209358E+02
L .33577473E+02 )

We now use Theorem 2 for p=}, ¢,==.015, x*=2z, and x,=2z;. The
choice x*=z, is considered reasonable since ||F(z;)]|=.005941582.
Then we easily obtain :
Ix* — xoll = 1.389269338,
e=1.627003894,
di1=.26132710E+-62,
ro=2.184683800,
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and
d =48.576244354.

Using Newtan’s method in (14) by choosing the first iterate to be

ro==9.1E—05 we obtain
r*=22.360669374 >r,.
Then the hypotheses of Theorem 2 are satisfied for xo € U(x*, r*).
Therefore the Newton sequence { xn }, n=0, 1, 2, . . . exists, remains

. . 3
in U(x*, r*) and converges to x* with order of convergence—- accord-

ing to the proposition.
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Abstract
In thls paper we 1ntroduce a new 1terat1ve procedure for ﬁndmg
* solutions of the quadratic equation in Banach space, based

“Lagre
on the same assumption used to prove existence for the “‘small”’
solution,
Introduction
In this papet we introduce the iteration v
x =B(x )1 (xp—~y),n=0, 1, 2, ...... ‘ [OF
n+1

for some x, m a Banach space X to find ‘solution of the quadratic

equation
x==p+B(x, x) o ‘ (2)

in X, where y € X is fixed and Bis a bounded symmetric bilinear

operator on X x X. Equation (2) has been studiedin[1],[2],[6],

[71,[9] [10]. Itis known that if 1—4|B| - l]y|]>o then equation.

(2) has a “small” solution x € X such that HxH< 2||Bl| . In the scalar

case though we know that the ab’ove condition implies that (2) has

13
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two solutions the “large’ one being such that [|x|| = 2HBJ| . The above

observation raises the natural question.- Is it true under the same
assumption that (2) has a “large” solution ?

The answer is positive under certain assumptions. The basic

idea is to introduce a convergent iteration such that if ||xoll > 2B

then ||x,/| = —5 i 2[|BH wn=0,1,2,....

It is shown that (1) satisfies the above property. We also study

the modified version of (1).
Xni1=Xn—B(xe)"1 (B (xn, xu)—%n+¥), n=06, 1, 2, ...... (3)

" Finally we provide two simple applications of (1) and (3).
Remark 1
The operator B in (2) is assumed to be symmetric without loss of

generglity since B rcan always be replaqed by the mean B of B
defined by

| B(x, 5)=A(B (5 2)+BO, 1), 5% ¥ € X
Note that B(x, x)=B(x, x) for all x ¢ X,

From now on we assume that B is a bounded bilinear operator
‘on X x X,
We gre now going to introdyce an itpration that will guarantee

. . . 1
in case of convergence that the solution x is such that [/ x [|= 2B -

Pxolposition 1. Assume:
() .The iteration ‘ _
. Xnt1= B(xn) 1 (xn_.V) {1)
is well defined for all n=0, 1, 2. ...... for some xp € X,
(i) 1—4IB|l-l»I=0 and
(iit) let p €{ Py, P2 ], where py, p; are the solutions of the equa
tion
IBl| p?~=p+lyll=0.
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If [xo[> p then [[xn44{| > p forallin=0, [, 2, ...,
Proof
We have
B(xn, Xn41)=Xp—Yy
s0

12— pll=1IB(xp, Xn+)ll
KUBl X!l - X a4l ‘ ‘
SUIBI-l1xall - [ xn 4]

a—
Penuall > 3 -

Assume that [x;]|=p for all k=0, 1, 2, ......,n Since
xnll> p=1 y|, it is enough to show
xall—lyll

Bl xal =7

orT

leall > 2L

Z 1—pB| "
Finally it suffices to show ‘
Eyil

P2 T pIBy
or .

IB|| p2—p -+ »ll <0 but this. is: truk for p & [ p1s 22 1.
Note that .

We now state the following Ifemma. The proof can be found
in[10])

Lemin f. Let L, and L, be bounded linear operators in a
Banach space X, whereiL, is invertible, and L, .[IL,|<F. Then
(L;+ L)t exists, and .

KLy Loyt < e

b—|[|Lofl
Lemma 2. Let z#0 be fixed in X. Assume that the linedy
operator B(z) is invertible then B(x) is also invertible for al)

LY.



