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Abstract

We consider an inhomogeneous elastic layer overlying a two layer
model of the earth. The Love waves excited by a source lying just above the
half-space, are considered. We are using Green’s function method. The
resulting dispersion relation is shown to agree with earlier known result in the

special case.

1. Introduction

In the study of surface waves it is a reasonable approximation to
model the earth as a medium consisting of a homogeneous elastic layer
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overlying a homogeneous elastic half space. Various authors, for example
Ghosh [3], Chattopadhya, Pal and Chakroborty [1], have . considered
- propagation of Love waves in case of varying density or rigidity. We consider
a model consisting of two layers overlying a half space. This modél has been
studied by Sato 5] or more recently by Kazi and Abu-Safiya [4]. To fit the
case in which the upper layer has variable properties, we allow the density in
this layer to be variable and regard it as ‘perturbation’ of the case with -
constant density. The disturbance is assumed to be caused by a harmonic
source lying just above the interface between the half spcee and the
intermediate layer. We have used Green’s function method [6] to obtain the
dispersion relation for the disturbance present at the surface of the earth. This
dispersion relation can be reduced to the case of homogneous upper layer when
the perturbation parameter e is equated to zero. The case of variation in
rigidity can be treaed in a similar way. .

2. Formulation of the Problem

C

We consider the problem in which two elastic horizontal layers of
uniform thickness # and H overlie a semi-infinite substratum. We take the
upper layer to be inhomogeneous. In this layer the density varies as linear
function of z. The origin coordinate is taken along the interface z=0. The z-
axis is taken vertically downward,

L 4

The lower layer (0<z<H) and semi-infinite medium (z=H) are
supposed to be homogeneous. A harmonic source of SH-type is assumed to be
present at S(0,H). Subscripts 1, 2 and 3 refer to upper layer (—h<z<1),
lower layer (O0<z< Hy and semi-infinie substratum (z = H) respectively.

The equations of motion are,

WV = (puten Y =0, : | (1)
\v/ - v, -

U2 Y “Vy P2 3T = 47 02 (rat)’ (2)

™ o, 3)



where the inhmogeneous term in (2) appears due to the presence of source of
density o-(r,r). We shall take o5(r,r)=8(x)8(z—H)e* which represents a time
‘harmonic source with angular frequency w placed at (o,y,H) in the space, u,
and p, are the rigidity and density of the respective medium. The density in the
upper layer is taken to be p,+ez, where ¢ measures the inhomogeneity. The
boundary conditions at the interfaces and free surface are,

v,

- =0 at z = —h, (4a)
vi(z) = v2) at z=0, (4b)
av,. d

Hi —a\él— = /.l.j -—a‘%z— at = H. (40)
viz) = va(2) at z=H, (4d)
v, _ ov, at z=H. . (4e)

ko TR

3. Solution of the Problem

We assume the time dependence to be €/ and suppress it throughout.
The Fourier transform W(£,z) and its inverse are defined as,

V(,2) = ,21? jmv(x,z) eix dx,

vx2) = | vED e d,

The equations (1) - (3) thus transform into

dv €
i __agvl o

—_ - 2V
= W O

= 470,(2), (say) ©)



d?v, e € )
—azy— B Vy = -72—- w ZV[
= 4702), (say) (6)
d'ZB _'YZVJ =0

In (5) - (7), we have used,

2
ol = £ — p;l:, = §2° k2.

T

and

£~ P £ — ki

r= U3

Let Gy(z,z,) be Green’s function for upper layer (—h=<z<0)
satisfying the homogeneous boundary conditions dG,/dz = 0 at z = —h and
z=0. G(z,z,) is the solution of the equation,

d°G(z, R ’
_dO@n) 6y = bz, (®)
dz*
where z, is a point in the upper layer (—h <z <0). Multipling equation (5) by
G, and (8) by V|, subtracting and integrating from —h to 0, we get after some
simplification, ‘ ’

Vi) = G0 |+ ] 40 ez ©

Again, let Gi(z,z,) be Green’s function for lower layer (0<z<H)
satisfying the conditions dG,/dz = 0 at z = 0 and z = H. G(z,z,) in this case
satisfies the equation,




d-G.(z, R
(ISR i) = b2, (10)
where z, 1s a point in the layer (0 <z<H). Now multiplying equation (6) by
G:; and (10) V,, subtracting and integrating from O to H, we obtain,

