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"ON A SINGULAR BOUNDARY VALUE PROBLEM
WITH SPECTRAL PARAMETER IN THE
BOUNDARY CONDITION

A.A. DARWISH

Aathematics Department, Faculiy of Science.
Tanta University, Tanta, Egyps

Abstraet

in this paper we are concerned with a singular boundary valiue
problem. This problem is generated on the half line by a differential
equation of the second order and a boundary condition including
a spectral parameter. The solutions of the considered differential
equation are obtained and their properties are given. The discrete
specirum of the problem is investigated and its resolvent 1s obtained.
Furthermore, the resolvent set and continuous spectrum of the
singular boundary value problem are studied.

Iniroduction

Tt is well known {sece pp 144 =152 of Ref. 1) that bouvndary valu
pioblems with speciral parameter in the boundary condition have
many inieresting applications in mathematical physics. A regular
boundary value problem with parameter in the boundary condition
was investigated in Ref. 2. in Ref. 3, the casc of two-point boundary
value problems with eigeavaluc parameter in the boundary conditions
was discussed.  The present paper is devoted to study a singolar
boundsry value problem geserated on the half line © € x < o by the
diffzrential equalion

~y +q@)y =2y (n
and the boundary condition
Yy (0)—anry(0) =0, (2)

where the coeflicient g (x) is 8 complex-valued continucus functions
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2
on [0, o) and satisfies the condition
| ®
S xigq(x)| dx < . (3)
0

Also ) is a complex parameter and « is a real number. 1In § 1,
we obtain some solutions of equation (1) and study their properties.
We investigate the discrete spectrum of the boundary value problem
(D -(2)in § 2. In § 3, some theorems on the resolvent set and
continuous spectrum of the problem are formulated.

1. Seme particular solutions of equation (1).

We shall require solutions of equation (1) which satisfy specific
" initial conditions at x =0 or which have specific asymptotic behaviour
agx — .

Now, from condition -3) it is clear that (1) reduces to the simpler
equation -y* =1 ay as x — 0. This permits us a complete investiga-
tion of the propertics of the solution to equation (1), and this is
our aim in this scction. We shall use the following notation :

@ e e}
sw={la®ido @=
X X
arg 8 < = Oae can easily verify that condition (3) is equivalcat to
the summability of the function ¢ (x) over the entire half line 10, o0),
i.e., to the inequality ) W) <.

{ o) dtand s =¥ such thato <

Theorem 1. For any s in the closed upper half plane, equation
(1) has a solution Q (x, s) which :atisfies as x —» 0 the conditions

Qx,5)=14+0((x), Qx8)=as+0(l) (4

This solution is an analytic function of s for Ims > 0 and
continuous in the closed half plane ims » 0,

Proof. Let the funetion Q (x,8) = Q X) forx —» 0 satisfy the
integral equation

. z’ .
Q (%, s)=cos sx+a sin sx + S~m—'£x:l q(0). Q(,8) dt (5)
0
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Then Q (x, s) is obviously a solution of eguation (1), We seek
the sotution of this integral equation for Im s > 0 in the form

Qx 9 = e $is,x

Then the resulting equation for ¢ (s, 1) is

b (x. 5)’2-:1'(cq_s $x<-# sin sx) e

X
S sin si;x -1) iq(t) le - ig{x—~1) bt s dt. 6)
0

which can be solved by successive approximation upon setting
yx.8) = T Y (x.5) @
: k=0
where

4, (x,8) = (cos $X + a sin sx) e’

and
X
bmo= 5T g e
0 .

Since, for any s [rom the closed upper halfplane.1c ims 2 0,
we have

] {€Os 5X 4+ Sin 8X) em €€

and
i sin § (x=1) ls(x t;,si 8in 8(x—1) ,
I sX X
| sin sx cos st—cos $X sin 5t
i . 8x l

< 'l——;;--sjm for D<t€x,

w0
the series (7) is majorized by the series kE 0 -'Z‘_:k {x), where
I e

x .
z, == {lawiz,_ wa
0



I fact, for k=0, we have

[, (%8 € C =2 (=)

o

Suppose that this is teue for k=m,ie.,
B
sz m-s{lamiz,_ 0d
0

We shall show that this is true whea k =a 4 1.
\ x B
T T TR S SEYCIEACT T A
-0 :

o0 . .
The zeries X Zk (x) is clearly uniformly convergent on eack finite
k=0

interval of the half line [0, o). Indecd, & simple induction shows
that :

£
C k
0<Z, < 5y I §la®iar®
0
It follows that for any 0 < a < o, the seriss (7) converges uniformly
inthe domsin 0 € x < 2, Ims 3 0, and its sum § (x, s) setisfies
equation (6) and the inequality

5 C
ol sCapix §1amidn. ®)
0
Moreover, ¢ (x, s) is an analytic funciion of s for Im s > 0, and is
‘eostisuous in the closed upper half plane Im s 3 U. But this mcans
- IsX

that the function Q (x, 8) = ¢ ¢ (%, s) satisfics botli the equations
{3) ard 1) and the inecquality
) 3
| Q(x, 8) ™ | € Cexp{x S [ q() 1 de). )]
0 .

Also, Q (x, s) is an analytic functiot of s for im s > 0 and continuous
in the closed half plapne im s > 0.
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/ Now, equation (5) and the one resulting from it upon differentia-
ting with respect to x imply, together with estimate (9), that - -

| Q(x, $)—(cos sx +« sin sx) !

X

si (x—t
< [T s iqmiiQu et
: .

t
3

X
scjxlq(t)i{expmmsuHS‘iqftndcndt
0 0
; X » X
<C{xiqwidtep (11msx(+ fx1aw1dy
0 : : 4]
andr ‘
X
{ Q" (x, s)—(« 5 €OS XS5 sin sx).| € CI }q (ty| dt exp { | Im sx|
0
X i
+ [ x1awid.
0

That is to say, Q (x, s) satisfies conditions (4), i.c.,
Q(x;8) =1+ 0(x)
Q'(x, 5) = as+ O (1) for x — 0.

Remark 1. Similarly, we can prove that equation (1) is solvable
for Ims ¢ 0and its Q (x,s) is analytic in s in the half plane
Im s < 0 and continuous for Im s < 0.

Lemma 1. For any s from the closed upper half plane, equation -
(1) has a solution F (x, s) that can be rcpresenled in the form

@®
F(x,5) = eisx + S k (x,‘t) e'f“ dt,

X
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where the kernel k (x, t) satisfies the inequality
, i x+t N ‘ Xt
(k(x,t)] < 2 ° (—z—-)exp{al (x)=q, (—zi )}

in addition

oo

k (x, x) —;g Lq(6)] é:.
X

For proof of this Lemma see Marchenko see pp. 120 - 124 of Ref. 4
Lemma 2. The solution F (x. s) is an analytic function of s in
the upper half plane Im s > Oand is continuous on the real line.

The following estimates hold through the half piane Im s > 0

|F(x, 8| < exp{-Imsx+o; (x)} (10)

|ECn - | <o, =0, (x + T:?T)} exp {~ Im sx+0, (x)
(1)

and

{ F'(x,8) ~ise'* | € o (x) exp {—Im sx 4 o, (x3} (12)

See pp. 126—128 of Ref. 4,
k‘Lemma 3. Thé solution F (%, s) has the following asymptotic
behaviour
F (x, =™ (1+0 (1)), F' (x, ) =e"* (is+0 (1)) (13
as X — oo for all Imsg > O;s #0
and |

Fex, 9me™ (140 (), F (x,9)=ise ™ (140 (1) (14

as [x | =00 for all x and Ims > O (see pp. 294—298 of Ref. 5).
Further, for real s # 0, the functions F (x, s) and F (x,—s) form
a fundamental system of solutions of equation (1) and their

Wronskian is equal to -2 is : A
W IF (x,8), F(x, —8)] = F(x, s) F' (x, =s)=F' (x, 8) F (x,~$)

= ~2is, Im s=0,
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2. Discrete spectrum of the toundary value problem (1)—(2).

In this section, we define the eigenvalues'of the boundary value
problem (1)—(2). ‘

Theorem 2. The boundary value problem (1) —(2) does not have
cigenvalues on the positive semi-axis Sce Ref., 5.

Theorem 3. The eigenvaklues of the boundary value problem'

- (1) = (2) are given by solutioas s in the upper half plane of

W(s) = F' (0,8) — as® F(0,s)=0.
The cigenvalues are then ) = 52 They are bouaded, finite or
countable in number and accumulate only on the real axis.

Proof. Equation (1) has a solution satisfying the initial éo‘ndi-
tions, o '
Q(0,s)=1 and Q' (0;8)=gas, - {15)

Since the two functions F (x,--s) and F (x, s), form a fundamental
system of solutions to equation (1) for all s # 0, we can write

Q(x,5) = Cl F (x,-8) + C2 F (x, 5).

Letting x ' approach 0 and taking the initial condition (15) into

account, we find

F'(0, s)—asF (0, —s).
—Zis

_ _F0, §) — as F (0, )
1 "~ 2is

C and C2 =

Whence

Qx, 5) = (2is2 )~ (F (0, 8)~as? F (0, )] F(x,~5)
— [F' (0,~s8) — %82 F (0,—3)] F (x, 5)}.

Since the general solution of equation (!) which satisfies the
initial condition (15) has the form y = CQ (x,5s), it follows that

A= 32 is an eige'nvalue of the boundary value problem (1) — (2) if
and only if the function Q (x, s)isin £, (0, 0). From relation

(13), F(x,s) is in £2 (0; ) and F (x,-s) is-not as Im s > 0,

Consequently Q (x, 8) is in ;E2 (0, o) if and only if

F' (0, 5) = as® F (0, 8) = W(s) = 0.
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Now we shall prove that the zeros of the function W (s) are bounded
in the upper half plane im s > 0.
This follows immediately frém (14), since.
F'0,sy =is(1+0 (1)) as }s|— o

Thus W{(s) cannot be zero and hence its zeros are bounde’d, Now,
since in the upper half plane Im s > 0 the function W(s) is analytic
as are F (0,s) aed F’ (0, s), the get of its zeros is mo more
than countable and can have 0 as the only possible limit point on
the real axis. Herce the theorem is completely proved..

Corollary. Theorem 3 conformste our earlier resu]t' in Theorem 2,
3. The resolvent set and continuous spectrum of the boundry value

problem (1) —(2).

The objective of the present section is to construct the resolvent

and prove some theorems on the resolvent set, continuous spectrum
of the boundary value problem (1)—(2).

Theorem 4.

(i) The set of numbers {1 = s? . W(s) # 0, Ims > 0} belongs
1o the resolvent set of the boundary valpe probiem (1) —(2).
(ii) The resolvent of the boundary value problem (1)—(2) is an
o0
integral operator R, (f) = j R(x, t,s) f(t) dt with the
0
kernel
-1 [FxsHQEs), 0<stsx
R(x,t s)= —— <

WE) Qs Ft,e), x<t<w
Proof Statement (i) is evident. Since by Theorem 3, it follows

that all numbers » = 32 , ITms > 0, W(s) # 0 belong to the resol-

vent set of the boundary value problem (1)—-(2). Now, leti = o2 be
not an eigeavalue of the bouudary value problem (1)— (2}, that is,
W (s) # 0. Then, by variation of parameters we find Green’s




function and thus the resolvent R (x,t, 8) of the bouadary value

problem (1) — (2). If f is in £2 (0, — ), then we obtain

x
1
y = Rx(f) = - —W—(T)‘ [F (X, S) j Q(l, s) f(l) dt
0
o o]
+Qx,9) j F (t, s) f(r) di}.
X

Im s > 0, and hence the proof of (ii) follows at once.

Lemma 4. For every v = Im s > 0, the formulae

[s o}
A, fix) = exp(—7X) I exp (=) (3 df
0
a0
Bo f(xy = exp (r x) I exp (=) (%) dl

, b3
define in the space £2 (0, «©) linear continuous operators, and

1
A IS — IRl
For the proof see p. 302 of Ref. $.

Theorem &,
(i) For every § > 0, there is a number C8 such that
Cs
R —_—_ .
IR, IF < W) 7 for £>0,|s|>38
(ii) Every point on the non-negative real axis A > O is in the
continuous spectrum of the boundary value problem (1)—(2).
Proof. We now use the incqualities
1Q(x,8) | & C5 exp (v x), | F(x,5) | € Cy exp (—7X),
>0, l s | = 3.
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The first of which comes from (8) (We recall that by hypothesis

aD
I ‘x} q(x)| dx < ), and the second from relation (10) so that

0

X
1 .
IR, fIl < T C,texp(~rx)| ex(snrman
0
[+ o)
+ exp-rxl exp(—zt) f(t)de}, > 0.
X

Using Lemma 4, we obtain the inequality
Cs
"RZng'TWTSTI_‘r_' >0
Hence (i) is proved.

For statement (ii), let » be a point not on the positive semi-axis
and not an eigenvalue and let b be a positive number, Let
[Qx 3), 0€£x<b

U(x,8) = 4
L 0 ' b<x<w

Then U (x, s) € £2 (0, e0). Thus we find, for x > b,

- F(x,

b
R, U(x,5) = w(s)') I Q(t, s) Q(t,s) dt
0

b
e — F(x,5) 2
*ngQ(t,S)l dt

b
- F(x; '
=——————w((’s‘)’) f lUG, 9|2 d.
0 .




1§

Hencc
‘ & ' s
IR, Ux 912 =i Usit?oxs | 1Ry U ax
0 : b
b
= -__L___z.([;'qu,s)}zdmz
| Ws, |
e 24
yj [Fixsy |2 dx.
b
Thus
: . b . ® . .
IR, I° > -'—w-‘-—_i f1uwsei?a [ 1Faai?e
L [Wis)® b

Now. choose b large enough so ‘that. F %, s) == o'%* (1+0a)p
fO(1)} <3. Thus webhave| F(x,8)! > } exp(— v x), as 7 2 0,
and therefore

o o
I | F(x,s)| zdx >} I exp(—2rx3dx = § exp(—-21b)/1n,
b b

Then since on any rectangle in the upper half plane with one
. ‘ b
side on the positive x-axis the integral I | U(x,s) I-Z dx is bounded

0
away from zero and we find

A exp (— 7b)
[WEY 2V 2T

f R,x >
where A is a constant.

Hence as s approaches any point on the real axis, || R, I is

unbounded and the square of the point is in the spectzum of the
boundary value problem (1)—(2).
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et us denote by L the operator generated in the spaée
£2 (0, o0) by the differential expression — y” + q(x)y aand the

bondary condition y' (0) - «ay(0) = 0.

Let R(L—)\l) be the ramge of (L - Al Then wé have to
show that for A > 0, R (L —x1)is dense in £2 (0, ) so that the

inverse can be defined - A condition equivaleat to this is that the
dnhogonal complement of R (L—2al) is the zero element. But since
the space of solutions of Lfz = anz coincides with the orthogonal
complement, by using Lagrange’s formula (see p. 7 of Ref. 5) and the
resolvent of the boundary value problem (1) --(2) it foliows that the
operator L* adjoint to L is generated by the diffcrential expression

-2" + &(x)z and the boundary condition z’(0) —u‘;:z(U) = 0,
Hence, by Theorem 2 the number % canaot b- an ¢igenvalue of the
operator L* and the assertion follows, Thus the set of numbers
A 2 0 constitutes the continuous spectrum of the boundary value
probiem (1) —(2) and hence the theorem is completely proved.
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NUMERICA‘L SOLUTION OF SOME HIGHLY
IMPROPERLY POSED PROBLEMS

M. IQBAL

Department of Mathematics Pun Jjab University Qua:d-e-Azam
' Campus Lahore-20, Pakisian

1. Abstract

The .paper is concerned -with uncoastrained and -constrained
-regularization of higly ill-posed problems in the form of Fredholm
in egral equations of the first kind, In the first part of the paper
unconstrained method of Maximum likelihood is used to find the
optimal value of the regularization parameter. In the second part
bconstraincd Maximum likelihood is used -on the same test problems
in order to compare the efficiency of the two methods. Comparison
of the methods is established through Tables of re-ults and computer
diagrams. Highly improperly posed problems available in the
literature are tested by the methods.

2. Introduction

Consider the Fredholm Integral Equation of the first kind of
convolution type :

Q0 i

EwNm={ ka-0fOdt =g, -w<x<w @D
-

.whcre k and g are known functions ‘in-L2 (R),and f € HP (R)isto

be found. Denoting 5 as Fourier Transformation symbol, then from
the convolution theorem we have

AN A
k (0) f (0) = g () (2.2)
13
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whente:

0 :
f(t) = .71’_‘_ f g (0) exp(i o t‘)' do (2.3)
)

(.0
The improperly posedness of (2.1) is reflected by the fact that
: A
any small perturbation € in g, whose transform € (w) dose not decay

A . - A A
faster than k (w) as w — oo, will result in a perturbation in g (@)/k (@)
which will grow without bound, when g is inexact. - Thcrefore, we
may seck a stable or filtered approximation to f given by

(oo} A ’
f, ()= —2—11—:- ,. S Z(o; l)—f—ﬂ—)—fxp-(imt)‘ do . (2.4)
-Q0 k(o)

where Z (o ; 2) is a filtered function dependent on a parameter A.