16

x €Uz, r)={ x€ X | [x—2z|| < r}, where r € (0, ro) and _
rO=[ |BJ]*|B(z)~1}} I™.

Proof
We have _
B(x—2)||* {B(z) 1| <IIBli* [Ix~—2zII* IB(2) ™
<IB*[B(z)" 1" r<1
for 7 € (0, rg). The result now follows from Lemma 1 for L;=B(2),
L,=B(x—z) and x € U(z, r). '
Definition 1
Let z#0 be fixed in X. Assume that the linear operator B(z) is
invertible.
Define the operators P, T on U(z, r) by
P(x)=B(x, )+y—x, T(x)=(B (x) )"! (x—y)
and the real polynomials £(r), g(r) on R by
f(n=a" r2+p’ r+c’', g(r)=ar?4-br+c
a' =([|Bll*I[B(2)"1}})?
b'=—2|B|"|IB(z)71]
¢'=1—[B(z)~Y|—(BII* IB(z)" 1|} - llz—pll
a=r0_1
b=|B(z2)"(I—B(2)) l|—1
c=|B(2)™! P(2)[.
From now on we assume that B is.a bounded symmetric bilinear
operator on X x X,

Theorem 1
Let z € X be such that B(z) is invertible and that the followihg
are true : :

(a) ¢'>0;

() >0, b2—4ac >0, and . :

{¢) there exists r>0 such that f(r) >0 and g(r) <O0.

Then the iteration
x,;+1=B.(x")-_1 (xn—}’), n=0, ], 2, Trsiey
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{is well defined and it converges to a unique solution x of (2) for any

xo € U(z, r). Moreover, if 1—4|B|*[y|>0 and|x,] > E%B—lr then

1

Proof
T is well defined by Lemma 2.

Claim 1.

T maps i_J(z, r)into I—J(z, r).
If x € U(z, r) then
T(x)—z=B(x)"(x—y)—2
=B(x)7! [(I-B(z) ) (x—2)—P(2) ]

SO
IT(x)—zll<r if
1 - _
1—|B[ ”B(Z)—lffr [ ”B(Z) ! (I—B(Z) ) )”l‘-HlB(Z) L P(Z)” ] <r

(using Lemma 1 for L;=B(z) and L,=B(x—z) ) or g(r)<0 which is
true by hypothesis. '

Claim 2

T is a contraction operator on U(z, r).
If w, v € U(z, r) then
IToN~TON
=|Bw)™t (w—y)—B()™! (v—y)|

=[B(w)™ [ I-BBF)™ (v—y)) ] (w—)]
=|B(w)"! [ [=B(B(r)™! (v—2z) )+B(B(»1 (z—p) ) 1 (w—)|

L -

< BTBErTr | B -
_IBIIiBG)~ 2 + B B HPllz=pll . Yy, _y

" 1—=IBI"IB(z) Y7 ]Hw;vﬂ

=q"|lw—v|
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So T is a contraction on U{z, r) if 0<<q<1, where
- 1 -1
7= B iaGy T |1
+ IBll- B(z)~Y|2r+|BJI* [[B(2)"1]1ilz—¥ll }
1—[Bf*{B(z)" ]| r

which is true since f(r)>0.

Example 1 ‘
Consider the equation x=.2x2—1 in (R. @
Here B(x, x)=.2x%, y=—1and 1—-4 | b| ' | y| >0. Then accor-

ding to definition 1 for z=35
F(r)=(.00)r2—(.4)r4+9.6, g(r)=.2r2—r+1.

Theorem 1 can be applied provided that
1.38196601 < r<<1.8377225

and the iteration becomes

x"+1=5(1+ ; )WIth x0=Z=5, n=01 1, .21'7"“
: n
Note that x=x,=75.854101966 is the ‘“‘large” solution of (4). This

is true since [[xp[| > 5 and|xa| > ﬁ::—;_'