2 V‘)
Vi(z) = #3 G,(H,z) -G-(H,z) _%V_ | +Gx0,2) fia_z_ ]0 (11)

z=0 z=

Taking the Fourier transform of (4b,c), using these in (9) and (11), we can
write,

~

oo g GO 2| = G0+ | 4mo(z)6i0,2Kz] (12)

where

B = G,(0,0) + (12%)

Now suppose that Gi(z,z,) is Green’s function for the half space
(z=H) satisfying the boundary conditions dG;/dz = 0 at z = H and as z = .
In this case Gi(z,2,) satisfies the equation,

d2G3(Z’ Zo)

— g “YG:(z2) = z-2), (13)
As before, we get,
av, '
Vi) = GH2) — | (14)

Applying the condition (4d,e) at the interface z = H, we obtain after some
effort,

S N E S CLO B
dz ,.4 C He ; Yo B




a2 G22(0rH)
W

0
_Ih 7,V 1(2.)G(0,2,)dz, (15)
where,

c=cmm- # _SOH L m sum s
%] B U3

and the value of a3(z) from (5) have been re-introduced. By putting the value
of dV,/dz at z = H from (15) into equation (12) and using the resulting value
of dV,/dz-at z = 0 in equation (9), we obtain, )

2G 5 440,
v - 20800 e—gum+ 4 ERD
. GO, o
+e? %793 CINY EACAHERSYS

° 7 :
—ew? | 2 Vi(2)Gi(z,2,)dz.
—-h Hi

2

G,(0,2)G,30,H) °
ver  ODOD Y aVi@)60.2dz,

2GI(O,Z)G3(O,H) [ _Iiz— G3(H,H)+ew2 GZ(O)H)
I‘ZBC H3 2B

Vi(2) =
a - 0 Z,
X {h 7,V (2,)G((0,2,)dz,} —ew _Ih h Vi(z)G(z,2,)dz,

0
G;f(;;z) | 2Vi@)Gi(0,2)dz, (16)

+ew?

In order to eliminate V(z) from equation (16), we make use of an approximate
exprassion obtained from (16) by neglecting terms involving e on the right
hand side. This gives,

2G,(0,2)G(0,H)G+(H,H)

17
u-BC an

Vi@) =




This value of V,(z,) then determines V(z) from (16) correct to first power of
€.

~ We thus conclude that the wave motion in the upper Green’s function
G,, G, and G; can be found. Thus the equation (16) can be rewritten as, A

\

2G,(0,2)G2(0,H)G5(H,H) , G>(0,H)
V(z) = I+ew — " 1 G,%0,z,)d
1(2) B [1+ew B _Ihzo 1%0,2z,)dz,
1 0 ’ G»(0,H)G;(H,H)
+ew? G(0,2,)dz, ] —2ew?
€W m— —Ih Z, U, ( Zo) Zo] €W —/.T/,L.?BC—
[
X _Ih 2,G1(—h,z,)G(0,z,)dz, (18)
4. Derivation of Green’s Functions

In order to find Green’s functions we need to solve the homogeneous
equation,

d*U
—a2U =
Z U =0, z# 7 (19)
Two linearly independent solution of (19) that vanish at z = o0 and z = — oo,

are Ui(z) = e™® and Uy(z) = e* respectively. A combination of U,(z) and
Us,(2) is used to define Green’s function for the upper layer giving,

e—alz-zol

Gi(zz) = Ae¥ + Be@ —  _° 0 (20)

where a and B can be determined using the boundary conditions dG/dz = 0 at

z = —h and z = 0. After calculating the values of A and B, we obtain from
(20) .
1 ez g7 abiz)
G(z,z) = — - [e“‘ll_lol + e% { }
(z,Z,) o T ———TY
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e~ ab+z) 4 o—0h+z)
remo { SRR 1)

Following the same procedure, we can write,

(H+Zo) V —ﬁ(H+z°)
G:’.(Z;Zo) = — _1_ [e—ﬁlz—zo| + ek { ef + e }
26 eﬁH — e_BH
B(H+Zo) —ﬁ(H+zo)

+e { € +e } ] )
efH — g—BH
1 [ _ _ ) . ]
=- Yiz—z,| Y g YeH—z)