Filters may be constructed in several ways, either directly for
the convolution keruel {1] or as a special case of general Fredholm
Integral Equation (2, 3] provided in the latter case it is realized that
in (2.1), the oprator k is not compact and the Fourier transform
(FT) here plays the role of a singular function expansion in
the ‘context of compact operators. Jn this paper we construct a
“maximum likelihood (ML} method with non-negativity constraints
and. without nos-negativity constraiats, which determine the

regularization paramcter A optimally.

3, Maximum likelihood Method (without non-negativity)

We assume that the support of each function f, g and kis
essentially ﬁuue and contained within the interval [o. T.]. Let Tn

~ be the space of trigonometric polynomials of dcgree at most N, and
petiod T. We shall seck a filtered solution of (2.1).

We assume that en (X) and 'gn are stationary stochastic processes
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with zero mean, where

; T :
sy @ = fepionds @
o
5 A .
- ‘117 Eng P G0y D) | (3.1
and

T
g, = g expliox)dé_ () .2)

) ,

The relevent features of the fuuction Eg and &e is that the variance

of an integral

T T
Sﬂ(w)di (m)isS [ 012 P, (o) da (3.3)
gN U
[+ [o)
. ®
suppose that we have a filter { Sy » such that fN (Xk ) is
estimated by
z Sk-—m Bm | 3.9
Since
T
. A
fy@=| explionds, (k@I
g
o. N
where (3.5)

O ——

QN (w),‘= z Kn' exp (iw Xy )

The error, of estimaté is.
, T
fN (x5 )-Z sn—m m = S exp(iwx )
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, 1 .
[-—— - @ ] 4, @
kN(co)
T
A
- S exp (iox ) Is:‘(m) dg () (3.6).
o]
where
A 0 '
S(w)y = X Sr exp( —ion X ) 3.7)
r=-—a0

then the variance of (3.6) is

|

o IIEN(m)

1 A 2
- Sy(w) ' Pg (0) da
, N .

A 2
Sy () l P (o) dw (3.8)

T
+
o

which is minimized when

: PgN (0))

Pgy (@) + PE@) B (w) o (3.9)

A A

. A
Now we shall find the relationship between the filter S(W) given by
(3.7) and the filter Z (W) Given by [4].

The filtered solution has Fourier Transform

A
A A A g(wq)
fl*l.<];7\=‘sl‘l(“‘q)gN(“’q )= Zq.J\ ~
k("’q)‘

where (3.10)

A . .
gN(m)=.:.‘.gnexp(— io X, )i




We can compare this with Fonrier Transform of (3.4) to get

N
A A
Z (v) __Ig\_ga_n_ = § () g (@)
k(o)
or
o .
Ziw) =S () k (u)
Thus in our method the ratio B (W) in (3.9) in Andcrssen and
Bloomfields work [1, 2] is equivalent to our filter Z (W).
4. Optimization by Maximum ‘Likelihood (ML Unconstrrined)

To optimize the filter w, r. 1.2, we now modify A and B’s work
[1. 2] accordingly. This involves choosing an error distribution of
the form Pe {(w) = b ¢ (w), where bis an unknown constant and

¢ (w) is a knuwn function. Also for second order filter (i.e. p = 2),
we choose as the distribution for gN

b (]2
P (o) = “‘*’”4 (@) ] (4.1)
gN Aw
A 2
50 that Zw) = 1 k(@) |
” 2 4
| k(w)] “ + Bro
2
..n_ N
= B (©) ( ' B= _TT) (4.2)

Thus the distribution for By is given by

PgN=Pgn._Pe
b ¢ ( ?(o)lz
Pgn(m,b,}‘)=b¢,(m)+ ¢ (w) | i)
Blow
% 2
-b¢(w>[:+_L @1 s
Bro



%

Now Let ¢ (e} = | 8o Pg = b

F.3
k@127

Pg (w, b, 2} == b[l+ s N [P S, (4.4)
1 3104 J l-zq
A .
1k 12
where 2 mm e a (4.5)
. g A 2 4 .
[k ]+ BArow
q
_ N-1 . s A 3
and S(o)=1| I g exp(—xmxk)} =lg | :
1 k=o 9 e

Anderssen and Bloomfield show how to eliminate the constant b from,
the problem.

First they approximate the likelihood function of the parameters
i, b by using a formula due to Whittle [S].- This says that the
fogarithm of likelihood function of Pgn is approximately,

[ oc %N—l | ‘ S(m‘q) n
= Constant — } % [og P Y — 9 1 47
) faCog) + ) @

(4.7) can be maximized w, r. t. », which ’s equivalent to minimize

N-1
N A
0= (1) e 15 1y 12]
N-1
T leg(l-z_ ) (4.8)
g=1 q

{(For minimizing we have used NAG routine E04ABA based on
quadratic interpolation technique).

Now knowing A from (4.8) ﬁre can have

s N
N = X z _ "1 4.9
A, Q Q=0 q ~ (4.9)

I kq' I
Then by inverse Fourier Transform of (4.9) we can find the desired
sclution function f.
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5. Maximem likelihood (ML) Method with Non-negativity

In this section our main interest is to develope a method for
choosing optimal A suitable for non-negatively constrained regulari-
zation using maximum likelihood with Trigonometric approximation,
We propose an extension of the ML Method of the previous section
to the constrained case. The performance of ML regularization in
the constrained case is dramatically superior as compayrcd t) the
unconstrain.d case and it is not expensiv. to compute.

From the cross validation (CV/ Constraned regularizotion
method discusied ia Iqbal {6] and Wahba {7}, we conclude that
the indicator set I, obtsined through the quadratic programming
subroutine (NAG s_broutine LO4LBF) plays a key role in the

algorithm.

ft affects the filter function and ultimately affects the expession
for VML(}E): Our pth order upconstrained filter is given by

equation (4.5} and our unconstrained VML (2) by equation (4.8).

If [is the indicator set un f:rlying the mateix E {(see Iqba! [6]) i.e.
the set of inactive constraint iadicss, we approximate the contrained
filter.

by
2y ;o GE ‘
A (5.13

Then V ML (2) in the constrained case may be approximated by

M N A 2
Vapprox (1) = = log [ Z ) lag |

A
- E 1% 12 )~ = tog-zg,,)
q . . (5.2),

whese L is the number of inactive constraints.

oM ~ o
To minimsze Vappmx(“ we used the NAu quodratic pro

gramming subrouline EGALBF.
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For each A evaluation in the minimization process the subroutine
BO4LBF is repeated.

Since V:’:}pml {a) is not necessirily a continuous function of

A we have made » lin=ar search in order to fiad the optimal value of
A :n the consivained case, correspo ding to the least- value of

M . .
approx and noted the corresponding solution Vector f .

6. Problems discussed

P (1). Thi: problem is highly improperly posed given by
Turchin [8] where f is two gaussian function. With essential
support —1.3 < x < 1.5, k (x) is Triangular with equations

- given below
3.2
| ka-0rmda=gw
-3.1
{ BN (-x4+12), ogx<]I2
k (x) = I' SND¢ x+12), —12<x<o0
‘. o ., ix)al2

We have calculated the values of g(x) by the NAG
algorithm DOIABA using Rombergs meibod with accuracy

10—7 . 64 grid valucs have been considered as shown in

DIAG (I).

P(2) This problem has been taken from M:dgyessy [9] the
sofution function iz the sum of six Guassians and the kerncl
is also Guassian, we have

fs -
] kix=y) f(y) dy = g (x)
-4

. 6
gEX) =X A eip [- ———




2t

wagre

Al=100 z =05 B, =0.04
A2=10.0 a, =0.7 8, =002
A3=50 2y = 0.875 By =002
A4=10.0 ag =1125 54»,:;0 (4
A5=50 ag =1.325 By =0.02
A6=50 xg =1.525 Bg =0.02

The essential support of g(x)is 0 < x 2 the essentia! support
of k {x) is (=0.26, 0.26).

where

. .,
k() = o exp (“"x ) , A = 0,015

The so.ution is

g -z, ¥
o= kf: ("5;‘57 )é Ay exp (‘i‘%ﬂ(‘ﬂ)

The essential support of f(x) is (0.26. 1.74) as shown in
DIAG (2).
6. ) Numerical Results (Without non-negativity)

Random noise .in the problems is also used, the results are
shown for the clean data and for the noisy data.

P (I). Although this is a severely ill-posed problem. for clean data,
the method yielded almost perfect solytion. For 0.7% noise
the method resolved the two peaks clearly.
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When p is increased from 2:to 4 in the unconstrained case
the solution. improves slightly as shown in DiAG (3) aud
Table I

P(2) For clean dats the method suceeded in resolving all the six
peaks, but for 1.7% noise the method resolved almost §
peaks as shown in. DIAG (4) and Table L

§. (b) Numericai Results (with non-negativity constraints)

We have employed this algorithm on problems P (1) zed P(2)
with different noise levels added to the data vector the resulis are

fsummarized in Table 2,

£ (I). This higgiy improperly posed problem could not be
satisfactorily freated using uncenstrained rcgul rization,
because farge negative Jobes were always there. For
constrainéd regularization, the results are enormously

$uperior,

With 0.7% noise the selution is guite good as shown in

BIAG %) with 1.7 poise again the solution resolved the two j
¥y -f

enke clemsiv b yoe m o gy Y
pezks clearly as shov n in DIAG (8), wuh 33% nose, the

in resolving the two peaks very

method couid not succeed
(7).

clearly as shown in DiAG

P(2). For clean data ML constrained method yieided a good
solution resoving all the six pesks, with { 1%/ naise again
ML constrained gave a very gocd resuit as shown in
DIAG (8).

Conclusion

For mildly and. moderately ill-posed probiems and with low
level noise, ML ccnstraiped method is comparable with CV con-
strained method [6},

For highly ill-posed probiems wiih iow ieve! neise ML consirained
worked very well problem P (2) is best soived by ML counsirained
methods.
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TABLE 1|

ML Regularization (Unconstrained)

Problem No of Gnid  Noise A ;
I G ia:
Points . Level i n”z Diag
P (1) 64 0.0% 3.20x107 1% 725410™3 3
P=2 64 0.7%  550x10” 1! 2301x10™} 3
P=4 64 07% 340x10”13 13524101 3
P2 ¢4 0.0%  3.40x107%° 6260x 10" 4
64 L% nioxi1e”! 3sasxi0® a4
TABLE 2
ML Regularization (Constrained Case)
Problem No of Giid  Noise 3 I [—f.N I, Diag
Points Level '
. —17 0=3
P (1) 64 00%  3.10x10 6.80x 10 s
. . o -0 ~2 L3
P(l) 64 07% 251110 5.86 x 10 «
(1 l : -—9 ‘""2
P (1) 64 1.9%  6.100x 10 7.463x10™¢ 6
P (1) 54 33%  4a3x10”7  2tioxio~! 7
| o 1x10—15 o~} 8
P(2) 64 0.0%  6.10x 10 5.208 x 1

P2 64 1y srsaxie~ 221x10 8
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Abstract

We provide some sufficient conditions for the monotorie
convergence of certain iteration projection methods to the solution of
a nonlinear operator equation in a Banach space, Our conditions
simplify earlicr hypotheses. ‘ '
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i. Infroduction

We consider the equation
L(x)=Tx) )

where L is a linear operator and T is a nonlinear opzrator defined on
some convex subset D of a linear space E with valuesia a linear

A

space B,

L We study. the convergence of the iteratiops.
Ly y1)=T(¥y) + AL 000 (¥ = ¥,) @

and

L(xh_H‘)=T(xn)+An(y,x)(xn+l—xn) 3

to a solution x* of cquation (1), where A a(Y.x), 8 » 0 is a linear
operator,

35
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If p is a Jinear projection operator (p2 = p), that projects the

A A A :
space E into BE_ € B, then the operator PT will be assumed to be

P
Frechet differentiable on D and its derivative PT'x (x) corresponds to
the operator PB (y, x), ¥, x € D x D, PT', (x) = PB:x, x) for all

x € D,
© We will assume that

A (¥, x) =APB(y, .%x )o=20

Iferations {2) and (3) have been studied extensively under several
assumptions [ij—[3]. 16]—[8], when P=L==i, the identity operator
on D. However, the iterates { Xn }and { Yo } can rately be computed

: A

in infinite dimensional spaces in this case. Butif the space Ep is
A

finite dimensional with dim (Ep ) = N, then iterations (2) and (3)

reduce to systems of lincar algebraic ¢quations of order at most N,
This case has been studied in{3], [4] and in particular in [3]. The
assumptions in [3] iavolve the positivity of the operators Py (y, x)—
APB (y, x), Q‘i’”% {x) with Q=I~-Pand L ()~ A, (v, 3} y on some

interval [ ¥, o X ], which is dificult to verify.

In this paper we simplify the above assumpticns and provide
some further conditions for the convergence of iterations (2) and 3)
to a solution «* of sguation 1.

We finally illusicaie our resulis with an example.

2. Convergence Resnlts -

A

We assume that E and E have béen partially ordered “<* by a

cone and we will call them partially ordered topological spaces
(4], [6), [8] (POTL-spaces).
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Definition’l, A POTL-space is called normal if given a local
base p for the topology, therc exists a positive aumber y so that if

DLZ2E M then[0,2]={x;0.<x<z}CcyU.

Definition 2.. A POTL-space is called regular if every order
‘bounded increasing sequence has a limit.

If the topology of a PO1L-spaceis given by a norm then this
space is called a partially ordered normed space (PON-spac:). Ifa
PON-space is complete with respect to its topology then it is called
a partially ordered Banach space (POB-space). According to
Definition | a PON-space is pormal if and only if there exist a
positive number & such that :

Ixi € afyliforalix,ye Ewith0 € x < y. ')

Let us note that any regular POB-space is normal. The reverse is
not true. For example, the space C [J, 1] of all continuous real
functions defined on [0, 1], ordered by the cone of nonnegative
functions, is normal but it is not regular. Al finite dimensional

A
POTL-spaces are both normal and regular. Denote by (E, E  the set
A A
of all operators from E to E. LetL (E, E) be the set of all linear
opcrators and B (E, E) the set of all commuous linear operators from

EtoE Let an operator N € (E, t') N is called isotone (resp.
antitone) if x € y implies N (x) € N{y) (resp. N(x* 3 N(y)). N is
called nonnegative if x > 0 implies N(x) & 0. N is called inverse.
nonnegative if N (x) ® O implies x 8 0 For linear opsrators the
nonnegativity is clearly equivalent with the isotony. Also, a linear
operator is inverse nonnegative i and only if it is invertible and its
inverse is nonnegative (sce also {41, I61 (8D

We can now formulate our main result.
N A ~
Theorem 1. Let F = DCE-» E, where E is a regular POTL-space

A .
and E is a TOTL-space. - Assume
(2) there exist points x5 , ¥p o y_,_f, € D with
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Set

5, ={&x.ye B?; Xop S X LY <Yy},

s2 =%{('“'y—l ) € Ez;; XQ €U £ Yo}}

and
‘sa = s~'_l U SZ ’

, : A

(b) Assume that there exists an operator A=S; — B (E, E) such
that
(LT ~(L (=T ) € AW, 2) (y=%) (5)
for all (x, y), (y. W) € 82 (W, 2) € 8, .

{c) Suppose that for any (8. v) & 83 the linear operator A (v, y)

has a centinuous nonsingular nonaegative left subinverse,
Then there exist two sequences { *a }of Ya '} .0 > ] satisying

2.03), |
L(x)=T(x) S0 GL(y)=T(y ) (6

xo sxl g...(xnéxn_'_l(yn_l_lgyn( Syl<}'o
) )]
and

lim x = x*, lim y =% ®
n- 0 R—>0 .