Remark 2
The iteration (1) can be written as
Xny1=Xn—B(xa)"1P(x),), n=0, 1, 2,...... &)
The corresponding Newton-Kantorovich method can be written

as
Zut1 = Ze—(2B(2,) ~ 1) P(z0), 10, 1, 2, oo ©

or

Zn+1=(2B(Zn)—I)_1(B(Zns Zﬂ)—y)'
The latter iterative procedure is faster and easier to use most of
the time (e.g. we need 6 iterations to find the solution in example
1 using iteration (6) with the same z), but if we choose an x, such

that ilxouzﬁ , then (6) does not guarantee that the limit
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w= nl_lfgo Xn is such that llw[]<—2%BT or |jwl|| = ZT}IIBT This is exac-

tly the advantage of iteration (5) when compared with (6). The

basic defect of (5) is that each step involves the solution of an

equation with a different invertible operator B(x,). For this reason
we ¢an study the following modifiéd method

Xpr1=xn—B(Z) 1 P(xs), n=0, 1, 2, ...... (@)

The proof of the following theorem is omitted which is similar to

that of theorem (1).

Theorem 2

Let z € X, assume that the operator B(z) is invertible and that
the following are frue :

(@) Bz 1(I-B(2))l <!

(6) D=(|[B(z)™1 (I—B(2)i|— 1)>—4{[B(2)"1}{"||Bi|

B2yt Pé2)ii>0..

Then the iteration (7) is well defined and it converges to a unique
solution x or (I) for any x4 € U(z, r), where 7 is such that

a<r<e,
with
- I—[B@)" 1 I~B(2))|~v/D
1 2/Bj* |B(z)71|
o 1—|B)"1 (I=B) )l
2 2|BII* IB(z)71

We now give an example for Theorem 2.

Example 2
Let X=(R x (R with max-norm and consider the equatibn in X
- e ¥! ” M N {
_Jf,=y+35.T!\_{1 X whereY= [- 1 T,‘{1ﬁl.'55,‘<yr—=—.‘8~5:‘1&_‘4=' {‘ ! 1;: with
Ly J LM J

—-—45 .01

B ) B :
9 05 -Jg ; Mz—[ o 5 _g, the notation

M= [
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x1 7. . .
x==[ xl ] is the unknown vector. Equation (8) can be writ- -
- 2

ten also as

x1=—.45x12-+.91x1x5-+.02x,2-+1.55
Xp=2.01x12—.68x1Xx;.5x,2—.85

Here ||B[|==1.38. Let z= [: _f ], then ||B(z)—I||=.9, |B(2)"1||==.55555,

[P(z)[=.05. The requirements of Theorem 2 are satisfied for the

above z in the ball U(z, r) for some r such that

.061321367< r<<.326086056 .

We now use iteration (8) with x%=z. If we allow an error

€ < 5.1073 then we need 5 iterations. More precisely _
x(l)—{ —1.97222223 f2)= —1.996301957 ]
= i 97368421 1’ =1 976283584 |

[ —1.99715663 ]
x(3\=
- 96816564 J°

and x(5)=[

x(4\=[ —2.003524174 ]

= ' 9654191

—2.00338145
96224933
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Abstract :

The paper deals with the problem of inclusion and equivglence
of two absolute weighted mean summability mothods. Necessary
and sufficient conditions coacerning (inclusion and equivalénce)
of these two methods have been established. Examples to show
that each of these inelusions may hold in oaly one way withoyt the
other have been given, and an example t0 show that the equivalence
may hold in some non trivial case have been censtructed .,

t. Let X gn be an infinite series with the sequence {Sa} of its
partial sums, Each sequence {¢a} for which Qa=go+q1+ ..+42#0,

or each » defines the weighted mean method M, of the sequence

{ S’} }'! W’here,
tn = 'Q%E gk Sk, n=0, 1, 2...... )

If ta—>s as n—»o0, {8,} is said to be summable Mg to sum g,
and if in addition, { ¢, } is of bounded variation, then { S, } is said
to be absolutely summable Mg or summable |Mg|. We make
similar definition with regard to other letters in place of ¢

A method of summability is called regular, If it stums every con-
veggeat series to its ordinary sum It follows from Toeplitz’s

23
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Theorem (see Hardy [ 6 ]. Theorem 2) that My is regular if, and
only if.

n
| Q| =00, as nc0, andZ[ g [=(1Qa ).
k=0
Let A=(A,, k) be a sequence-to-sequence transformation given by
0]
fn = Z An, 1Sk =01, 2,.ouue... )
k=0

If whenever { S, } has a bounded variation it follows that {t,} has
a bounded variation, and if the limits are preserved, we shall say
that A is absolutely regular.