5. Dispersion Relation for Upper Layer

The 'integrals appearing in (16) can be evaluated by using the values
of V|(z,) from (17) and those of G,, G, and G; from (21), (22) and (23). Doing
this, we obtain, ‘

8a’sin h*(ah)

0 _ : _ h(1+2 oh coth(arh))

hl 2,Gi(—h,2)G(0,2,)dz, = 43 sin h{oh) @9
and

0 2h2

[ 2.G,(0,2)dz, = — 08 hCah) + 2och?—1 (25
h )

Using (21), (22), (24) and (25) in (18), we obtain,

Vi(=h) = Bém [ asil:hl(ah) ] [ ﬁsin—l;iﬁH) ] ' [_Tl]

< [1 _ 5 coshRah) + 20°h* -1 22 cosh(2ah) + 20%h —1 ]
8 B°C p-a*B sinh?(arh) 8 B p,a* sinh*(arh)




+ew?

2h{1+2ah coth(ch)} 26)
4u,p, BCo? By sinh(ah)sinh(GH) :

Equation (26) can again be written as,

=) [1_ «w {_cosh(dah)+ 2o

Vi(—h) =

BCu;afysin(ah)sin(3H) 4’ 2B2C p.a’@ sinh*(ah)

cosh(2oh) + 20%h? =1 psh+2ah’; coth(ah) }] ’ @n
2B p,o? sinh(ch) Tkt -

Separating the terms of ¢, equation (27) takes the form,

) ‘
Vi(=h) = BCy; GBy sinh(ch)sinh(BH) (1= F@)] (28)
where,
Fe) = o’ cosh(2ah)+2ah?>—1 + cosh(2ah) + 207h?—1
T T 2B°C pua?ff* sinhycorh) 2B ;o7 sinh*(ah)
9 evh?
psh +2ah?uscoth(ah) } 4 29)
Hipto

Neglecting the terms containing higher powers of ¢, (28) may be written as,

-2

. . (30)
BC u3 affy sinh(ch)sinh(BH) (1+F(e))

Vi(=h) =

The corresponding displacement V(x,—h) on the surface of the upper layer
(—h<z<0) is obtained by taking the inverse Fourier transform. This gives,

—2e ik dg
BC i aBy sinh(ah)sinh(BH){(1 + F(e)}

€]

Vi(-hy = |

To carry out the integration, we have to find contributions of the poles of the
integrand in (31). The poles are given by

BC p; afy sinh(ah)sinh(8H) {(1+F(¢)} = 0. 32)
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For ¢ = 0, the relation (32) reduces to
BC = 0. (33)

Using the value of B, C from (12%), (15%) and writting 8, = (k2 — £)'%,
a; = (ki — £)'2, we arrive at, _

ppz0nf) tan(ah) + pypscny tan(onh) tan(BH) — popsBiy
+ u’6/* tan(3,H) = 0. (34)

This agrees with the dispersion relation for Love waves propagation in the
medium consisting of two homogenous- layers overlying a half space (see
Ewing. Jardetsky and Press or Kazi and Abu-Safiya [4]).
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Abstract

In this paper we find the Taylor expansions of the functions (1 +Z)*”Z
and (1+Z)*2. '

1. Introduction

The stirling numbers of the first kind S(n,k) are generated by the
Taylor expansions,

1

-] Zn
- B(1+2) = ISmk) o k=0,12,.., [Z|<1, (1)

they are integral numbers and satisfy the inequalities (—1)n+k. S(n+k) >0 for
1<k<n . n=1. Explicit formulas, recurrence relations and tables for S(n,k)

can be found in Comtet [1].

11
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According to Comtet [1], p.136 the Remark, and our paper [2],
ordinary Bell polynomials D, (X,,...,Xa—+1) are called the polynomials,

KX)o (X )Pn—k+1
Du(X1s -or Xo—gs) = e “, @
Vis veo Vop—x+1-
where the sum is taken over all nonnegative integers vy, ..., ¥,—; satisfying,
VWt vt oot Ve = kl y + 2V2 + ... + (ﬂ_k+1)Vn-—k+1 = n. . (3)