Morcover, if ‘the operators A, = A(y, » ¥, ) ar¢ inverse

nonnegative then any solution of the e juation (1) from the interval
{ X+ Yo ] belongs to the interval {x¥, y*]-




3s
Proof. Let us define the operator M : [ 0, y5 — X3 j-> Eby
M) =x=1, (L (%)= T(xy) + Ag (*)

where L, is a continuous nousingular nonoegative left subinverse of

A It can easily be seen that M is isotone, continuous with

0"

M(0)=—Ly(L(xg)=T(x D20

and

L. }
e

M(Yo"”‘o)‘“)’o “XO_LO(L(Y\)?‘“I(YQ ¥
+L0 [(L(YO )‘—T(YO ))-(L(xo - T( X9 N
<Yy — % — Lo (L{yg) =Ty N

It now follows from the weil known theorem of L'V, Kantorovich
{4] that the operator M has a fixed point w € [0, Yo — xo J. Set

x; = Xg + Wtoget
L(xo)—;'.lf.f'(‘xo-)+Ao(xl—xo)—o,xo S X SYQ'
By(S),weget
L(x )—T(xl)ﬂ(L(X ) =T (x; N)—=L(xg =Ty M)
| +Ao(xo-_xl)<0'
Let us now define the 6perator.Ml 1[0, Yo — ¥, ]—>Eby

M, () =x+ Ly (L(y9)—~ Ty ) = Ag &)
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It can easily be seen that Ml is continvous, sotone witk
M (0) =Ly (Liyg)=T(yy)»0
aﬁd
My (yg—x, )=yg —%; +L,(L{x )—T(x )
+ Ly L3y ) =T (39 N=(L (%, =T(x; }
— Ay (y9 =% 1]
Sy —x + Ly L(x )=T{x )
<Y — X -
As before, there exists z € [ 0, Yo — X, Isuchthat M, (z} = z. Set
Y = ¥o —ztoget
L‘Y_o )—=T(yg )+ Ag(y; — ¥, ) =0.%, €y, <y
But from (5) and the above
Ly )y =T(y 0 =y, ) =Ty, D=Ly )=Tly )

Using induction on n we can now show, following the above

n},n > 1 satisfyiug

(1), (2), (6) and (7). Sinc= the space B is regular, using (7) we get
that there exist x*, ¥* g & satisfying 18), with x* § y*. Let
Xy €z Yo and L () — T (2} = © then we get

technique, that there exist sequences { x, 4 {y

Ay (9 — 2= Ag (¥ ) = (L{yg ) =T (35 N — Ay @

= Ay (yg —2)—[(Liyg )~ T (¥ )
—(L(@=T{Ni>0
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snd
Ag (Xl “Z)AQ(XG )W(L(Xo )“"T(Xo E)WAQ (2}
aqu €=0 e Z) - §{L(x0 )“T(KQ ) |
— {LA{D=T (2N <€ G
li‘,-i\.o is inverse isotome, then X €2 8y, and by induction

Ry S E €Y Hence s® € z € y*.

That compictes the proof of the theorem.

Using (1), (2). (6), {7) and (R) we can easily prove the following
theorem which gives uz natura!l conditions under which she poinis
x* and y* are solutions of the equation (1J.

Theorem 2. Let L — T be continuous at x* and y*® and ihe
hypotheses of Theorem | be true, Assume that one of the coaditions
is satisfied :

(a) x* == y*;

. . A
{b) E is normal and there exists an operator H: E = E (H(0) =0
which has an isotone inverse continuous at the origis and
An < H for sufliciently large n ;

oA, . "
{c} E isnormal and there exists an operator G: E — E (G(() =0)

F
conlinuous at the origin and such that A, =G0 for suili.iently
large n,

{d) The operators Ln , 0 2 0 are equicontinuous.,

Then L (x*) — T(x*) = L (y*) — T (y*) = 0.
| ‘Moreover, assume that there exists an operator Gl : Sl

A
=L (E, E) such that Gy (x, ) has a nonnegative left superinvarse for

each (x, ¥) € S‘ and

L) =T~ LE=T®) > G (x, (y—x for ali
(x.a Y) € SAQ *
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Thea "if (x*, y*) e's‘_ a0d L (x*) = T(x*) = L(y*) —~T(y*) =0
then x* - y*, ' ' '

We now complete this paper with an application.
Il Appli-afions.

LetE - fi = IR¥ with k = 2N. We define a projection operator
Py by
!v". yi=1,2,...,N

LO i=N+1,.,k, ,,-g(vi sV s eeea Vi ) € E.

PN (V) =

We consider the system of equations -
vi=fi (v‘,...,vk),i=l.2....,k. )

Set T (v) {fi (vl e o Vi Voi=1,2,..,k, then

(6 O sur¥ )yi=10 N,

Lo yi=N+1, .,k
k ) o
: ji[fij("'l 9 e ’vk)"j"':" 1,2.'... , N
PNT'(u=o of;
Lonl=N+'l,....k,f'ij=:;__.
“j
k

z Fij (W| [ Wk [ zl seooy zk ) uj 4 i===l, i N

j=1
PyB(W,z)u= [ 1
’ Loni = N + lv,...,.k ]

= CiN (w,2)u,

where Fij (Vio oV s V) e Vg = afi (v‘ sees Yy )/avj . Choose

Ay 0, %) = Cy (v, ),
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then iterations (2) and (3) become

Yinp1 =i (¥, 00 = Y, n)

i .
+CNG; g i n )Y ne1 7 Yin ) {10}

xi’n~+l=fi (xl’n,-..,lk'n)

i
* NG g o % n ) B ey~ %t D

Let us assume that the determinant Dn of the above N-th order

linear systems is nonzero, then (10) and (11) become

N l
milbl'm Fon€¥n %) -
Ying1 = b, vi=1l,.,N (12)
Yinst = (Yjpo s ¥pg doi=N+ Lok (13)
1nd
N 2
milDim Fin (Yn s %)
—,i=1,..,N,  (14)
,n+1 Dn
gl =i (% goee o X (i= N4+ 1ok (15)

respectively. Here Dl m is the cofactor of the element in the i ~th

column and m-th row of D, and F:n (Y, oy 2oi=1,2a1e given by

1
Fm(yn uxn);—"rm(yi.no»vinYk’n_)

; B g 5,0
+ . f, e S Ly o,
CieNtl m (_yl-“' Yeon)” j:l “mj ¥j, 0



44

and
Fl(y, 5 ) = (x )
m' Yo+ *p m'*L e %k n
k k
‘”?" z n'ﬁ f‘ 20 = E ﬁ° 3
N4l *mj 5 (X, g%y, ) it *mj %j,n*

n 4 s
where %mj =ij (¥ge%5 ).

If the hypotheses of Theorem | and 2 are now satisfied for the.
equation (9 iben the resulis apply to obtain a solution x* of equation

(4)in [ Yq : Eg 1
In particular consider {he system of differntisl equations
qi ;fi (g, .6, )i=1,20gt< 1 _ (16)

subject to the boundary conditions

g (O =4d .q (Y=¢ .i=12 (17)
The functions f and f, are assumed to be sufficiently smooth,
for the discretization a vniform mesh

. < g
‘j =Jh,1=o.1,..,,N+1,h=Tn_

and the corresponding central-difference approximation of the second
derivatives are used. Then the discretized equations given by

x = T(x) (18)
" with
T(x) = (B+D) (x) + b% ¢ (x) — b, x € RZN

where

i’" 2 -1 9 )

A+ 0 Y I-1 2’

sg ) i’ - gn

L O A+IJ ! ¢ s E

" | -1

L0 =1 2]
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ey e
w(x)=gi 0, (x) }, 7 ()= (f (W2 %y P i=L2 . N)
RN

i=1,2,x ¢ IRZN and b & is the vector of boundary values

that has zero components except for b! = d! . bn =€ . bg+§md2

b, = ei . That is (18) plays the role of (9) (in vector form),

2n
As a numerical example, consider the problem (16)—(17) with

2
flmq!ub)=qf+ql+-mz—hz

f, (ta, ,q,)=.2g> + a3 +2q, — .6
d!::dzzel:ez:o‘

- Choose N = 49 and starting points
X g = 0, yl.' 0= (l' {1 — 'j Jor==l, L ML, owith ¢ o= 01 (1305,

Tt is trivia! to check that the hypotheses of Theorem | are salisfied
with the above values. Furthermore the components of the first two
iterates corresponding to the zbove values using the procedure
de:cribed above and (12)-(13}, (141-(15) we get the following values.

t p=1 p=2
1 0478993317265 0490944353538
2 .0843667040291 0866974354188
X1p 3 1099518629493 1132353483832
4 1251063839004 1290273001442
.5 1301240123325 1342691068706
.1 0219768501208 0227479238400
2 0384462112803 0399528292723
X2.p .3 0498537074028 0519796383151
4 0565496306877 0590905187490
5 0587562390344 0614432572165
1 0494803602542 0490951403091
2 .0874507511044 0866988216544
Vip 3 1242981809478 1132375255317
4 .1302974325097 1290296859551
5 1356123753407 1342716394060
1 .0235492475283 0227486289905
2 .0415200498433 0399542200344
¥2,p 3 .0541939935471 0519816281202
4 .0617399319012 0390929252230
5 0642461600398 0614458137439
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Abstract.

We improve the rate of “convergence of the modified Newton-
Kantorovich iteration. The basic assumption is that an operator
satisfies a certain differential equation.

Key word; and phrases : Newton-Kaantorovich method, Hélder
continuity.
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Introduction

Consider the cquation
F(x)=10 (B

. A
where F is a nonlinear operator hetween two Banach spaces X and X,
The most popular methods for approximating solutions x* of
equation (1) are undoubtedly the Newton-Kantorovich method

zn+1 ='zﬂ _Fl(an)n, F(zn),n==’0, i, 2: cor £ (2)

the modified Newton-Kantorovich method.

i

’ "'l = 5 ¢
xn+.l = *a -F (.XO ) F( Xg b D 0 L2 '

or variations of those called Newton-like methods {13, (4:

47
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It e well known [1], [2], [4] that under certain assumptions. one
of which is that the Fréchet-derivative F* of F satishes a Lipschuz
gondition, equation {1} has a locally unique sclution such that

Hzg g~ igalzy —x 1% ,0<ay (4

64 n

and

for some Xy« Zg sufficiently close (o the solution x*.

Note that to compute the %, 5.5 = 1,2, . wgcalculaie only the
inverse of the linear operator F ( X4 y but the raie of comvergence
is 1, whereas if ws can calculaie all the inverses of F' ( =
rate of convergencs 5 2

In the first part of this psper we cxiend the above reselts o

include the case when the iinesr operaior F' is only {v, p} Hoider

continuous {to be precised juter) for some ¢ >Uandp & [0, 1L

QOur resulis can be reduced o the ones ta {28 fcr p = I,

in particular, we show 1bal

B2g q— " isaviey ~x0) TP oo A (63
and

nxn_H =3 S piin, =, 0 <P Chn=01. 2. (7)

In the second part we show that using an iteration of the form

Zyq1 =% — Ay F(Z)ha=012 . ®

n+1 n

where AE" is the inverse of a fixed linear op rator we can achieve

order of convergence 1+p. That is by inverting only one operator
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we can achieve the same order of convergence as with iteration (2)
for p=1 and higher otder of convergence than iteration (3) for p #0.

To prove the above claim we assume that the operator F satisfies
a differential equation of the form

F' (x) = G (F (x)) )]
where G (. ) is a given operator on X,

Main results. We will need‘!he deﬂnition.

D:finition. We say that the Fréchet-derivative F’' (x) of F is
(¢, p)-Holder continuous on XeX if for some ¢ >0,pe {0,1)]

IF®—-F@i1<cix—ytPforallx,y < X, (10)
we then say that F' (.) € Hi (¢, p).

It is well known (see, ¢ g, [2]) that if X is convex then

BF x) —F(y) — F’(x)(x—y)us Hx—yn +
forallx, y € X, (11)

We can now prove the following theorem on the existencs of a
solution x* of cquation (1).

Theorem 1, Assume:
(a) the point x* ¢ X is a solution of the edualion
F(z)=0;
- (b) thm exisis b > 0, "0 & x such that the inverss of the lmenr

operator F' (x, )"' exists,

IF(x ™ 1 o an
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2P ebxy — 22| P < as
{c) the linear operator F’ (x9) € HU" {c, p), where U* =
;J (x*, § Xy = x* || ), is a sphere centered gt x* and of radius

"Xo —X'u‘

Then the iteration { X } given by (3), n =0, i, 2, ... remiins io
U* and converges\ to x* as n —» oo, which is the unique solution of
(1) in U,

Moreover, thé following estimate is true :
I3y = x* 1 < d" Ixy — x*i[,0=1,2, ... (14)

where,
d=d@=2PctrP < 1
for some r such that

1%y = x* 1 € £ < 4 (cb)™P (15)

Proof. Using the identity
1
%at =% = F(x) 7§ P (g )—F oty - 3y
0
(x, - x%) di,
and assuming that || Xp ~ X* | < rfor k=1, 2, ..., n we easily cbtain

by (10)
WXg = x* 0 <eb(lixg = x*f+fx —x*[)P [x, ~ x*|

cchb(Prgr (16
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by the choice or 1.

o . hgl -
That is, X 11 € U (x*, ).

+
Moreover by (16), we get

jx

nH—x*!Is d)lix, —z*

sd.dijx,_,—x*8
sl.l

< d"Hlyxy —xry.

Since, 0 < d <' 1 the above inequality shows that the sequence { Xy b
n=0, 1, 2, ... converges to x* in such’a way that (14) is satisfied.
That completes the proof of the theorem.

The above theorem shows that the iteration given by (3) converges
to x* only linearly, But we can do even better,

Theorem 2. Assume ;

(a) the point x* < X is a solution of the cquation
F(x)=0

1

such that the inverse of the linear operator F’ (x*)” ~ exists and

I F"x%~! § < b, for some b > 0.
(b) For some X € X, the following estimate is true ;

1
qzkpﬁxo—-x*a<l amn



52

whcre,

(c) The linear operator F' (x*) € HU‘ (c, p)y where U* =
U(xf,uxo —x*[).

Then the iteration given by

Z

o+l =% F’ (x‘)"'l F( z ), with zy = Xg (18)

remains in U* and converges to x* asn — o .

Moreover,

5 |
Nzgpy =30 < @ =1 gx —xep 0otz

Proof. Asin Theorem 1, using the identity

1
Zppy— % = F a7 [ [ (F ") — F 4tz —x)
| 0
(zq — x*) di]
 we obtain by (10)
bogyy =31 skiz, —s P EL (19)

The result now follows from (19) and (17) by induction.
The order of convergence of { z a b 8=0, 1. 2, ... to x* has been
improved from | to 1+p.

) The order of convergence 1 4 p c.n easily be proved by repeating
~ & proof simifar to the proof of Theorem 2 for the itcration (2).
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The computation of the iterates {z,} 8 =1, 2, ... however

requires the additional cost of evaluating the inverses of the operators
F'(zn ), n==0, 1, 2, .. (which must be uiiformly bounded). But

for the use of iteration (18) it is only required to compute the inverse
of F’ (x*) once and for all.

Note that the operator F' (x*) cannot be computed in practice
sinc: the so'ution x* is unknown. However, if the operator F

satisfies the differential equation
F/ (x) = G (F (x))
where G (. } is a known operator oﬁ X, then
F' (x*) = G (F(x*)) = G(0)
can be evaluated without knowing the value of x*.
We can prove a global existence theorem.
Theorem 3. Let F' (x) = G (F (x)) and assume :

(a) the op:rator G (0) is invertible on X and there exist cons-
tants bl o+ by ™ 0 such that

i

IFX) ] <bjforallx € X,

NG @™ < bys
(b) the operator G is (cl 'Py) Holder continuous on X with
¢ >0andp; €[0,1]; and
(c) the following estimate is true
o1 20
4, =c by bl <1 0)
Then the equation

F(x)=0 _
has a unique solution x* € X. Moreover, the iteration generated by

Xgp1 =% — GO F(x,) @n



converges to x* with

: df
—_x* —_ — p—
" xn x i’ \<-, l_d "X‘ xo "’n "'0, l, 2, ane ¢

Proof. Define the operator T on X by
T (x) = G (0) (x) — F (x).

Then .
T (x) = G (0) — F' (x) = G (0) — G (F (x))

and'

, P
IT )1 <S¢ 1F@)I

by the ( ¢y » D) ) — Holder continuity of G.

The theorem now follows from (20) and the contraction mapping
rinciple [2]. ’

Naote that if F’ is (¢, p)-Holder coatinuous then the convergence

ef (21) will be of order 14+p as soonm as (13)is satisfied with X,

replaced by an iterate X, sufficiently close to x*.

Applications

Example 1, As an application of Theorem 2 (for p=1) consider

the real function

F(x) = & + y
for some y < 0. Then obviously the solution x* of the equation
F(x)=0
is given by x* = In (—y).

Here,

Fx)==F@x—y = GF ()




and the iteration

R
e e S L

ccnverges quadratically to the soiution x*.
4. more interesting application is given by the following example,
Examp!c 2, Coasider the differential equation
v+ v TP =0,pe0, i}
y(O) =y} =29
we divide the tatervai [0, 11 intq n subintervals azd we szt h/=f.‘—~§;=
Bet { ve b be the points of subdivision with: |

0 < \ < vy e < Va = L.

A standard approximation for the second derivative is given by

i 12

c ¥ =Y (v ), i=1, 2, .. ,8—L.

' - 1
Take y; = y, = 0 and define the operator F:R" L IR?™ by

F) =H@y) +b? o @

{2z -1 1

f 9 F
[—1 .2 . !
[ . .

H=1] =* O

l. . “ ~1 g
b . .

L o -1 2 J



@)= | ¥

aad

Thea

F(y) = H + b2 (p+1) | an,

-

o
<

‘ P
- Q Ya—1 I

.

The' Newton-Kantorovich hypotheses on which the work in
{11, ['] and the references there is. based for the solution. of the
equation :

F(y) =0 A 24)
may not be satisfied.

We may not be able to evaluate the second Frechet-dcrivative
since it would involve the evaluation of quantities y‘— P and they

may oot exist..
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1

Let y € an—l. Me !Rn-l X (Rn"' and define the norms

of yand M by
lyl= ma ly, |
1<j<§-1 ]
n—1
IM}= max b} |m.k|.