We shall write throughout (A) < (B) to mean that any series
summable by the method (A) to sum s is necessarily snmmable (B)
to the same sum. (A) and (B) are equivalent if, (A) 2 (B) and
(B) = (A). In this case we write A~B. We shall also write for any

sequence, AU,=Up—Un

2. On inclusion relations of different summability methods
much work has been done already e.g. (see [II, [2], [3], [4], [5], [6] and
[7]). Dikshit ([4] and [5]) obtained many significant results on
inculsion relation concerning absolute (and non-absolute) summabi-
lity of both Riesz and Norlund means.

3. The object of this paper is to obtain rerults involving an
inclusion relation of two absolute weighted mean methods, analogous
to those by Dikshit ([4] ; Theorem (3.1) and [5] ; Theorem (2.2) ), and
to show that even if both Mg and M, are regular, the inclusion
need not hold. These results will be concluded in sections (5) and
(6). The last section contains an example to show that the equiva-
lence may holds in some non trivial case.

4, This section is devoted to result that is necessary for -our

purposes.




25

Theorem (4.1) (Mears [8]). The sequence-to-sequence transforma-
tion given by (2) is absolutely regular if, and only if, the following
conditions are satisfied :

A,, +—>0 as n—oo for each & (3)
)
% A, 11 and a— 0. )
k=0
and
0 0 ©
ZJIZ Aan, U_E Anis v |=0(), (k—0). C(5)
n=0v=k v=k '

3. In this section we prove cur main result :

Theorem (5.1). Suppose that M, and Mg are regular. ¢,#0
(all n220), then | Mq | < | M, | if, and only if,
oo
1
20,
n=
Further, if r,<<0 (all n > 0), then | My | = | M» | if, and only if,
Qere (7)
7oRx o ().

We remark that a sufficient condition for (7) to be ‘satisfied is that
Qn=0 (g,), where r,>Q. But this condition is not necessary. For
this let { g» } and { r» } be any positive constants sequence, then (7)
is clearly holds but Q,#O (g,).

Proof of Theorem (5.1). Let {tn}, { ta* } be respectively the
(Mg) and (M) transform of { S, }. Using this to obtain #,* interms

R, .— Qk-—lrk
k1 qr

=0 (1), for all k> 0. (6)

_of t,, we have

n :
t,*= X Ea, vty (3
y=0
where
Ens, , = _TaQn o . 9

Ran In
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En, v = QAT ,(0 €V gn-1) O
Rn qv
and
E,, v = 0 othetwise (11)

To prove the result, it is enough to show that the .conditsons of
Theorem (4.1) are all satisfied. Condition (3) follows from (10).
and the special case in which Sp=1 (all n=0) gives ta=tn*=1
(all n=0), which by (8) implies (4). Put E,, , given in (8) instead of
A,, given in (2), we have that the left hand side of (5) is equivalent
to:

© oo k—1 o0 k—1
2| ZF,v—2Eunv— 2 Enug, o+ 2 Enyg, o | (12)
n=0 y=0 v=0 v==0 y=0

Since t;=1t,*==1. it follows from (8) and (11) that each of the first
and third sum inside the absolute of (12) is equal to 1. Hence (12)
will reduees to :
o k-1 k—1
z l zna v Zﬂ+15 v l ’ (13)
n=k—1 v=0 v=(

Using (9) and (10) and observe that

k-1
' ry ry
=Ri_;—
Z & A qv b1 Qe 9
v=0
we see that (13) will be reduces to :
, — Qe z } _ [ - (14
Rit Qk ¢ L Riz

; n=k—1
Using (14);, we see that (5) is satisfied if, and only if, (6) is valid.
This completes the proof of the first part.
Next, if r,<0, then A (R,)710, so that the-sum on the left hand
side of (6) reduces to (Rx)7, and thus (6) is equivalent to :

Rict  Qeoare , (15)
Rk #R, =0 )
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so'that By regularity of My and'M;, (15) is e.qui'vale‘nt*' to (7). This
completes the proof.-

As a corollary to Theorem (5.1) is the following :

Corollary (5.1). Suppose that M, and Mg, are regular, and
let { g» } and { r,} be non-zero sequences. Then | Mg | ~ | My | if
and only if (6) and’ its- equivalent (obtairied by interchanging R(;)
and Q(g) are satisfied. Further, if {g,} and { r,} are positive,
then | My | ~ | M#| if and only if Qkrrr Zgr Ri (k—>0).