Relations and tables for Dy(X,,...,X,—+1) can be found in [1] and [2],

Further, we shall use the relation,

1 ( I 1 1 ) : S(n,k)
— Dy _— ... - = (= 1)tk ..(4
I A ) n—k+1 =D n! @
for 1<k<n.n=1 (see [1]. p. 135. Equation [3i]).
2. Taylor expansion of the functin (1+Z)X/Z
Let us set,
oo
(1+Z2)% = e L a(X)Z", a(X) = 1, ®)
n=0
for |Z| <1 and any complex number X.
Theorem 1 : Forn = 1, 2, ... . The corefficients a,(X) in (5) have
the explicit representations, .
n X (—1)e—? S(n+v,v) -
X)= E X< L . 6
(%) k=1 =1 (k—=)! ()l ©)

and \
Cw W XE 1 1 1
&X)=(-1r L D,,k( g e n:m)' ™)

=1
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Proof : According to Theorem 1 in [3] (or [4]) for the nth derivative
of composite functiones, applied to the composite function,

(A+ZY% = ¢ o _)éln a+2), (8)
we have,
Dh, (14+Z)% = & L Ax0), n = 1, ©)
k=1
where,

Ank(O) = 1’; §:=](-—.1)k-" (llf) D, (l_“ﬁl_zizl) ' l<k=n. (10)

With the help of (1) from (10) and (9) we come to the formula

n k _1\k—¥
D%, _o(l1+z)*> =n'tex L Xt L -1 S(n+vw,v)

e () N CED) an

forn=1,2,... . Thus from (11) and (5) we obtain the formula (6) n=1,2,... .

If we apply the Faa di Brune "precise formula" for the nth derivative
of composite functions, developed in our paper [2], to the composite function
(8) written in the form

AXZ— t et (_l)m il
(1+2)¥ =eo(x E:o 5T 2 )

and we take into account (2) and (3), then we obtain again the formula (9) but
with,

X 1 1 1
Au(0)=(~yn! an(T o e nmz),lsksn. (12)

Therefore, from (12) and (9) we come to another formula,
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B Xk 11 1 )
n Xz —( — 1 ox
DZ=0(1+Z) ( 1)"ne E:= X an S R SRR e e (13)
for n=1,2,... . Thus from (13) and (5) we obtain the formula (7) for
n=1,2,.... , )

In particular, for x=1 if we set a,=ay(l), n=0,1,2,... then (§) is
reduced to, : )

oo
(1+2)? = e T a2, 8=1, |Z| <1, (14

and Theorem 1 yields.

Corollary 1.1: For n=1,2,... the coefficients a, in (14), have the
explicit representation

n Stn+r,y) "7 (—=1k
= D L
A =1 k—)! k=0 13

-~

and

PRIV | (1 1 1 )
B=CD"E o Dul 5 > 5 o )

The comperison of (6) and (7) gives.

‘Corollary 1.2: For 1<k<n . n=1, we have the combinatorial

identities,

k (-DE~r Stn+p,p)

)=(“‘1)"k! L &= @y

D 1 . 1 1
ol W s B T )

Coroallary 1.3: Forn=1,2,... and any complex number X, we have
the summation formula,

SatkK)

. @R X T ewe (13)

(-]
>
k=
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‘where a,(x) are determined by (6) and (7).

Proof : From (8) and (1) we obtain the expansion,

® Xt ® gk

X/z — n
A+2)* = kE:O ZF ,Ek T nl Z
= 2 Smtkk)
= Yz L hd X~

= z k=0 in+E)

The comperison of (16) and (5) gives the formula (15), keeping in mind (6)
and (7). (For n=0 . the second sum on the right hand side of (16) is reduced to

e, since S(k,k)=1 according to (1).

Theorem 2 : The coefficients ay(x) in (5) satisfy the recurrence

relation,
na,(x) = x :‘:( l)kﬁan x (X),

n=12,..,a&) = 1.
Proof : We can write (5) in the form,

ex [x )03c (—1)* z"] = e )030 (x)z"
P ko KT1 n:oan
Differentiating'(IS) with respect to z, we obtain,

r (-1 X £ .
"= -1 A. Z
Ln a,(x) 2" =x l(:l( ) T nioan(X)

n k
- n _1)k
x L z El( 1 I ¢ (x),

whence we obtain the relation (17).

With the help of (17) we find the first few coefficients,

a7

(18)
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a(x) = — 5, @K = o Ox+8),
a(X) = = g x+2)x+6),

a(x) = 3.7’%6 (15%3+240x2+ 1040x + 1152),

(The last polynomial is irreducible in the field of the rational numbers.) From
Theorem 1 it follows that (—1)" a,(x) >0 for n=1,2,... if x > 0.