1¢j<n-1 k=1 J

For all y, ze[Rn"l for which |y, |{>0,]z 12>0,i=0,1,
2, ..., n—1 we obtain for p = {,say

VP ) - F@l=1diag (5 b° of — 2} )3

That is, ¢ = % h2 and p = 1. Therefore, the resuolts in [1], [2] and

{3]) cannot be applied here.

We can choose n = 10 which gives (9) equations for iteration (2).
Since a solution would vanish at the end points and be positive in the
interior a reasomable choice of initial approximation seems to be

130 sin zx, This gives us the following vector



]
i
vy
W
k=2
LV
T2 £ £33 £ €2 o £ ¢

[ 3.35740

We can easily see that || F(x*} | < 3.577082405 E—-06. There-
fore, we may choose z, = x* and zg = Xp for our Theorem 2,

We get the following results

IF )~ § < b=255882E + 01,
k = 2.9100265 E — 02,

3 .2

and
p=1#t.
Using the above values and (17) we obtain

q = 425911478 < 1.

That is, the hypothses of Theorem 2 for equation (24) are satisfied
in U*.

Therefore the iteration given by (18) remains in U" and converges
to the solution x* of {24) as 1 — 0.
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ON UNIQUENESS OF GENERALIZED DIRECT
PRODUCTS OF RINGS

G. Q. ABBASI
Départment of Mathematics, Islamia University,
Bahawalpur \Pakistan)

Ote of the standard methods of investigating algebraic structures
like Groups, Rings, Modules and Li¢ Algcbsas is by constiucting
tbem with the help of given algebraic structure of smaller order/
dimension and. by using the propscties of latter’s, one can obtain
the necessary facts about the former's. [n fact such coastructions’
like direct products and semidirect products can be found in the
fundamentals of Theory of Abstract Algebra. Other constructions'
proving their own singificance include generalized direct products
which were introduced by B, H. Neumana and H. Neumann [1}.
If on one hand generalized direct products behave almost like
direct productl, théen on the othér bhand situation is somewhat

omphcated
The present article is devoted to demonstrate oné of fhe reafons
of suéh complicated behaviour of generalized direct products. As all
these results are in extension of [2], all notations and tefminology
will be the same as in [2]. Further, if A is a ring, then by anaihilator
Abnu\) of A we mean the set of (hose clements 4 in A such that
xa=ax for all x ¢ A.

Note that in case o'f.' associative rings Ann(A) is ideal in A,
Unless otherwise specified all rings under consideration are
associative, and, therefore, their annihilators are ideals.

Definition 1, A finite set {A; , Ay wu, A m} of the proper

subrings of A describes generalized direct decomposition of A if
(1) A is generated by Al oo A je. A=< Al o 008 Am >

6l
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() forizj, A . A; = Ay . A = (0],

If A possesses such decomposition, then A is said to be
genera'ized directly decomposable and we write A = g.dd.
«{Al s A b Otherwise A is said to be generalized directly

indecomposable.

Definition 2. Let Al and A, be two rings, H; < Aan(A;),
H, < Apn( Ay ). Leto:H; — H, be an isomorphism. Then
R=<(x,,0(x N:x  cH >isanideal in A, @A, . The
factor ring A = A B4, / R is said to be generalized direct product
of A and A, amalgamating a subring H, with respect to §; and

we writc A = A 0) = g.d.p. (Ay »A;; H ,Hy ;0.

O. Schreier [}] proved that the generalized direct products of
groups amalgamating a single central subgroup always exist. ‘An
analogue of Schreier’s result for rings is as fullows :

Proposition. Generalized direct product of two rings Ay and
A2 amalgamating a single subring of the annihilator always exists
and is unique up to isomorphism, k

Proof. Let A, = < Xl ;R‘ >, A_2 = <»X__,1 N R2 > (where

1
X, i the number of generators and R, is the number of relatioas of

A, , respeclively) and H; < Ann(A), H, < Ann(A, ). Let

i ?
9: I-l1 — H_ be an isomorphism. Then R = < (X, ,0(%; D

xi:Hl>isau idea} in AIQA and A=A19A2/R=

2 ?
<Xl X,Z:RI'RZ’Xl' XZ:XZ,Xlso,h=6(h)forall
h ¢ HL >, by definition, is a genesralized direct product of

Ay and A,y amalgamating the subring Hl which always exists. To

prove the upiqueness let A = g.d.d. {A ., A} Take
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H,

defined aga —a + R is onto homomorphism with kernal { 0 } and,

= H = H2 and 6 = 1dH. The mapping A — Al & A2 /R

therefore, Al ® A_2 /R~ A which proves the uniqueness.

Tt 'is well known that the direct sum of the direct factors of a

direct decomposition of a ring A is always isomorphic to A. However
if A(0)=gdp. (A, Ay;H ,Hy;8)and A (¢) = gd.p.
(A, Ay H , H,;¢) are two generalized direct products of
A and A, amalgamating single subring H, , ‘then A(g) may not
be isomorphic to A (¢). .

Example. Let Al = < a, b; 0 = 42 = 2b = ab > =
Z4 QZ2 . Hl = <2a,b>A, =<c,d;4c=0=2d=cd>g

24 @ 22 . H2 = < 2, d > and 0‘ » B, are isomorphisms from

I-Il .into H2 defined as follows :
{ 2a—> 2 7a—» d
6, : < 8, :
{ b—» d b—>2c.

Then Rl = < (2a, 2¢), (b, d) >, RZ = < (2a, d), (b,2c) > are
ideals in A @ A, and therefore, A @ AZ /Rl = A(Ol )
== <a+R‘ . b+Rl . ¢+Rl , d+Rl > which is isomorphic to
Z4 ® Z2 . Whereas

Al eAzlR2=A(62)-—‘_’=<a+R2pb+R2‘C+R2i
d+R2 > is isomorphic to Z4 @ Z4 .

In general if { Al A2 } is a generalized direct decomyi osition of

A, then a gencralized direct procuct of A, and A, amalgamating a

1
single subring of the annihilator is cot necessaiily isomorphic tc A.
In fact to define a generalized direct product of A, and A, (where
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{ Al , A2 } isa g.d.d, of A) one needs more information, perkaps
about the subrings of Ann{ A 1 Y, Abn( A2 ) and the isomorphism

between them. It may happen that pot all of the generalized direct
products of Al and Az are isomorphic to A. However, A is always

isomorphic to at least one of the generalized direct products of
A, and A, amalgamating a single subring of the anoihilator.

Now we describe the conditions under which two generalized
~ direct products of rings are isomorphic.

Theorem. Let A (0) = g.d.p. (Al . A2 : I-Il 0 H2 ;0) and
A@)=gdp. (A, A, ?,Hl +Hy 34) be two generalized direct
products of two rings 'Al and A, amalgamhling a single subiing
H‘ .
Al , then A (D) =2 A (¢).

it ¢! 0 can be extend:d to an automorphism of the ring

Proof, lLet Ry = < (x » 9 (% )); X € Hl > and
R, =’<(xl »#(x;)); x; e H > . Suppose that ¢~ ! 0 can
be extended to an automorphism (say «) of Al ; iz a |Hl
= ¢"l 0. Consider the mappingy:Al DA >A DA ]R‘
defined by thefol{lowing formula ;

‘r(a",az)a(g'l (a; ).a2 ), where al‘Al . ’2‘A2'

Then one can easily check that y is onto homomorphism vmh ker y
=R, . Hence A (9) is isomorphic to A (¢).

Definition 3. Let A (8) = g.dp. (A, , 42; H, ,Hy; 0. K
H e Abn( Al )and H) = Ann(A;), then A (6) is called the
central product of A, and A, with respect to 0 and we wiite
Al) = °'P'_ (,A‘ ¢ Az 38, |
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Note that central product of Al . A2 is a special case of g d.p.
(Al . A2 ;Hl . HZ ; 0); therefore, as was mentioned above, two .
central products of Al and A, are not necessarily isomorbhic.

However, the following resuit describes the conditions under which
two centrdl products of A, and A2 are isomorphic,

Corollary.  Let Al and A2 be two rings. If every automor-
phism of Ann ( Al ) caa be extended to an automorphism of A,

then all central products of A, and A, are isomorphic.
Proof. Putting H | = Ann (A 1) in the above theorem we have
« | Ann(A, )= ¢°l ¢, which of course can be extended to an
l

automorphism of A 1

These results are contained in the authors’ Ph D. dissertation.
The author is thankful to Dr. Yu. A, Bahturin for suggesting the
problem, assistance and encouragement in carrying out the research.
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' ON SOME IDEALS IN BCI-ALGEBRAS

SHABAN ALI BHATTI
Punjab University, Lahore,

Abstract

‘In this paper we study relationship . between the ideals in the -
“BCl.algebra X and ideals in the centre I rof X.

Introduction

~ In 1980 K. iseki [7]. introduced the concept of BCI-algebras and
since then so many researchers have contributed a lot to the develop-
meat of the dscipline. In [1], we classified BCl-algebras and

defined the centre 1 of BCl-algebra X. In[2]. it is shown that I is a
p semisimple algébra. In this paper we study the relationship

between ideals in I and ideals in X,
Preliminaries

A BCl-algebr X isan algebra(X,*,0) w:th the following conditions
for all XYz € X:

(1) (x*y) * (x*2)) * (z*y) = o,

(2) x* (x*y)) *y =0,

(3) x*x = o,

(4) x*y = 0 = y*x implies x =y,

'(5) x*o = o implies x = 0, where
x<y iff x*y = o. ({7]).

Let: X be a BCl-algebra and M == {xe X : o*x = o} its BCK-
part. Then, X is called proper if X — M = ¢. We note that a
BCK-algebra is trivially a BCl-algebra. -

(6) For xe M, ye X-M, x*%y, y*xe X—-M ([715-
(1) (x*y) *z = (x*2) * y, for x,y,ze X ([7]).

67
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(5} 2*o0 = x, for x€ X ([7).
(9) x < y implies x*z < y°z and z*y € 2°x, for all x*y,ze X
(.
Definition 1{1}. Let X be a BCl-aigebra. Then x, ye X are
comparable iff x*y = 0 or ¥*x = o.

Definition 2 {i]. Let X be a BCl-algebra. We choose an element
x_ € X such that there does not exist y#x with y*x, =o and define

A(xo)—{xEX:xo *x = 0},

Obviously, A (x,) € Xandx, €A (x,): that is A (%, )isnon-
empty. The point X is known as the initial element of A ( X );

that is, if for some ye X, y*x, = 0, then y=x,

Let I denote the sct of all initial elements in .X, we call it centr:

[ o

of X. We note that M=A {0), and if o # x, € 1, thea A (X )<

X -M, '
(10) Let X be a BCi-algebra with [ as its centre, then for
X0 Yo ETA(X )INA(Y,)=¢.

Further, it is obvious that if x y # X are comparable, than both
are contained in the same A ( X ), for X, € L[]

(11) 1et X be a BCI-algebra with T as its centre: then I is a
P-semisiple algebra [2]). '

(12) Let X be a BCl-algebra with M as its BCK-Part. Let
A(x )< X for x, € 1, then for % YEA (X, ), X*y,
y*xe M ([}

Definition 3 [7]. Let X be a BCl-algebraand A<X. A is called

 an ideal in X if, ~

(ioe A

(ii) x € A, y*xc Aimplyye A.
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Definitlon 4 [4]. Let X be a BCl-algebra and A an ideal in X, A
is a closed ideal in X if, o*a€ A, for all a€ A.

Definition 5 [3]. An ideal A in X is strong, if for x¢ A, ye X—A4,
1*ye X~A, '

Definition 5 [4]. Let A be an ideal in X. Let a be any fixed .
element of A, If for some x€ X—A, a*xe A, then A is called a

weak ideal in X,

Note that in BCK-algebra, every ideal is a weak ideal, because
o*x = o¢ A, for all xe X—~A.

(13) Let X be a BCl-algebra with I as its centre. Let oe NcTand
H= U A(xo ). His a closed ideal in X if N is a
x_eN -
(/]
closed ideal in [ ([2]).
{14) Let X be a p-semisimplz algebra and A= X an ideal in X, -
A is closed iff A is strong ([3]).

{15y Let X be a BCl-algebra and H a strong ideal in X, then H is
closed ¢[3)].

(16) Let X be a BCl-algebra with I asits centre. Let H be a
strong ideal in X. Then, H = U A ( X, ). where N= INH

x. €N
(3. °
(17) Every sub-algebra in a p-semisimple algebra is an ideal in
X {7

(18) L:t X be a BCl-algebra, then following are equivalent :
(i) X is p-semisimple
(ii) x*y = o impliesx = ¥
(iii) a*x = b*x impliesa = b
(iv) x*a = x*b implies a = b for a,b,x,y € X ([6,9.10]).

Definition 8 [4). An ideal A in a BCl-algebra X iscalled an
obstinate ideal in X if, for x,y € X—=A, x*y, y*x€ A.
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We note that all the obstinate ideals which appear in [4] are
strong ideals. It is interesting to know an obstinate ideal in
proper BCI-algebra which partly contains M and partly contaians
X-=-M; that is, a weak obstinate BCi-ideal. The following
-example explains that such wsak obstinate ideils do exist in
proper BCl-algebras.

Example 1. Let xA=‘ (0,a,b,x,y) be a BCl-algebra in which * 1s
defined by the following table..

o
o
. °
(-]
Y]
>

y
X X X X o o
b

o

_Y y y x
Note that A == (0,a,Xx) is a weak-ideal which is obstinate.

Lemmal. Let X be a BCl-algebra with I as its centre. Let
N« 1 and H- U ,l\q(x ). His anidealin X if N is an ideal
€ .
in L ‘
Proof. Let H = I‘ll\ (x, ) be an ideal in X, Obviously, Nc H.
X,
Now NSTand NS H implies N=HN I and In(X-H)=I-N. We
show that N is an ideal in I, simply by showing that,
(i) o€ N,

(ii) x, € N, Yo € I-N implg Yo *xo € I-N,

Since H is an ideal, therefore oc H. But by (l1), o€l Thus
o€ HNl=N impliesoe N. Let X, EN, y, €l-N. We show that
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Y, * %, EI-N. Since 1-N < X—H, therefore 5'0. elI-Nc X-H
imples Yo eX-H. Also X € NcH implies xo.eH. Since H is
an ideal, therefore X, =X—H, Now by (1) 1isclosed under
* therefore for X, € Necl Yo € I-Ngcl implies Yo ’xo €l
Yo *x, € 1 and Yo *X, € & — H implies Yo * %o
€ X-—H) nNI=I-~-N Yo * %o €l-N for all Yo el - N.
Thus, N is an ideal in I.

Cenversely. Let N be an ideal in 1. We show that
H=UA(x,) is an ideal in X : simply by showing.
x eN
o
(i) o € H.
(ii) x € H, ye X - H implies y*xe X-H.
oe Ncilimpliesog H. Letx € Nthen A(x )< H.

Let y, =¥—N then. by construction of H. A( Yo ) s X-H..
Let x, # v, andxeA(x ) yEA(Y, ) we show that y*x € X ~H.
Since N is an idealin |, the;eforc for Xs EN, Yo E I-Ny, * X, €
I-N. Let x *x, =2, €l-N. Then h(zo ) € X-H, Siace -
XeA (x, ). therefore x| € x. By 9), y'x < y*x . By defination
of A(y,hyy €YV By®)y, *x, € y*x,orz, € y*x, . Thus
y*x, € A(z)) € X-H. By 10)y*xgy*x, implies y*x€ A( z,)

~ < X-H. Hence His an ideal in'X, This completes the proof.

“Theorem 1. Let X be a BCl-algebra with I as its centre,
Let Ncland H=U A ( X, ). H is an obstenate ideal in X iff N is

xoeN

an obstinate ideal in 1.

Proof. Let H=y A (%) be an obstinate ideal in X: By

<
xo_N
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‘Lemma [. N is an idealin I. We only establish the obstinacy of N.
Obviously, NnH=1I, Let x, Yo € I—-N. Then A ( X, ), A( Yo )
c X -H imply Xo Yo € X-—-H. Since H is obstinate, therefore
%o Yo E X -H imsply X *yo € H. Fusther, by {11), Lis closed,
therefore, X, %9y, € I, Xo * Yo € H imply Xy * Yo INH=N;

that s, %, *Yo € N, which gives that N is obstinate,

Conversely. Let N bz an obstinate ideal in I, we show that

H=u A( X, y is an obstinate ideal in X, By Lemma ), H is an

xoe:.N

id ali.X. We 0aly establish that H is obstiaate. Obviously, N=HnL,
Let x Yo €I1-N. ThenA(xo JA(y ) s X-H.

Cese (i) letx€ A(x ).y€ A(y, ).Nis obstinatex |,y €I-N
give Xo “¥g Yo ¥ %, € N.Let Xo * ¥, =8, € N,then A ( B, JSH.
By definition Y€ A ( Yo ) gives Yo €Y Now for xg A ( X ). by (9),
%y < x*yo . Since X, <X, therefore L ¢ Yo € x‘yo orm, < x“yo
or x*y, € Al n, * < H. Further by (10), 2y < XY implies x*y

€A(n, )} =H and H is obstionate.