6. In this’ section’ we' will' give an'examplé to show that the
inclusion may hold in‘only one way not the other.

Example (6.1) Let 7, = 77%1’ (1= 0), g5 =1, and gu=e”,
(n 2 1), (thus My and M; are both regular). Then | Mg | < |M/],
but the converse is not true. '
- Proof. Since {g,} and- {r, } are both positive, the resilt
follows if we show that (7) is satisfied but r,Qr# O (Rygr).

Observe that Q. = e¢" and R, X logn (n—>m0). This implies
that the left hand side of (7) tends to zero, and that

e Q.
R: 9

~>00 as k—>o0
This completes the proof.

Example (7.1). Let Q.= (n+1)!, and ra=d" (n=0), (d>1).
Then [Mg|~|Mi].
The proof is similar as before.

Latsly, the author would like to express his sincerest thanks to
the referee for his valuable suggestions which improved the paper.
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Abstract
In many branches of science, problems arise in which it is
desired to solve ill-posed problems in the form of Fredholm integral
equations of the first Kind.
b
§ KG9 r0) dy=g ) < x<d
a
In this paper we shall discuss two different methods to solve
only severely ill-posed problems, available in the literature. ‘The "
methods are as follows :
(/) Generalized cross-validation regularization method without
using non-negativity constraints. _
(¢i) Generalized cross-validation regularization method using
non-negativity constraints. ‘
The two methods will be tested on integral equations of first
kind of convolution type and graphs have been drawn for comparison.
purposes.
Introduction
For years ill-posed problems have been considered as mere
mathematical anomalies. However, it appeared in the early sixties
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that this attitude was erroneous and that many ill-posed’ problems;-

generally inverse problems arose from-practical situations: Now a
days there is no doubt that a systematic study of these problems is
of great reIeVance in many fields of applied physics. For example,
problems of image reconstructlon and enhancement, X-rays and
neutron scattering ; integral equations of the first kind in spectros-
copy, chemical analysis queueing theory, astrophysics and photon-
correlation, optimal control, sersmographlc data analysis, calculation
of atmospheric temperature proﬁles numencal inversion of Laplace
transforms ; numerical inversion of radon transforms in compute-
rized tomography ; inverse sourcé problems and inverse scattering
problems in optics, meteorology, stereology and other fields.

L. Mothodil Crossivaliddtion without non-negativity

Introdiiction’

The concept of a cross-validation criterion is an old one. In its’

most primitive but nevertheless useful form, it consistss of the
controlled and uncontrolled division of the data sample into two
subsamples, the choice of a statistical predictor, including any
necessary estimation of one subsample and then the assessment

of its performance by measuring 1ts predletlons agamst ‘the other

subsample

Many authors have refined this technique but the refinement
described by Mosteller and’ Tukey [191, whrch they term ““Simple
Cross-validation” is worth mentioning.  ~ ;

Stone [24] brought in the question of ‘choice of predictor and
employed the implied cross-validation criterion in a way that mteg-

rates the procedures of chorce and assessment. Then the method was
refined’ By Wahba [ 29}, Golub, Heath and Wahbi [14° ], buit

Wahbas’ analysis of fredholm integral equations of the first'kind"

is restricted to L (0, 1) or more generally, reproducing Kernel
Hilbert Spaces (RKHS) The RKHS theory is therefore not d1rectly
apphcable to convolution type equations on (—oo, o), but. is edsily
modified for this case,
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2. Description of the method : [ 4, 29 ]

We shall approximate

[vo}
S Kx—y) f(3) dy=g (x), —oo<x<o0 6}
—Q0
‘by replacing it by
1 .
( Ky ) 0= § Ky =9 1,0 =gy @
0

where -KN is periodically continued outside @, 1). -

Counsider the integral equation (1)

In tikhonov regularization, the approximate solutions f are
defined variationally as

C(f;2)=Min{||Kf-gIP+2 & (f)} (3

rew _ .
where w is some space.of smooth functions and A >0 is a regulariza-
tion parameter.