Case (ii) Let x, ye A ( Xy Y €X-H, for x, € I-N. By (12),
%y, y*x€ M=A (o) cH.
From case (i) and (ii), it follows that H is obstinate, This

complctcs the proof.

Theorem 2. Let X bz a BCi—algebra with I as its centre. Let

N<t and H=UA(x_). H is a strong ideal in X iff N is a strong
x eN ©

idealinl, ©

Proof. LetH=UA (x ) be astrong idealin X, Obviously,
X €N

N=Hgland (X=Hjn[=I=-N. ByLommal. Nis an ideal in L
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We only show that N is strong. Let A (xo y <H and A ( ¥o ) cX-B
then X, € N,yo € {—N. Since H is strong, therefore Xy e Yo € X -H.
Further by(ll),xo % - I imply X, * Yo € 1. Now 3, %Y, EX—H
and X, "'yo € I imply X, *y, € (X—H) n [ = [—=N; that is
X, %Y, € I—-N, which gives N is strong.

Conversely, N is strong idealin 1. By Lemma 1, H=U A ( Xo )

£ €N
(4]

is an ideal in X. We only show that H is strong, Let xe A ( X )]
cH,ve A( Yo ) =X -H, for X, €N, Yo € I—N. We piove that
x*ye X—H. Since N is strong ideal in I, therefore X, * Y, € [—N,
Let x, *y, =12, € I—N, then A ( z, ) € X -H. By defination
xeA(x,) gives X, S X For ye A ( Yo ), by (9), we can write
x, *y € x*y. Similarly, Yo S Y implies X *y < X, * Yo = %o
or X *ty = z, . because z, €L Thus z, < x*y impliesA x*y €

A(z,) < X-;H and hence H is strong. This completes the proof.

Lemma 2. Let X be a finite p-semisimple algebra and A<X be
a proper ideal in X. Then O (A) < O (X—A).

Proof. Suppose O X—A) < O(A) Let ag A, xc X~-A, thea
x*a € X—A, because otherwise x*ag A, ag A and A being an ideal
implies x¢ A, a contradiction. Now x*a € X—A for all ag A,
X€EA—A Since O (X-A) <& O (A), therefore for some distinct
a .3, &A,x*a; = x*a, holds. By (I8)(iv)x*a; = x*a, implies

a, =a,,a contradiction. This compleétes the proof,
Lemma 3. Let X be a finite p-semisimple algebra and A< X be
& proper ideal in X, then A is closed.

Proof. It is sufficient to show that o*a c A, for all ac A.
Supposc 0*b € X—A forsome be A. Let o*b=ve X—A.
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‘Now for xe X—A, be A, we have x*be X—A, beciuse otherwise
X°E A, a contradiction Le:.O (A)=m, O (Xj=Nand O (X—A)=n,
y Lemma 2 m<n. Let A=~-(o-—--~xl Xy xm) a and X—A =
Yy Yy Y, Y. Now ¥y *b ... Y * b are n distinct elements of

X—A, because other wise (18) qives that atleast any two elements of
X-A are cqual, which is false, Further o*b ¢ X—~A. Thus
o*b==y*b for some ye X—A. Again (18) gives y=o0, a comradiction,
because o S A. Thus our supposition is incorrect. Hence A is
closed. ‘

Theorem 3. Let X be a finite p-semisimple algebra and Ac<X be
proper ideal in X. Then A is strong.

Proof. It follows from lemma 3 and (14).

Lemma 4. Let X be a p-semisimple a algebra, Let A.B. be two
‘sub-aleebras of X such that A and ‘B are not properly coatained in
each other, Then AUB in not sub-algebra of X,

“Proof. By (17) every sub-algebra in X is an ideal in X, therefore
A, B are ideals in-X. Suppose AU B is.a sub-algebra, than AUB is
an ideal in X. "For ac'A, be B imply a*b € AUB.

'There are three possibilities namely,
() a*beA.
(ii) a*be B,
(iii) a*be ANB.
Cast (i) Let a*bg A. Then a*b=ce A (say) Now a*b =g

implies (a*b *c==0 or ‘a*c)*b=0. By (18) a*c==be B, which implies
A is not closed, a contradiction Thus a*b g A, -

Case (ii) Let a*b € B. Since B in an ideal in X, therefore, a*h
€ B, be B impliss a€ B, a contradiction, Thus a*b ¢ B.

Case (iii). From case (l) and (ii) a*b g A, B, that is a*b¢
ANB. Hence AU B is not a sub-algebra, This complctes. the
proof. . ‘
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Corollary 1. Union of two ideals A, B (such that A and B
are not properly contained in each other) in a p-semisimple a'g:bra
X is not an ideal in X. ‘

Theorem 4. Let X be a BCl-algcbra with 1 as its centre Let
A, B be proper BCI-sub-algebras such that AN !==Nl , BN |_-=N2 .

If Nl »and N, are not properly contained in each other, then AYB
in not closed. |

Proof. Let AN I=Nl s Bn I=N2 . Let X, v Y € N,. Since
N1 < A and A is closed, therefore X, * Yo € A, Since N =1 and
I is closed, therefore x,*y, € L. Now X %Y, eAA_a-nd' x,* }'o el
both in imply L ‘yo € AN I:=Nl , which gives Nl , is closed.
Similarly Nz.is closed. Let (AUB) N I=N. Then by Lemma 4,
.Nl U N2 = N < Iis not closed, which implies AUB is not closed.
This completes the proof. , '

Corollary 2. Union of arbitrary distinct (which are not properly
contained in each other) closed ideals in a BCl-algeb.a X is not an
ideal in X,
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Abstract

Let X be a convex suhset of a paranormed space Eand T a self
mapping on X. We obtain some results on the convergence of
certain sequences to fixed poinis of T uader various contractive

conditions,

Let X be a convex subset of a linear space Band T a self
mapping on ¥, R. Kannan {2] and C S. Wong [6] obtained fixed
point theorems on the convergence of certain sequences involving T
in the ca‘e of E a normed or Banach space. Later J, Achari [I] and
S. L. Singh ({3].[4]) proved some of these results for more general
contractive conditions, The purpose of this papsr is to extend them

to the caie of E a paranormed space.

In the requel we shall ascume that the topoloey of E is generated
by a total parancrm q having the following propeities (sce[5],
p. 52):

(a) q(x) > 0,andq(x) =0iff x = 0.

(b) g(~x) = q(x)

() q(x+y) < 9(x) + q(y)

(d) if {an} is a sequence cf real or complex scalars with
a, +a and {xn } is a sequence in E with L then
q(an X, - ax) — 0.

77
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4 Every metric linear space is a paranormed space. Note that a
total paraporm q nced not satisfy q (ax) = | a | q (x) (property ofa
norm) or q(ax) < q(x) for|a| < 1 (property of an F-norm).
Throughout this paper, X denotps a conxex subset of E,
We first optain a gencralization of ([1]), Theorem 3) and ({2],
Theorem 6). A
Theoiem 1. Suppose E is complctg and X a 'c_losed convex
subset of E. Let T: X — X be a mapping satisfying

q ('l_'x-Ty) < rmax {q (X—Y), q (x~Tx), g (y- Ty),
" qQ(x=Ty), q(y=Tx)}, (1)

for all x, yeX, where 9 <r<1. For each n > [, Ilet a be a
solution of the equation Tx —r = An .  where An € X. If

lim An = 0, then {an } converges and its limit point is a
o~ e
unique solution of the equation Tx = x.
Proof. For n, m > 1, we have by using (1) that
' qQ(a, - an) sq(an -Tan)+,q('!'an - Tam)

"+ q(Tay —ap)
_<q(An)+rmax{q(.an— a ) a(A),
Q(Ap)q(a;, —a ) +q(An), |
q(a, —a ) +q(A )} +q(A)

or q(an-am)s-:f: (@(A ) +q(A )

Since lim A =0, we conclude that {a, } is a Cauchy sequence.
f~» ’ i

in X. Thus there exists some u & X such that lim a, =u
: n—+




79
We now show that Tu = u. Using (1) again, we obtain
q(Tu-u) € q(Tu-Ta )+ q(Ta —a )+ q(a; —v)
" <rmix{q(u-a;),q-Tu) q(A,),

q(u-a )+ q(Ay ) q(@@; =~ v +q@-Tu}
ta(A ) +a(a; =)
Letting n— 00, we obtain q(ﬁx—u) < r q(Tu—u), and thus

Tu = u,

For unique:;ess, suppose that also Tv = v for some v € X.
Then ‘
q(u—v) = q(Tu-Tv)
< rmax {q (u-v), q(u-Tu), q (v—Tv),
q@u—Tv), q(v—Tu)}

=1 q(u=v)

Before stating the next result, we need the following.

D:fintion. For:ny x € E and 0 {t 1, let = thn
for n 3 0. Then { X }:°= o is called a sequenc: of Picard ilerates
of T.

‘The following result extends ([1], Theorem 1) as well as the
theorem of [3),

Theorem 2. Let T:X — X be a mapping satisfying

q(Tx-Ty) € r max {kq (x—Y): q (x~Tx), g (v~ Ty), ¢ (x=Ty),

q(y-Tx)} + smax {q(x-T° x), q (Ix-T° x),
) o ,
q(y=1° x), q(Ty=T? x)}

forall x y € X. where k r,s 2 0 with r 4 s < 1. If, for some
X, € X and 0 < t < 1, the scquence {x; } of Picard iterates con-

verges to a point u X, then u is a fixed point of T.
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Priof Since lim x_ = u and q(Tx, = x ) =q(t”!
- 0
(xp., —& )). is follows that lim Txn = u. We now show that
* So- 000

af.o  lim- T2 Xy = U, as follows, Taking x = L andy = T"u in
|t e e &l

(2}, we obtain

2

Q(Tx, — T x. ) = q(Tx, —T(Tx,))

£ rmax{kq(xn—-'l‘xn ),q(xn—-'l'xn )
2 2
Q(Tx, =T x ) a(x, =T x; )

. 2
q(Txanxn)}—{—smax{q(xu—T Xo b

2 2

q(Tx, — T x, ) a(Tx, =T x )

q(T2 xn—szu)}.

Letting n—» o0, we have

g(u— lim T2 xn) € (e+syg(u - tim T2 xn).
n-—>at o—r 0

Since r-+3s < I, we have lim T2 X, = W
' ‘ N~ 00

Now, for any o . I,
q(Tun-u)sq(Tu—Txn)+q{Txn -xn)+ q{xn—u);
% r max { kg (u»xn ). 9 (ufTu), q (xn —-Txn ),
q u - Txn} q():n - Tu)}-;-smax{q(u—'l‘2 X, Y,
QTu T2 5, ) a(xy =~ T2x, nq( Ty = T2 5 )}

+oaUTx =2 )+ a(x; - u).
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Since n is arbitrary, we let n—>00 and obtain
q(Tu-u) < (r + s) q (Tu—u). '
Consequently Tu = u, as required.

The following theorem extends ([4], Theorems 3 and 4).

Theorem 3. Let T: X—X be a mapping satisfying at least one
of the following conditions :

q (Tx—Ty) € a max (kq (x—y), } [§ (x~Tx) + q (Y=-TY)}}

+ b[q (x-Ty) + q (y-Tx)}, - (3
q(Tx-Ty) € a max {kq (x—y) i [qQ (x=Ty) + q (y -Tx)}}

+ b[q (x=Tx) + q (y~Ty)] ' 4)

forall'x,y € X, wherek,a, b > 0 with a + Zb <2 _If,' for some
%, € Xand 0 <t < 1, the sequence {x } of Picard iterates

converges to u € X, then Tu = u.
Proof. The proof is similar to that of Theorem 2, and is
therefore omitted. ' ‘

Remurk. The above result -was obtained in [4] “under " the
restrictions thatk =1, b < 1, and a + 2b = 1 with q beiog a norm
onE, '

Finally, we give an example of a paranormed space and a
mapping which satisfies the contractive conditions of Theorems
1 and 2.

Exqmple. Lét E=R, the set of real numbers, and q be the'
total paranorm defiaed by q (x) = [ x| /(1 + [x]|)forx € R. Let
X =[0, 1], and define T : XX by s

(18 ifogx<1,
TM=o |
L 0 ifxe |
Then T satisfies the condition (2) forr = % , 8= -}‘—, and any k>0

as follows. If x=y=1orx,y € [0, 1), then (2) is trivially satisfied.
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ifx=1and 0 < y < 1, then

1
q(Tx-Ty) € q(%) = 5

2 ' 1 .. 1
'V"!(K—TY) =5 ah)=—5 2> 5,
and also
2 1 1 1
8q(x-T x) = r q) = _8~>,—9-'
Takingr = '%" s=0, and k = 1, the condition (1) is cleérly satisfied.

Note that x = -%— is the fixed point of T.

‘Remark. The results of this paper need not hold for an arbitrary
semi-normed or non Hausdoeff locally convex space E ; for, if qis
a semi-norm on E, then q (Tu - u) =0 does not necessarily imply that
Tu=u. However, one may possibly try them for strictly convcx
focally convex spaces.
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A D:SPROOF OF A CONJECTURE OF ROBERTSON
AND GENERALIZATIONS

PAVEL G. TODOROY

Department of Mathematics,
Paisaii Hilendarski University,
4000 Plovdiv, Bulgaria

" Abstract

_ In this paper we disprove our general conjecture that, for
Y > v, where y_ is a certain number of the interval O < Yo <12,

all coeflicients of the powers of X in the expansion (1) are nonnegative.
In particular, for y = 1/2, the special conjecture of Robertson is

dxsproved
In[1] pp. 264, 274280, Scction 4, we estabhshed the Taylor

expansion

| M4y Y o«
4@ = -zl - - % oz d; j
@1 =2 P E 4o
L J ‘

(-
for|z| <1, where x and y are arbitrary - complex numbers,
jlx =1 = 1, and the cocflicients d i (y) are found explicitly, In
particular, the coéﬂicicntsd (y) are cqual to zero if n and j are
of different parity. We proved that the coeflicients d (y). 0 <
J é n, in (1) are nomnegative for n=l, ..., [y]+] 1fy > 0-is not

a positive integer. ([+] denotes the greatest integer less than y), and’
for all n=1,2, ... 1f y 1s a positive integer (y=1, 2, ...). Therefore,
‘we conjectured that the cocflicients dnj ¥ 0<j < n, in (1) are

£3
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sonnegative for the “tail-end” as well, i.e. farn > [y]+1ify >y

is not a positive integer where Yo is a certain number of the interval

0<y, < 1/2. In particular, for y—l/2 this CODJCC(UI’G is due to

Robertson [2], (pp 8, 20-21, 176). In [3] the Robertson conjecture
has “een disproved. At the author’s request, (1) Staff.n Wrigge
and Arne Fransen of National Defence Research lnsti.ﬁle Systcmé
Analysis Department (FOA 1), P O Box 27322, S— 10254, Stockhalm.
Sweden, (2) Earl Dilcher of Dalhousie Umversxty, Department of
Mathematics, Statistics and . Computing Science, Halifax, Nov}‘g
Scotia, Canada B 3H 3J5 and (3) Pierre Barrucand of Univcrsily
Pierre et Mar.e-Curie (Paris VI:, Institut de mathematiques pures ét
appliquees, 4, place Jussieu, 75252 Paris Cedex 035, France, com’puufd
mdcpendently the coeficients d (l/Z), 0 < j <, for (1)9 <8< <

15, (2) 8 < n < 20 and (3)0 < n < < 29, respectively, and found

.that the first megative co:ffizient occurs for m - 13 andj=13. In
addition, the author bad suggested the Robertson conjeciure to the
attention of A A. Jagers of University of Twente, Department of
Mathematics, Enschede. The Netherlands, who in his turn suggested
it to F.W. Steutel of Eindhoven University of Technology. Depaft-
‘ment of Mathematics and Computiog Sciencé, P.O. Box 513, 5600
- MB Eindhoven, the Netherlands. In a private communication to
the author, Steutel [4] also disproved the Robertson conjecture. Now
in this paper we shall show that our general (.ODJCC!Ule 1S false for

- any rational (but not integer) y > O as well, For this. we need
iwo lemmas.

Lemma 1. (Steutel [4] and [5], p. 137).

: ©
‘Let p(2)= X p_ 2B 2
. n=0 B @

‘be a (possibly formal) power series generating a strictly logarithnii-
cally convex sequence of posiiive numbers P, »n=0, 12 ... e

pn <pn+l pn,l'nmlxzr--'- (3)




[+=)
L)

and let
0 .
@Y :i= I p 2 .¥>0p, (>0, (4
A==
Then

P, N>0,n=0,12..

Corollary. Under the conmditions of Lemma I, ify < 0:n s,
then there exists at least one subscript n > 0 such that P, (M < 0.

Proof. The Corollary foljows from (5} and the identities

o
Z pMpry_y (-y)=0.a=1,2,.,¥y<0,p, (3) >3

resulting from the multiplication of the series (4) and the series
obiained from (4) after substituting y for —y.

Lemma 2. Let

[+2] .

r= 2 B N, jtl<2n Y =1
n=0

(6

et —1 )y

B:t);=( :

Then

(i) for any rational (but mot integer) y > O, and (ii) for any
. rational mumber y < 0, there exists at lcast one subsciipta > 0
such that B, (y) <o

(ili) for any irrational number y > 0, there exists at least one
subseript o > O such that eihter B (y) < Oor B (~y) <0,

~ Proof. (i)Letp > 1andq > 2beintcgers such that p is not
2 multiple of q. Thea for y = p/q from (6) we obtaia

()= (o )im s, (D) ei e

. )
where Bo =2 1 and all B, .a=1,2, .., are rcal numbers. We have

et —1 \P ®  S(n+p,p) .o
( t )sp!nz;o @+p! | ®)



86

where

p
saip =~ = PP} HP a0 @
v=

1

sre the Stirling numbers of the second kind which are positive
integers (see, for example, in [6], pp. 313 and 310, Formulas (21) and
(5)—(6), respectively, or in [7]. Chapter V), and

: ® q, o t ,
( T B (" ) & £ OB B_ ..B (10)
n=0 : n=o I "2 q _
where the inner sum is taken over all nonnegative integers k | k2 .

coo o kq satisfying

‘k1+k2+...+kq=n,ﬁzo. (1)

From (71, (8), (10) and (11) it follows that

piSinip, p) _ .
wmrpyl T S?R‘ Bkz qu n >0 (12)

(From ("2)'and (11; fot n 0 we obtain again B = 1, and for n=]
we obiain B, = p/2q since S'(p+ 1, p)=p(p + 12 (see, for
example, in 71, p~..227)iof course, these values of B, and ]3l follow

dircctly from (7).) From (12) and (1) for u > 2we obtain

1 p!Sintp, p) '
B [ 1 p!Sn+p p) ‘
X =( et T Bkl ‘Bkz qu ) (13)

A
S

where the sum’ is taken over all nonnegative integers kp o ky kg
satisfying simultanéously the inequalitics 0 < kj < ﬁ« 1. j==1,2, . ,q.
and thevequation (11). Now if we assume that ull Bu » 0=0, 1,2, ...

are nonnegative, then from (13) it follows that

IS@n+p, p)
0 < B piowmip.p , : 14
_S n ._S. qu+py! ’ n;Z a4
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Further, with the help of (9) we obtain that

1
. 1S(n+p,pr\ & .. S (n+p+1, p
1 (.'.’___.___ - :
nreo \ @ 0¥p)! ) S @tpFD) S @+ P, D)
P _ a4p+1
T (-1)P '(p)(l) P
. v=1 v p
3 hm p . ’=0
n+p+1 P i n+p °
n—->w p-v/ P v
2 0(0) ()

v=x1

(15)
Therefore, from (15) and (14) we conclude that the series (6) for
y=p/q has an infinite radius of coavergence; but this is a contra-
dictionas t=2m i, m = 4- 1, 3- 2, ..., are branch points of the
function (6) for ¥y = p/q. Hence, fory = p/q. not all cocflicients
Bn (p/a), n==0, 1, 2, ... , in the serics (6) ars nonncgative,
(ii) Letp > 1 and q > 1 be integers. Then for y = -~ p/q
from (6) we obtain the identity
@w . Qg et 1 P -
( z B t“) (° ‘) =1'B i=B (-——’i :
n=0 B8 v n n q
(16)
baving in mind (10) and (8). Ifall B, > 0forn=0,1,2, ..., then

the coefficients of t* for n=1, 2, ... in the expansion of the left-hand
side of (16) will be positive but not equal to zero according to the
right-hand side of (16). Hence, for y= —p/q, not all coefficients
Bn (—p/q), n==0, 1, 2, ... , in the series (6) are nonnegative.

((iii) Let y > 0 be an irrational number, Then from (6) we

deduce the identities

n
kio B, (¥) B _x(-)=0n=1,2, .. an

From (17) it foliows that not all coefficients Bn (y) and Bn (~y)

forn=1,2, .. are nbnnega;ive.
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fhis completes the proof of Lemma 2.
In particular, for y=1;q, where q > 2isan ihteger. Lemms 2 is
due to Steutel [4]. -

An open problem is whether for any irrational aumber y > ¢
there always exists at least one subscript n > 0 such that Bn y)<0;

the sames question holds for Bn (—v).

Theorem, For any rational (butnot integer) ¥ > 0, not all
cocflicients dy (y) in (1) are nonnegative,

Remark. Evidently, for any integer y < 0, all coeflicients
d Bj (y) in (1) are positive.

Froof. Let
t:=x log ;t: » (18)
A(z-— I g 1+2 . % . lz] <1, (19
Vi= g B T 2 Tl g

4 Y. © 2n ' '
(A@) = EOAB(Y)Z » 12I<1L,¥y>0,A5 () =1,
=
21}
where according to (2) —(35) in Steutal’s lemma 1 we shajl have '
A, (3)>0,8=0,1,2..(y > 0). (¥1))
With the help of (18)—(20) and (6) the equation (1) takes the form

d(z) = (A @) B(t)' (22)

-3 n (y) (zm’ (A @yt

]=

- E z2n ; An . (y+2)) BZ ) (2x)
n=0  j=0 B7J ]
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n
20 2 Ay 42+
0 j=0 ]

lv o]
4
n= Y+ 1

Brjer ®12%)
for jz] < 1. From (1) and (22) we obtain the following formulas
for the nonvanishing coefficients

9op, 2 W = 2% Ay —j OF2) By; () (23)

and
. 42j+1 . )

d2n+l,2j+l (=2 An——j (y+2j+1) B2j+l (y) (24)
for 0 < j <8,n=01I 2, ... . Itisclear from (21), (13) and (24)
that the signs of d2n, % (y) and d2n+i, Y41 {y) are detcrmined
by those of sz {y) and B2j+i {y). respectively. * Therefore, for
any ratiopal but mot integer) y > 0, according to our lemma 2, there
exists at least ome imtcger j > 0 such that either sz y) <0 or
sz+1 (y) <0, ie. cither d; 2§ () <O or 40, 2j+1 (N <0
for all integers n > j, respectively. (For example, in {3] we have
shown that du' 13 () <.0,i.e. 813 (3) < 0. 'Hgncc,

d2n +1, 13 ) 5 0 for all integers n > 6).

This completes the proof of the Theorem.

In particular, for y == 1/q, where q> 2 is an iuoteger, the
Theorem is due to Steutel [4]. .

From the Theorem proved it follows that our general conjecture
for any ratonal (but notinteger) y > 0 as well as the special con-
jecture of Robertson for y = i'for the coeflicients in (1) are false.
But our general conjecture is open for the irrational numbers y > 0.

Application. For j=n and y =} from (23) and (24) we obtain
the formula '

dpn W=2"B,,0=0,1,2, .., 25
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where the numbers B q are generated by the expansion (6) for y = 3
and B, : =B (}). From (13)for p = | and cje 2 we obtain the

recurrence relation

-1

1

Bﬁ*(m-ki BBy y) 328 =18 =i,
(26)

for the calculation of the numbers B n" Thus from (26) we obtain

successively
5 1 19 :
B, = By =L ,B = .
3 7 13
B,=—> B =—"1__ B — ,
30 2l 16 al633, 7T I35
3053 1
B,=— 03 B o1
S L R
17 19
B, = — B m——
10 2283259y " 11 23032 4
B . 935917 ,
127 234 34 63 721113
By =~ 5530 <0,
| 236 36 53 72 11.13
| 2452337
B, =-— <0!
1477 7539 37 2 2713

The last two equations in (27), having in mind (25), show that the
Robertson conjecture is false. More general with the help of (27)
from (23) and (24) we conclude that

90,2 (1) >00<j<n0=0123456

Vg1, 241 (3 >0.0<j<n 0=0,1,2345,




and

but

d2n+l.1’j+l (—2"

d2n+1. 13 (7

2n, 14 (’2
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Iy @
9, 2 ('z") >60<j<6,027

l)>0,0<'j<5.n>6,

l )'<oln>6l

L)<0,né7-

respectively. Again from the last two inequalities it follows that
‘the Reberison conjecture is false,
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ON THE COEFFICIENTS OF THE POWERS OF THE
UNIVALENT FUNCTIONS OF THE CLASS §

PAVEL G. TODOROV
‘Department of Mathematics, Paissii Hilendarski
University, 4000 Plovdiv, Bulgaria
Abstract '
In‘this papér we give a simple proof of the inequalities (7) for
[\ + tifa > [is not an integer ( [A] denotes

thecasesn =1,
the greatest integer less than A), and for alln=1, 2, ... if A < 1 is an

‘integer, respectively.
" "Let S be the class of functions
® -

f(z)=n£la-nz , 8 = 1, _ ()
'that are analytic and univalent in the disc | z | < 1, and let

'[—f%z—)-fsl—r T ENOE @

n=1

for f (z) ¢ S and any complex number A.

‘Letk (z,€) €S be the Koebe function

- z _® n-1_n
k(z, €)= =53 =nilne z',le =1 (3)

and for any complex number A, let

k(z. €) V" _ b €2 p
[£ee)] =1+ 2 k02", )
where

22 +n—1 'n _' 5
’fn“'E)"( h )s a<l, 2. (%)
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For )\=1 Louls de Branges f1] proved the Bieberbach conjecturc-
!or the class S that ’

TaMIgo+l i =a,,,, : (6)

forn=1, 2, ... where for some n tf;e equality holds only for the
Koebe fucction (3) with 4)—(5).

For a positive mteger A> 1 in (2):and (4)—(5) from the
results due to Milin [2]. p. 101. Theorem 3.9 and Grinshpan (3], p.
88, and from the inequalities (6) it follows that t_hc inequalitics

2+n~1 :
= ? ees s 7
o< ) =12 | M

hold. where for some n the equality holds-only for the Koeba func-
tion (3) with (4)—(5). A éir_ect and simpler proof of the inequalities
(T is given by us in [!]—[6]. The problem for the correctaess of
the inequalities (7) if2 >l is not an integer has been solved
affirmatively by Louis de Branges {7). Hayman and Hummel [8},
and Milin and Grinshpan [9].

Fa this paper we give a direct and simpler proof of the ihcquali—
ties (7) for taccases n=1, ., [A] + tifa > 1 isnotan integer ( {A]
denotes the greatest integer less than 3), and, again, for all n =1, 2,...
ifra>11s an'imeger.‘ respectively, where, for some n, the equality
hotds only for the Koebe fuoction (3).

Proof. From (1, (21 and our paper [10]; p. 84, formulas (25)—
(26), we obtain the formula

. n ’
W= 2 O Cplyyemidy ry3) @

for n=1}, 2, ... and any 3, where
Wy =2 Q=1 (A=rt1), r=1,2, .., )

i and
(ay )1 . (o __ o )Yn—1+l
Car (20 ey dp-r42 =% 2 1 port
. | I Ya—rt1 )

- (10)
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where the sum is taken over all nonnegative integera Ve Vg e .
Ya—r+1 sat:sfyxng

1 +v2 + .. +vn—r+l «r, ,
vi + 295+ o + (n—”'l)"n—r-{-l =n (11)

In particular, for the Koebe function (3!) with (4), from (8)-(11)
we obtain the farmula

k, €)= ¢e” 3 Wy Cpp (2 ol v D=1 +2) | 12y
B l'==l

forn=1,2, . and any 1. Now the comparison of (i2) and )
yields the identities

n ' | : 27.+11-er ‘
| 'El o), C,, ‘(2, ey B=T+2) = ( a ) (13)

for n=], 2, .. and any A,

Therefore, from (8)—(13). with (6) in mind we obtain the $harp
estimates

~l fn *) l=-<‘;§1 Wy lcnr(aZ ’ ""'.an—r.g.z )i _ (14) ,
3 o 2a4n-1 Y
S IO € @nortd) =( - )

for p=1, ..., [\l + 1 if » > 1 is not an iateger, .and fbr all
n=1,2, .l if A > I is an integer, respectively, where for some n the
equality holds only for the Koche function (3). .

* Remark. The identities (13) can be written in the following form.
We bave the identities (see [4], p. 971, Identities (25))

’..n,c“(z, wenmrdd = = (] )(2”“‘ ) i



9%

for n=r, r+1,... and r=1, 2,... From (193) it follows that

n
3

st

Z (7.)r Cm (2,..,0=c42)

) B e () ()

j= 2

-5 () E e (5) ()

_—.) J r

-7, Ee ()

=90

-5 e (T (0E) w

for n=1,2,... and any 2 Now the comparison of (16) and (13)
yields the combinatorial identitics '

2 (_,)n-j(2j+n~1)(x)(x-j-n)=(mn-n)
j=l1 , ‘ n j n—j . " )
valid for n=1, 2, ... and arbitrary A.
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SOME FIXED POINT THEOREMS FOR ITERATES
OF QUAS[ NONEXPANSIVE MAPPINGS
IN LOCALLY CONVEX SPACES

 R.A, RASHWAN*

Deparlmenl of Mamemaucs, sculty of Science. Amut
University, Assiut, Egypt

Absfract

Uader certain conditions, we establish some fixed point theorems
for iterates of quasi-nonexpansive self-mappings in a locally convex
space. An example is given to justify our results.

1. Introduction

. Let T be a self mapping on a linear topological space X, In
recent years several authors have obtained fixed poiat th2orems for
iterates .assuming T is quasi-nonexpansive mapping and X is s-
Banach space under some. conditions, see {t]; {21, [3]. [4).

In this pap:r we use this approach to siudy the convergeace of

“iterates of quasj-nonexpansive. ‘mapping in z focally convex space.

We obtaip the, locally convex versions of th: two theorems of W.V,

- Petryshyn and T.F. Williamson JR. [}  As coassquences we proved

two fixed point theorems for iterates under certainconditions in a
locally convex space. '

In the sequel, we assume that X is a locvaliy convex space whose
topology is gencrated by a family {pY :yel} of continuous semi-.

norms and satisfying the axiom of sep'erafion, see [5], pp. 24 -26].

We adapt hcré a definition of quasi-nonexpansive mapping in a
Banach space as stated in {5] to be held in a locally convex space

* Presear Address : Departmeat of Mathematics, Faculty of Education, Taif,
Saudi Arabia. : ‘
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as follows {

Definition 1 1.  Let X be a locally convex space topologized by
a family of continuous semi-norms {pY tyel} and satisfying the

axiom of seperation.. Suppose C. is a closed convex subset of X.
A sclf-mapping T on: C 'is said to be quasi-nbnexpansive if [ has
a: fixed point u ¢ C such:that pY (x—u) # 0 then

(X — I
p.(‘(Tx-u) <p, (x—u) | (N
is truc for allx e C.

In what fo'l'lows, we suppose that the mapping T on -C - is quasi-
nonexpansive and the set of all tixed points of T is denoted by Fix (T).
Also we define ; -

P, (% Fix (T))=Inf {p_ (x—v); ueFix(T), yel}. @

Our invéstigétion of the convergence. of' iterates of quasi-
nonexpansive mapping T on C is carried out under the conditions :

() Fix(T) # ¢. |
(ii) pY (x—~Tx) # 0 forallx e C,
The following definition is-used later,
" Definition 1:2. [7]. A sequence {xi1 }in .a locally. canvex, ,,spé,ce
X is said.to be, Canchy sequence, iff P, (x, = X, )—>0asp,m-> o

for all y eI. X is quasi-complete if every bounded closed subset of
X is complete, '

. Remark 1.1. :C‘Icarl_);-‘ every complete space is- quasi-complete
space aud every quasi-complete space is sequentially complete
[8, Pp. 210], but not conversly. '

2. Main Results.

_ Throughodl X denotes. a quasi-complete locally coniex space
whose topology is generated by a famly {pY :yely of continuous

semi-norms.
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Theorm 2.7. Lat C be a closed boundsd subset of X. S uppose
¥ is a continuous self-mapping on C into itself such that ;
(i) Fix (T) £ ¢.
(ii) T is quasi-nonexpansive.
- (iii) p_, (x—Tx) 3 O forallxe C,

(iv) Thereexists x € Csuch thatx_ = T" xc Cforeachn 2 i.
Then, {x }:’____i converges to a fixed point of T in C.

Proof. Weshow that { x }isa Cauchy sequence in C. G
¢ > 0, then there exists N > 0 such for all r,s. N, p? (xN s Fix 173

< -;-— , Hence for all r, s > N we obtain.

o py (% =% y<p, (5 — W) +'pY (x, ~ u), ue Fix (T).

Since T is quasi-non:zxpansive, one gets :

P

T N
y (xr - 1) =pY {T" x-u} < PY (T x-—u).

and

. s _ _ N__
pY(xs—u)—py(T X v)spT(T x-u).