Here § is some non-negative “stabilizing” functional which
controls the sensitivity of the regularized solutions f}\ to perturba-
tions in g. _ . ;

We shall restrict our attention to .pth order regularization
of the form :

c(fin)=| Krsg @

2
G
which is minimized over the subspace H? C L,.

Both norms in (4) are L,, f(?) denotes the pth derivative of f
and A the regularization parameter. : :
Pth order Regularization Filters for Convolution Equations.

Consider the smoothing functional C(f; ) of equation (4)

) 2
,thh‘S,L (f) ,=J £® ”2 Working in L, (R) we have in the case of

2
"4
2
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the convolution equation (1).

crin) =] kerr—g @ [ +a[re)

C

G W) f (w)

2

)

{ H K (W) f 0)— 00)

using plancherel’s identity, the convolution theorem for FTs and the

2‘ +
2

1
2r )

and propery ( f(p )S = (i w _;"

Thus
o) o -
C(riny oV { ki f-gitrme ff § av
—w
1 A A X & A A 2
= |k [ 2w [F[—GFp+kis+ |2 [ Jaw
—0
0. A
A A 2
= M F[ + 2wm)f ke[
—0o0 l k I 2+W2p
® A ‘
+ A S WZPAI g I 2 dw ' ‘ (6)
n—oo | & | 24aw2? '
clearly C ( f; 2) is minimized w.r.t.f. when
when fu) = __ K& —z(n;a) 80 )
| & [ awee k o)
| if |
where z(w;A) = ——— ®
L : ] k J + A w?? '
z(w; A) is called the pth order filter or stabilizer
o A
(7) can be written as f_ () = 1 S z(w; 1) g (W)
. ‘ A 2n ]G(w\‘ X

—o0
' Exp (iwy) dw (9
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We assume throughout that the support of each function f, g and
K is essentially finite and contained within the interval (0, 1)>
possibly by a change of variable. It is then convenient to adéept
the approximating function space TN——I of trigonometric polyno-

mials of degree at most N—1 and'period 1, since the discretization
~erior in the convoluion may be made exactly zero at the grid
points and FFTs (Fast Fourier Transforms) may be employed in the
solution procedure. Let g and K be given at N equally 'spaced

points x,=nh n=0, 1, 2,......N—1. With spacing h= “;T Then
g and K are interpolated by &N and KN & TN—I , where

N—1
1 A e

8N (x) -~ Z 8N g exp (i wgx) (10)

Q———-O
- 11
gN q_z " gwexp( lwqx) (11)

and : ' o

g (x ) = g = ZN (xn Y, wq=21rq - (1_2)

W1t’n simitar expressmns for’ k

In T _ ,f in (9) is approx1mated by

N
N—1 .
fua ®=2 2., Nog ewGwen) (13
kg |
“N.q [ ,
g32 = 8 2t
KN, q l +N27\wq21’
Where
~  (Wg 0%q<iN
W =<y

N_g, N < ¢ < N-1
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The optimal A in (14) is still to be determined. From equation .
(13) we know that the filtered solution f N A(x)ETN—-l which mini-

mizes
N—1 , @
z [KN *£) (x.n)—gn] + )“!f (x:\z
| il2
n=0
N—I
. 1 ) .
I8 fya ="y ZfN,x,q exp (2  ¢x),
g=0
Where
A
P N, q
N! 7\, q q H) Z 5
N, ¢
(g lz
with Z = Al N, g ~2
H 24 N2
iKNA +waq

Where wg=<4 w IN<g<N-1
LN

The idea of generalized cross-validation (GcV) is quite simple
to understand. Suppose we ignore the jth data point g and define
i

the filtered soluti U 4 he mini i f
ered solu 1oan’ \ (x) ‘TN—-I as the minimizer o
N-—-1

2 [(<n ()04 ]r ]

n=
®)) ,
then we get a vector &N € RN defined by
() K(J') '
g =
NAT T N \
Clearly the jth element N2, j of equation (15) should “predict”
L B )

(135)
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the missing value g;. We may thus. construct the weighted mean
square prediction error over all j.

NS 0)
1 2 16)
= A -
| j=0 .
The principle of Gc¢V. applied to the deconvolution problem then
says that the best filtered solution to the problem should minimize

the mean equare prediction error in (16). Thus the optimal A
minimizes V(A, p) for given p and does not require knowledge of o2.