Taking the infimum over u ¢ Fix (T), we get
P, {xr - Xg } € 2pY (xy - Fix(Th) <e,

m{xn} is a Cauchy secquence and heace converges tc v ¢ O,

Furthermore since T is cotinuous, Fix (T) is closed in C and therefore
ye Fix (I).
Theorem 2.2. Let C be a closed convex subset of X. Suppose T
is a continuous scif-mapping on C into itself which satisties ;
() Fix(T) #¢.
(i) T is quasi-nonexpansive,
il p, (T, (x)=x) # 0 forallx e C.
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0
Then, for each x e C and 0 < A < 1, the sequence {T;‘ (x)} Sl

n=
of iterates, where T}\ : C — C is defined by T, (x) =2 Tx+(1=Mx
converges to a fixed point of T in C.

Proof. To prove this theorem. It sufficies to show that T,

satisGes the conditions of theorem 2.1, Now since C isa closed and
convex in X, T, is well defined on C any Fix (T) = Fix (T, ) # 4.

Since for each A € (0, 1), x ¢ C and n ¢ Fix (T), we have

p, (T, X—-u) = P, ATx+(1-x-ru={1=3)u)
< Ap, (TX—U)+(1~K) P, (x—u)
< p, (x—u),
this implies that TA is quasi-nonexpansive mappiog
Now
pY (Tx X—X) = pY (ATx 4 (1—1) X=2AX~(I —~2) X)

= A pY (Tx—-x) # 0, Aego,'l),

Then by hypothesis, thereexit x ¢ C such that{T;: (x; }f___ ¢ C

Hence Theorem 2.2. follows from Theorem 2.1, and the theorem is
proved,

Remark 2.1, The above Theorems are the extension of
Theorems (1.1) and (1.1)" (see [3]) in a locaily convex space seiting.

3. Application

In this section we present some applications of' Theorems 2.1
and 2.2. The firstis ;

Theorem 3.1. - Let C be a nonempty closed convex subset of X,
and T be a continuous seli-mapping on C iato itscif, Suppuse for
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each X ¢ [, there exist nonnegati;r; functions di (v« )i=12, \?g of
CxC into [0, o) such that the following are satisfied forx,y ¢ C:
L (2)3d; (v, % y) +2d, (r, %, ¥) +4d3 (v, %, ) <
(b) dy (. %, ¥) + 243 (v, x,¥) < |
L p, (Tx~Ty) < 8 () p, x=¥) + 3, W [P, x-TD
4, =TI+, I, (=Ty) + B, (=Ta

where 8, (v) == ai Y, X, ¥).

Then for each xc Cand 0 < A < I, the sequence {T; (x)}ﬁtl
of iterates, where T, :‘C — Cis defined by Tl (x) = A Tx4(1-2)x,
x ¢ C, converges to a member of Fix (7).

Proof. By Schauder—Tychonoff iheorem [9..;pp. 456} T has at
least ope fixed point and it is easily seen that Fix (T) = Fix
(T)‘ ) # ¢.. Also T satisfies the condition pY {Tx -u) € _p-Y (x—1u),

pY (x -u) # 0 for all x ¢ C, where u is a fixed point of T.
.For. | 7
p, (Tx—v)=p (Tx—Tu) < 8; (1) P, (x—w)+a, (1} [p, (x-Tx)]
+ 43 lp, (x~Tw)
+ P, (u—Tx)]
< [3 M+ a;Mip, (x-v)
+ 3, (N p, x-Tx)]
+e3(p, (=T (1)
This implies that : |

8, () + 8,0 + a3 (1
l—az ()- as n

p1r (Tx~u)<{ } pY (x-u)
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- 2 al (Y)+2 33 (Y)
l—-az (y)—aq (v)

={l- } P, (x=u),

1-(2a, (1) + 285 (1))
1- a, (y) - a, (v)

P, (Tx ~u) < { } P, (x —u).

From (I—a) we obtain :

P‘r (Tx-u) < p, (x—u).

Hence T is quasi-nonexpansive.
Also, we have

P,{ (‘r}' 7«""'“) = p.Y (T), (X) - T;\ (u))

p, ( (Tx—u) 4 (I-2) (x—0),

From (2), we see that

P, (T, x=u) < p, (x-u).

Hence.T)‘ is a quasi-nonexpansive mapping.

(2)

Suppose pY (Tx-u) € P, (x—u), P, (x—u) # 0. Then using)

(1) we have

[t~a, () ~2a5 (NIp, (x-v) < 3y (V) p, (x~Tx).

Since by 1—(b" the left hund side is nonzero, it follows that
pY (x—Tx) # 0. Also one can show ihat P, (T, x—x) # 0.

Applying Theorem 2.2., the sequence { T;\‘ (x) }:O_l of iterates con-

verges to the fixed point of T in C. This completes the proof of the

theorem.
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Remark 3.1. Thé above theoiem extends Theorem 4in [V} in a
locally convex space setting.

Another consequence of Theorem 2.2, is the following Theorem.

Theorem 3.2. Let C be a nonempty closed convex sbset of X.
Suppose T is a self-mapping on C into itself such that:

- ~y). L - -Ty),
p, (Tx Ty)azsmax{loY (x y),zpY (x-Tx) + p, (O=T¥)
Plp, x=-Ty) + p, (y=Tx) ]},

forallx,ye Cand 0 <8 < I,

Then, the sequence { T,?x}:’:l of iterates, where TA 1 C—>C
is defined by Tl X==2Tx+ (I-2)%x, 0 <3 <1, converges toa
member of Fix (T).

Proof. By Schauder Tychonoff Theorem T has at least one
fixed point and it is easily seen that Fix (T) - Fix (T, ) # ¢. Also

T satisfies the condition P, (Tx—u) € pY (x-u), P, (x-u) # 0,
x ¢ C, where u ¢ Fix (T). For
Py (T, —ll)_‘—‘Py (Tx—-Tu)
£ 9§ max {pT (x—u), %pY (x~Tx) + pY (u—Tu),
3 P, (x=Tu) + } Py (u-Tx)}.
Hence, pY (Tx—u) < & max { pY (x—u), % pY (x-u)
+ip, (u—-Txjh
If, p, (Tx-u) < 8 p, (x—u) < p, (x—u) < p, (x—u) (as
0 < & < 1), then T is quasi-nonexpansive mapping. |
if, p (Tx-u) < o[} p, (x-u) + 4 p, (Tx—w]. We obtain
(2-9) pY (Tz-u) < 8 Py (xf—u), 0<d<gt,

this implies that P, (Tx-u) pY (x—u),
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Thcﬁ T is quasi-nonexpansive,

Also as in the proof of Theorem 3.1, onc easily show that T)\ is

quasi-nonexpansive: and pY (T}‘ X-Xx) # 0. Applying Theorem 2.2

then the sequence of iterates { T?\x}ﬁil converges to a fixed point

of T.

Now, we give an example of a non-normable locally convex
space and a quasi-nonexpansiye mapping that has a fixed point.

. 4. Example. Let § be an open subset of R?and X =C ()
be the space of continuousreal valued functionson . Let A be
the family. of closed subsets of §. - For y ¢ A, define ;

p, (f)=maz | f(x)], feX
Y Xey

Then. Py is a semi-norm, and the family {pT' : vt A} generates

a topologv under which X is a locally convéx space. For a special
cate, let (§ = (I,—1)and X =C(—1, 1). LetC = {teX:{o, i]-
[0, 3] Then Cis a.closed convex subset of X, Define;-

T :.C = C by (Tf) (x) == (sin x) f (x).
Clearly T has a fixed point f = 0in C.

Also

P, (Tf-0) = max | (sin x) f (x) - (sin x) O |
Xey

= max |sinx| |f(x)]

Xey

< max | f(x)]
Xey

=pAr (f-0).

Hence T is quasi-ncnexpansive.
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Abstract

A sharp coefficient estimates, distortion theorems are determined
i 0
for the. class R;‘) (e, B, A, B) of functions f (z) = 2P + kz:—-l ap+k

Pt which are analytic and p-valent in the unit disc
U= {z:]|z]| < 1}and satisfying the condition

' (z)

pP~!

(B A) ( f (z)l —1+(1—«)cosre ) + A ( ‘p‘-z’l -1 )
Pzp pz

-1 o L,

for some @, B, A, A, B (0<e<p, 0<B&l, 2] < —;—L ,~1<A<BL,
o<B<1) with p a positive integer. A sufficient condition for a

function to beiong to R." («, B, A, B) has also been dctermincd. We

shall also prove that a subclass of p-valent analytlc functions is closed

under convolution.
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1. Introdaction

o0
Let B b2 the class of fuactions f (z) = 2P+ T a k zp"'h
k=t Pt

which ars regular and p-valent in the unit disc U= {z:1z| <1}

A fuaction f (z) € E is said to be in R; (=, B, A, B) ifit satisfies the

condition .
{ _'f.—"gz) -1
. p—1
| (2 - =i " (2 <l
(B—a) I —1+(1-a)coshe )J,—A(——-—-—-——l)
\ p"l - p-[
pz pz

(1.1)

for some a, B, 2, A, B(oga<p,0<BgL 1A ] < i;—, £$A<CBg,
0 < B < 1) with pa positive integer and for all z € U. It is
easily seen that for f(2) € R; (=, B, A, B), the values ”f“{,(‘?f lie
pz
inside the circle in the right half-plane with ceater at
1-[B - AYB+AT{ [(B=A) B + A]—(B=A) B (I=c) cos 2 e ~i*}

1—{(B—A) p+AF

and radius
(B—A) B (1—a)cos
1- [(B—A) g+A]°

Further, it follows from Schwarz's Lemma [4] thatif f (2) € R;

(«, B, A, B), then
£ 14-{(B—ABH+A] -(B- A)B(I—a) cos d & N} w (2)

R 1+[\B—A, p+A] W (z)

P
where w (z) is regular in U and satisfies the conditions w (0) = o,

and |[wz) | < 1forz e U.

We note that ;

1. For A= —1 and B=1, we get the class introduced and
studied by Mogra (3].
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2. For p=l‘, we get the class introduced and studied by Aouf
and Owa [2].
3. Forp=1.A= —1%nd B=1], we get the class introduced
and studied by Ahuja [1].
4, For A=o0, a=0, A==—1 and B==l and replacement £ by

BT , 8 > I, we get the class iatroduced and studizd by Sohi [5].

23
Also by taking different values of the parameters «, 8, %, A and B,

the class R:; («, B, A, B) reducss to the following subclasses of

p-valent analytic functions introduced by Mogra [3] :

Ay = R (21
Ry@=Rp(x1, =11

= { fe E:Re( e‘}‘ @ <)>u cosh,o<a<p, | A} <—z£, €U }a

pP !
A R 28-1
RP.S—RP (0, -—'2"—3—‘—, 1.1)
e -—f—(—z)——-i sin )
pzP ! : LW U
={fe E: — —3|<B >k A< G 2e }.

(R; ) = R; (1=, 3,=1, 1)

! eil ' ()
‘pr'_E 7 _
- cos 7 —!|<c,o<"<l.

- isin A

={feE:

A< -—;—-~.z eU!.’ :

A _pif 1=y 14y - Ay



eiz f’ (z)l
pzf ~

112

- i sin A

feE: cos A

'eil ' (2)

pzP !

— isina

+1

Iri<

<yv,0<y <l
f—,zEU}.

€OS A

We. further, observe that for special choics of the parameters
a, B, 3, A and B our class rise to the following new subclass:s of
p-valent analytic functions :

A 28 -1

A
l—Rp.s’a—Rp(ﬂ,T,~—l, l)
m f (z)l —@ coS A—i §in A
——{fe E: p:F s|<s
o ' (l-a)cos A - <%
§>ho<a<p A< %.zeU}.
[ —A+A By A
- R - R® Y Y )
2= R (A B) =R (S22, SL A A
f'(z)
1
pzP—!
=tfeE: - <y, 0<v<], —I<A<BLI,
B—" A A
pzp—l o<B§l,z€Ut s
3- R* (A, B)=R (a1, A, B)
Pyx ,A pY
| '@ _ _,
p—1
=.-{feE:’ pzP
t'12) —1
3 —[B+(A—-B)(l—-x)cosre ]
pzP :
<l,ze U
_ 2 [ —A+AB—(A—B)a3 BE-A )
4 p.a ﬁ(A B)‘R ( BE—A ’ B-A'A'B.




113

' (z). '
WFT_l
fEE. |—po =
B— 2 _[B3+(A—B)(l—a)cosre” "1
pzP~!

< o<a<p, o<13-<1,. ~1<A<Bgl,0<Bgl,ze U }

At noticed above, the class R (s, B, A, B) includ s the various

nub*lasses of p-valzat analy'ic fuuctaons, a study of its propcrues -
will lead to a uaified study of these class:s. 1a . he preient paper, we
determine a suffiziznt condition, co:ffizisat estimates, distoction

theorems for f () € R:‘, (x, £, A, B), We shall further proves that
the subclass R.; 5 a of E, is closed under convolution,

. [ ]
2. A sufficient condition

Theorem 1. Let f (z) = 2P+ E a k zp"'k be analytic

k=1 P*

and p-valent in U. If for some «, A, A and B'(o < a<Pp,;
1N <5 .~1<A<Bg),

-} .
(B-A) PP (I —«) cos A
e S S B SV 2y

2.1)

whenever 0o < P € oA’
and

® il s . | < (BoABP (=) cosd
k=1 Ptk TrA+(B=A)B  °

—A
2
whenever @A) <Bgt, (2.2)

thes f(2) € R; (e, B, A, B).



114

Proof Suppose that (2.1) holds for o £ B < (B A) and that

— P & p+k
.f(z) z\+ki1 ap+k z

then for z € U, _
| @) -pP~ L - | B-A) B (' (@—p2P !
4 p(l—a) cos re i Pl 4 A (t”(:z)—pzp"'I N
w |
=1 2 Gtoa,, PN [@-Mpa-

cosae” z"_‘l

o
2 (o0 (-A-@B-A)p) 8 ok 2PHETT
k= :
g | k-1 _ aP1
<z (P+K) (3, 1 PF — (B A)p (=) cosh 1P~

- P +k=—1 }

PR (~A—B=AB) [,y |

o
z
o |
L I0+0) + (—A-@B-A)B) o +0] 8y, |

<{
k
- (B—A) Bp (1—x)cos A } P!

o
={ 2 (I=A=(B-A)B)(p+b) s

(B-—A) pp (1 —a) cos A} Pl
The last quanuty is nonposmve by (2.1), so that f(z) ¢
R:; («, 8, A, B). Next, we assume that (2.2) holds for —@—T_—})——
<B< L Then '
L @-pP ™t = [ (B—A)B(F @ - p2P~!

+p(l—a)cosre” “zp"l) + A (f’(i) - pzP~ 1y
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o .
_ p+k-1 , _ B -
_!kil(p+k)ap+k z [ =1 (B=-A)pp(l-a)

cosa e~ ih Pl

' o p+k-t
+ I AHE-RD @, e |

Q0
<UE (U rAHB-M) B PR 8y, |

} ~ (B~A)pp (1—x)cosa} P!
< o, by (2.2).

This proves that f(z) € R; ( B, A, B). Hence the theorem.
We note that '

(B-A)Bp(1-a)cosre”™ ooy
(P+k) (1—A=(B-A)p)  °

is an extremal function with respect to Ist part the theorem and

fz) =2P +

(B-A)Bp(1-a)cosre™ P+
T (p+k) (1+A+(B=A)B)

is an extremal function with respect to IInd part of the theorem since

f@=2° +

f' (2) - {

1 —

| pPt ,=1
f'(z) 1 (z)

(B A)B(— =1+ (i—a)cosre )+A(——B:r_l)‘

P _ pz

for z=1, 0<a<p, 0<pB<1], |A|<=, ~1€A<BgI
o<B<lmamdk=1233,...
We also observe that the converse of the above theorem may not
be true. For example, consider of the function f (z) given by 7
£(2) 1 {[(R=A)B+A]—(B-A)p('—s)coshe P}z
pzp-—l o 1-[(B-A)B+A;z
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It is easily scen that f(2) € R; (=, B A, B) but

°2°. (p+X) (1—A-(B=A)B s .
kel (B=A)Bp(I—w)casa ' ptk’

= ozo ._(pf,ii)(l;__A’(B'A)B)_ (B—A) 8p (1—a) cos )

[(B-A) B+ATE!

o | e
=k21(1-A—(B—A)ﬁ) [(B-A)B+A]" " >1

. -A
for . a.B,A A aad B satisfying o < a< p, o<p<.—(_§—A)—,

|)‘|<—-2~. .\A<B\l,o,<B<l.andalso

(p+k)(l+A+m A) gy

,k- T(B=A)Pp(1—x)cos A l p+l:I
-3 (p+K) (14+A4+M—AYB)  (B=A)pp (1—a) cos)
k=1 . (”"A) rp‘p (l—a)cos A - (p+Kk)

(B-Ayp+AlE!
o : K—
= kzl (14+A+(B-A)B) [(B-A) ﬂ+A]
for «, , », A and B satisfying o<a<p, (B A) ——<pB<, |7\—<—
—lsAQBs-J.QQBSIandze uU.
Corollary 1. Let f(z) = z + 2 a p+k zp+k be analytic

and p-valenth Ifforsome a.Ao<a<p,|A|< 2 y

k‘_‘l_d(pﬂc) la, ¢ x | S@5—1)p(1-a)cosh whenever §F <1,

w ) ’ .. -
= g —
2 (p+k) | a, +k | €p(l—a) cps ), whenever § > 1,
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then f(z) belongs to R D, 6. &

ot --q,w e

Corollary 2, Let f (z) = 2 +k2 ‘°p+k z .be analytic
andp-valentxnU IfforsomeT.A B(o <y g1, - l<A<Bg1
°<B 4 1,' ’

- ‘ | | .