To minimize V(2, p) in the form given by equation (16) is a time
consuming problem. Wahba [29] has suggested an alternative
expression which depends on a particular choice of weights, resulting
1in considerable simplification. Let

‘ T.
[ ( ) amn
N, » _( N, x(x‘?) SRR A NI G\
and define . )\=KIN, N e (18)
then there exists a matrix A(2), called an influence matrix such that
gN, )\=A(7\)g_N . (19)
- A A .
Let K=diag ( h KN, q) and Z=diag (Zq : )‘)
then from (13) we see that
s R Zg - Qo)
A .
Whgre EN= 73 ‘ (21)
and so AG)= ¢ 5, 1 (22)
o Zy ’

since K= ¢ 'I’E¢H : (23)
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Wahba (29) has shown in a more general context, that the choice of

weights

1—a .. () 2
w (A)= 17 =0,....N—1  (24)

J o . »
NTrace (I—A (n)

where A (3) is the influence matrix in equation (19), enables the
expression (16) to be written in the simpler form

1 (2
|14 Oeyg i/; 191 | @)
[—I-Trace (1—AQ)) JZ

‘ 7 N
From equation (22) it follows that

Ta-Beyl;

[%Trace (1_2)‘]2—

l.e, | e 2 2
N 2 '(-1—24;%) ”ng q”
VO, Py 26)
N2
[_lqugo (I_Zq;m)J

Since the matrix A()) in (15) is circulant, the weights in (24) are
all unity. The expression in (26) is minimized using NAG Routine
EO4 ABA, which uses a quadratic interpolation technique to obtaln
a minimum,

3. |Cross Validation Regularization Method with Non- negatlwty
Constraints,

In this section we examine an extension of the CV method in

TN—-I to the case where non-negativity constraints, f(x) >0 are also

imposed on the solution.
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The basic ideas we discuss were proposed by Wahba [30] but
the method of computation we adopt differs from hers and is less
expensive. '

Description of the Method :
We estimate the solution of

QO
{O k(x—y) f()dy=g(x) —0sXL® 27

where we know in advance that fis non-negative and hence our
estimatefN is constrained to be non-negative. In contrast to the

successive broadness characteristic of unconstrained estimates of
narrow functions f (Dawson et all [ 91), the use of non-negativity
constraints greatly sharpens the estimates (Cooper [ 7.

Non-Negative functions are an important class for many physical
application e.g. Density functions. These constraints have been
applied to problems in phisiology by Wagner et all [ 28] and with
prior choice of smoothing by Evans and Wagner [ 11 ].

We first describe Wahba’s constrained algorithm | 30 ].

T
Let fN - (f(xo), ......... ,f(xN_l))
and consider the pth order regularization functional in TN-—l
2 H a H
>H H
KN — 8 +Af Yy f
C(fN;k)_] VRN TR AN
where R =¢H K¢
’ 2r .
=¢N and ¢Jrs=——— ex ( = 1_rs) r,5=0,1,2,...... N-—1

A ~ \2
and J =diag( iwq) ! (29)

Le_t,f;\ be the minimizer of (28) subject tof;N >0, with com-

anen;s,fA, " The indices B seeensy A for whi@hfk " 20 are first
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determined.. Let E be the N xL indicator matrix of these indices.

That is E has a unit element in the mth row and nth column,
if m=nj, J==1, ccoea.. , L and zeroes elsewhere.

In what follows we denote by I the set of indices (n1 el L) of in-
active constraints.
The constrained minimizer of (28) may be written

A A A -1 A
£ =E { kMg e g H‘LN{HE) pHygH fiN

Deﬁnmg ,§7\=Ki;\
There exists an N x N influence matrix ALO‘) satisfying
| —g-7\=:AL (K)gN.
It can be shown that , ‘
" | Tt _H AHH '

A W=k Bz, +3 ) e ‘ 31)

where ;:K:EHMA(H KQ)HE
=gt ei ey

with the property that

Trace(I—A Lo )=N—L+x Trace (B)

=1
where B=ZJ(ZK 1+ EJ)

Wahba [30] argues that the optimal A in the constrained setting
may be found by minimizing

c R
A4 M= 2
approx [W(N—L-f-/\ Trace (B) J
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clearly 5 depends non-linearly on E as well as on A and so E must be

recomputed whenever f N is computed. These iterations can be ex-






































































































































































































































