. : (B—- Ay
Mt T (S I

then f(z) € R, (1. A, B).

Cbrbllary.?. Let f (z) = 2P + 2 ap +kzp+ be analytic
andp-valenth If for some a,AAB(o<¢<p,|7\|<-2 .
-1<A<B<l o<B<l),

2 “{B-A) Df('i—-gd COs A
kl(p+k)“p+k | & == 0+5) ,

then f(z) € R" (A B).

Corollary4 Let f (z)=zp+ 2 a kzp“‘ be analytlc
k-1 Pt
and p-valent in U. If t'or some «, B, A, A, B(oga<p, 0<p<1,
,lkl< 2 . —1<A<B<1 o<B<1),

(B—A) ﬁp (l-—a) COS A
(1 +Bp) '

kf (p+k)|ap+k I €

then f (z) belongs to R" o, B (A, B)

Remark L

L Puttmg A= ] and Bx=| in Theorem. 1, we get the corress
ponding .ufficient condition obtained by Mogra [3].
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2. Putiug p =1 in Theorem 1, we get the corresponding
sufficient condition by Aouf and Owa [2].

_ 3. Putting p=1, A=-~1and B=1 in Theorem 1, we get the
corresponding sufficient condition obtained by Ahvja [1].

Motivated by Theorem 1, we introdnce a new subclass of p-valent
analytic funciions in the umit disc U. We say that a function

-2 .
f(z) € E isin the class Rp, (x; 8, A, B) if and only if the condition

(2.1) holds for o <B< (B‘_’X)« and the condition (2.2) holds for

—A g | A
(B...A)— $3$1 Clcarly Rp.(l, 3, A. B) Cc Rp-(a. ﬁ. A. B). Then

the following theorem is in order.

Theorem 2, I

m .
§(2) = 2P p+k
f(z)=2z" + kzl ap.+k z
and
0 .
o 123 v p+k
. Y . .
belong to Rp (=, 8, A, B), then so does F (z), where F (z) is defined
by - |
m .
= 2P -
F(@=2" 4 Z ap-l_-kbp+kz .

=]

Proof Siace f(z) & R:‘) (=, B, A. B), we have

r , y
| (B—A)Bp (1 —a) cos A ifo <Bg A

I-A—(B-A)f (B-A)

© - }

(B—A)Bp(1—a)eosh .. =—A __
T+A+(B=AJB if B=A) <8<l
(2.3)

=
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This yields

{ (B—A)pp(1-wdcosr .. = —A
| U=A=B-A)F, P15 if o <B< 177y

la | <4
“p+k
| (B=AYB p(l—a)cosi if —A <8<l

L 0FATE- AP Ere HE=ay <

for all k > 1. Therefore, it follows that
lag . x I<1i(k2 l) _ (24)

~Using (7.4) we obtain

2 e i7c S '
i ; )+
(p'k) ‘P'I'k |° < ki.l (p k)| ap+k | (2.5)

Similarly, since g (z) € ,Rp_" (z, B, A, B) we have.

[ B-A)B , | A
3 —~AYB p(l—a)cos) . —-A .
% I-A-(b-4)p if o<B< B=ay
ch+mb (1< N |
k- p+ f (B- _A)Bp(l-a)cosz if ~A .
= L+A+B=A) P Ay <8<
(2.6)
and '
‘ © ,
kz (p+k)l +ki <__kil (p’+k) il (2.1)
~ Now we have '
Kt “’“‘“‘p+k bptk|
0, o .
<O PRIl A % *”_"p+k', )’

“j, (p+k)1ap+k|)*( z (p+k)|bp1_k|)‘} (28)
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where we have applied Schwarz’s inequality [4] -and the relations
(2.5) and (2.7). Applying (2.3) and (2.6) to the relation (2.8) we get

o )
5 . )

(
(B—A)B p (1 —a)cos) ~A
! 1-A—(B—A)pB ‘“‘“ B-a)
<4 :
I (g— -
| (B=AYBp (T—a)cos A if -A <B< 1.

L 1+AT(B-a)B "B=a)
This proves that F (z) € R;)‘ (=, B, A, B).
3, Coefficient estimates
: ’ °° +k A
© Thasrem 3. Iff(z}szp-j- z a_,, 2P isin R} (2,8,A,B)
. p+k

forsome a3, A, B sallsfjmg (o<a<P. 0<§S( ). RS <z 3
~1<A<BZI, o< B<1), then

B—A)Bp (-
8y | 8 ROz R ek gy

The inequality is sharp.

Pioof. Sincc f(z) e R; (=, 8, A, B), we have

) _ 14{B=AB+AJ—(B=AB(l —a) cos e~ wiz)

pzp-- | 1+{B-A)p+aAalw(z) _
(3.1
(v 4]
where w (z)y= Z tm-zm is rcgu'lar in U and satisfies the condi-
' m=] :

tions' w (o) oand |w(z)| <lforze U. From(3.1), we have

{((B—A) B p(l—a)cos & ¢~ i* P-1 4 z.l (B—A ,$+A](p+m)
. ' o=
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%0 '
- +m—‘} b z t g;m‘?}\=_-, X (p"'m) P

“pem m=1 ™ mai

Lm=t G2
Equating correspondmg cosflicients on both sides of (3.2) we observe
that the coefficient ap +k ‘on the right of 3.2) depends only on. -

| p+l'ap+2'-""ap+k lonthelt:t‘l;of(i’a2)fcn’kaI Hence

- for'k a1, it folows from (3.2) that -

- i)\ p -1 k=
{(B—A)pp{l=-a)cosre™ ™ 2P 7% 4 2 [(B- A)p + Al (p+m)

m=1"
o P G e 3 erm Pm=1
‘p+m - o m==l _ p+m ’ .
- ;} C. Zp+mul
Hm=k+l m. .,4
where ®n bemg complex numbers. Then, since [w (z) | < 1, we
get:
|B-Appi—a)cosre™" P70 4 I [B-A)p+Al(p+m)
m= '
gm0 s 3 : (p+m)a prm=t
-6
+ = o TP @y
m=k+L T ' '

Squaring both sides of (3.3) and inmtegrating round [z | =1,
e r< 1, we obtain, .

k - ' w.
¥ +m 2 2(p\.+m—la)_‘ ,, ¥ 2
m==l a1y ptm | ki m=k+1[c" L

2(p+m 1) < (B~ A 92 (1= ﬂ‘)2 cos “2(19 1),

k-1
+ [(B-A)p+AI) T (ptm)? |a 2 2(pm-1)
(B-Apral” E @ m)? bapym 171
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If-we take limit as r approaches 1, then.
k .
2 2 _ a2 62 o2 (1012 cos? 2
mil (p+m)" |3 .p 14 < (B—A)° B° p° (1 —a)” cos™ A,
k=1 9 2
HIB-A)B+AT T (orm) [ayn |
or:

P40 135,12 < B=4)7 82 p? (1= cos® 2

' k—1 \
S-[E-M Al B el 1

Since 0 <8< (=g

@+0? 1oy, 1% < B-a7 % p? (1-0)7 cos’

whence follows that

(B~ A)Bp (1—g)cosh

"‘b_l_k I Q g p+k pkél-a

Consider the function,
. p—l 1—{[(B~A)B+A]J- (B—A (1- ) cosre ™}k

f{z)= } pt , e
. é : 1-((B—A) B+A]t*

dt,z e U,

where o<a<p, 0P (%E%‘). Ix l“<-;5. and ~1<A<<B<],
0.< B ‘ 1. - -

Then it is easy. to.check that f(z) € R; («, B, A, B) and the function,

(B—A)8p (1-a)cas x e~

PN
p+k ’

f(z)fazp'+ zp'+k-'i-...._

forallk & 1and z € U-showing that the estimates are sharp,
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‘Remark 2. |
Taking appropriate values of the parameters «, 8,2, A, Bin
“Theorem 3 we may get the corresponding coefficient estimates for
-functions in the classes

A
Rp 3, a

.Remark 3.

"By taking appropriate. values of the parameters o, §, A,
A, B and p in Theorem 3 we obtiig the correspialing results
-established by Mog a [3], Acuf and Owa [2], Ahuja [}] and Sohi [5].

/Ry (1, AB)L R (A, B)andR" ., 6 (A B).

4, Distortion theorems.

,w ' R .
Tieorem4. ff(zZ)=2P+ I a K Ptk -belongs to the
. k=1 p+

ciass‘li:; (x,B, A, B), thenforz = U,

|'f (z)_l <

Iz 14+(B=A)B(l—=u)cosh. t+['B=A)B+Al{[B-A)

S vptp-l , . Btl-a cos? ;-[(n A) B+ A} 2 dt
° 1-[(B-A) p+A]>
ind (4.1)
[f@)] >

lz] 1—=(B—A)B(l=«)cosh. t+[(B~ A)e,-{-A]{(B—A)

S piP-1 8 (1—a)cos’ A= ((B—A)rsM]}tz

° 1-[(B—A) B+AJ

@2

Forp = (—ﬁ-‘i——ﬁ-), the abovev estimates reduce to

Ap(1-a)cosh . rPH!
T pFL

@) ] < 1° -

Ap (1-a) cosr . rPH!
p+1

@ s P+ (2] =1

The bounds are sharp.
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Proof Since f(z) € R; (e, §. A, B), we observe that the

“condition (1.1) coupled with an application of Schwarz’s Lemma [4]
implies

[ '
lw,,(?i- -a|]<b 4.3)
e ,

where
2

_ 1=[B—AYB+AI (B A) +A] - (B~ A'B(1 ~a)cosh e =ity
1- [(B-A)ﬁ+A}2 2

, (4.4)
b = (B-—-Aw(l-.a)c;shzr z]=r (4.5
1-{(B—-A)B+A) 1
Hence, we have :
1-(B— A) B (1—a) cos ). r+[(B-A) B +A] { (B~ A)B{ls—a)
cmz)—[(n AVB+A]} 2
1-[B~A) B+AJ
f'(z)
£ Re { ) <
pPt "
14 (B~A)Btl=a)coshr.r+[(B- A)B+A]{(B A)B(l-a)
cos A— [(B A)5+A]}r
1-[@8- A)g+a)’ (4.6)
Let ,
1+(B-A)R (1—a)cosr.z+[(B-A)B+A] {(B—-A)
g D) = B (1—a) cos?s.-[(B—A)p+A]} r?

1-[(B-A)p+A)* 22

Since g(0) = 1 = f'(0) and g (2) is univalent in U, it follows that
f’ is subordinate to g. Hence :
1£@] <

14(B-A) B (1~a) cos A . r+[(B~A) B+A] (B~ A)
-1 - B (1 =) cos? A~ [(B -A)B+A]) 2

piP R
1-[(B-A) B+A) 2 (4.7
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Now, in view-of

1z}
lrcz)l—ljf'<s)ds1< ] lf'ae“’nd: ‘\

and with the aid of (4.7) we may write"

If@| <

(2 1+4(B— —A)B (1»-«) cos A. t+[(B—A) B+ A] {(B—A)

' - . - 2 -
S p‘p 1 B(l —&)cos®A— {(B A)"-[-A]}t dt
° 1-[B—A) p+A] 2
which gwcs (&1). In order to obtain the lower bound for.f(z) we
integrate along the path L whose image is the line segment [o, [ (z)]
Thus :

11| = | ~S o dsts §Ireds
L ,

L
2] 1-(B£A)B(1-a)cosh. f+[('B ~A)B+A){(B~A)
{ pP ! ___B(l-a) cos?a— [rn —A B+AR LR
J 1-[(B-A) p+A]* |

This proves the theorem.
By taking the function
i 14+(B- A)p(l—a)cosx t+[(B A)B+A{(B—A)
S p-1 T B(—a) cosda— [(B A)B+A]2}t a
1-[(B— A)ﬂ-l-A] '

f(z) =
o ,
one can.show that the cstnmates are sharp,
Remark 4. The corresponding distortion theorems for functions

belonging to the classes Rp, 5. a Rp s ,B), p,m (A, B) and

R:; « g (A B) can be obtained from Theorem 4 by taking appro-

priate values of the parameters.

‘Remark 5.
1. Putting A= -l and B=1in Theorem 4, we get the distortion

theorem otained by Mogra [31.
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2. Pulting p=1in Theorem 4, we get the distortion theorem
obtained by Aouf and Owa [2]. R

3. Putting p=1, A=~1 and B=1 in Theorem 4, we get the
distortion theorem obtained by Ahuja (17

4. Puttingp=1l,a=0,8 = -2-5—— > P, A=—t1andB=1lin
Theorem 4, we get the distortion thgorem obtained by Sohi [SL

S, Convex set of functions

Theorem 6. 1f f(2) and g (2) belong to the class R" §oa’ then

vf() + (l -v) g (z), ogvg<l, bclongs to the class Rp 5

Proof Since (z) and g (z) belong to the class Rp §,ar Ve
have
‘l-—f—@l———aéosl-—isinh ,
pPt —1len 51
" (l—a)cos A _ |< _ :
and |
[}
17\ gz _ % COS A. — isin A l
| ° e | .
1 éu-a;cosx " "‘<1 -G

for some §, A, satnsfymg{ bENEY! < — ando <o <<p. Using
(5 1) and (5.2), it foliows that

el)‘ G~ f (z) + (1-v) g'(2)

_ pzp -1

= & CosA—isin A

b tl—a)cosa
ian f ,
¢ ———Lzla——acosh - isin A
p—1
pz :

$ (l—ai) cos A
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ei)\__f_;(f_)r__ acosh — isin A
+(l__') = §(1=a) cos 2 — =1
<v+(l-v) =1,
forall z € U. This praves that vf(z) + (1-v) g(2) belongs to

P\
P.S.a'

R
6. Convolution of fanctions,
Theorem 6. If
oo
- 2P p+k
1"(:) zr +k§'l 'p-l-k z
and
[
- 7P p+k
g(2) = z" + kil bp+kz

belong to Rp' 5, then

| ) |
— P p+k . p+k
F@=2"+ 2 (57 %4k Ppix &

A

i3 also 2 member of Rp’ £, a

Proof. Since f (z) and g (z) be'ong to RI‘, £ a Ve have

ixn ' (2) . .
¢ pTl' @ CO8 A—18in A

= (1 —a) cos ) ’ - <E'8’>}.15U,

and
.A 't
¢ ‘g—p(%-a €os A—isin A
Pz _

(- a)cosar - ~-§|<&E6>hze U




128

, N .- T :
It is well known [4] thatif b (z) = & ¢ z% isregularin U and
N _ n=0
{h (| < D, then
o« _ ,
£ le, 12 <D, - o 6.0
n=0 : '
Applying the estimate (6.1) to the function
[ (L4itan 2) fp‘f_)l —~itan A—« 1
{ P2 V - 8 >. .
U (1-e) J
we get
a 8)2_‘_’l¢itank2 °§ p_-l-_l_t)z 12 '2'
I B PR p*"\
which yields
© 2. :
p+k = IVt onel
kfd( —) p+k.} < @-D( «).cos LED>E.

Similarly, applying the estimate (6.1) to the function

r(H-it'ank) ’(z) —itani-« )]
3 p2P ! —5?
L (=) — J’
' weobtain
- o]
I @y [ - 2 c@-n(t o ot >
Since
o _
- Ptk Ptk
F(2) 2P + kz - > )ap+k p+kz
we have
 (14itan ) F'(’)l ~ itan A=q 2
pz
1—o —6 ‘




2

P i4itana ©  pt+k2
’k ’
s(l—é')z +2{;——§)scc7\ Zl(pT )2Iap+k bp+k'rk
2 - 0 |
sec A p+k .2 k 2 r).
(l—-a)z(kil(_) P+k[bp+k £, (lzl=n
4k 3
< (1~ S) +2(1—8)seclkzl(p—a—— p+k‘lbp+k
s g eepla o)
* (1—)? k=1 P Pk "p+ky
0 2,
<=5 +2(Thserc S ('3—"'~)ZI L
I- K i p+
&0 2
p+k 2 i
( z (‘*—*) l)
2 2 2w k’z ]2
sec® A p+k 2‘. )
(l_a)l (k 1 j o] ) P+k\)( ( p+k!

< (1=5% + 2(1=§) (2§ =1) (1=) cos 2

+ 2; =1 (1-)? cos?

A

- Consequently
ei » F (z)
p -
(l—-u; Cos

5
- & cos A—isin A
< gt

-§
if

=5 +2(1-P) (25=1) (1) cos &

' +(25-l) (1-a) cos }.<8’

that is, if
(25=1) [(1 ~ &) cos A=1] [(2f 1) (1=a) cos A + 1] < ©
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which is true for §, A, « satisfying § *> },yl A< % and o < « < p.

_ nA
Hence F(2) € R .6 a
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