In particular, for x=1. Theorem 2 yields.

Corollary 2.1: The coefficients a, in (14) satisfy the recurrence
relation,

a,—,nz=1, a,=1. 20)

= L(~1p
= LD

From (20) (or (19) for x=1) we obtain the first few coefficients,

1 1mn 7 2447
A= 5 BT oy BT T gy s BT o

From corollary 1.1 it follows that (—~1)ka,>0 forn=1,2,... .

Theorem 3: The coefficients a,(x) in (5) satisfy the recurrence
relation, '

al(x) = 'i: (-1

LT a—(x), n=21,ax)=1 21

Proof : First, we shall prove that the series on the right-hand side of
(5) can be differentiated with respect to x. Indeed, for |x| <r, where r>0,
from (7) we obtain the estimate, '

lax)| < (—=1yra(),n=1 (22)
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For |x[\r . r>0 from (5) by aid of (22) we otain the convergent majorant
series,

L a7 | = La(-lzr=e-lzh) ™ @3)

From (23) it follows that the series in (5) is uniformly convergent with respect
to x in the closed disc |x| <r for any real number r>0. Therefore, according
to the Weierstrass theorem, we can differentiate (50 with respect to x and to

' obtain,

L a,(x)z* + Lal(x) 2 29)
a=0 1

n=

= E (-1 zx Eloa,,(x)zn
D T3 BN n=0

m:

a0 __lk
=Lz I X e,

The comparison of the coefficients of z* in (24) gives the relation (21).
From (17) and (21) we obtain.

Corollary 3.1: The coefficients a,(x) in (5) satisfy the recurrence
 relation, :

xa,’(X) + na,(x) =X é (~DFaix), 021, a0=1. @)

If we integrate (25) with respect to a,(x), then we obtain.

Corollary 3.2: The coefficients a,(x) in (5) satisfy the recurrence
relation,

a) = g | %L (=1 el dx, 021, 200 =1, 26)

With the help of (26) we can easily continue the table (19).
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Theorem 4: The polynomials w=a,(x). n=1,2,... of degree n in x,
determined by (), satisfy the Euler differential equations,

n k
D(~1k 2 _ wW=0,wo=w, 27
k=0 k!

of order n=1,2,... respectively, where the derivatives of w are taken with
respect to x.

First Proof : The substitution w=x®, where ¢ is a certain parameter,
redues the equation (27) to the form,

:':L‘:(S—l)k (‘l’(‘) =0. | ©8)

The roots of the equation (28) are a=1,2,...,n. Indeed, for a=n . n=1, the

equation (28) is reduced to (1—1)*=0. For a fixed a=1,...,n~1, n=2, we
have (%)=0 if k> «a, and hence, the equation (28) is redced to,

ifzo(—l)k (‘l’(’) = (1-1)* = 0.

Therefore, the genéral solutions of the equations (27) are,
W= f Cuxt,n=12,..., 29)

respectively, where C, are arbitrary constants. The comparison of (29) and (6)
(or (7)) shows that the polynomials w=a,(x), n=1, 2, ..., are corresponding
particular solution of the equations (27).

Second Proof : We differentiate (21) K—1 times with respect to x to

obtain,
n—k+i —1)y _
a0 =T U w, (30)

(U]
1<€k<n, n21, a,—, (X) = a,-, (X).
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with the help of (3) we conclude that the sum,

l‘f«:l(—l)“ + =0 (1)
n —_ Y =& k+1
for n=1. Now we find that the derivative,
d n—p¥ xk+l
a E:o(_l)kﬂ m an—v(k) (X) (32)
= Eeyr X e+
k=0 k! -
L X ®
+ - » _
L1 g a0
= —a,-,% 1=v<n—1,n=2.
Integrating (32), we obtain the relation,
By X Wx) = — 6) dt 33
k=0( ) m‘— -y (X) - R an—l’( ( )

for 1<v<n-1,
80 = ax) = 1.

(n=2), ovidently tiue for m =

n, (n=1) as welll, since

From (31) and (33) it follows that the sum,

X0 ()

= —ayx),n21,
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after having integrated (21), i.e.,

n 'k

L(-1)F 2 a®x) =020 =a(x),n=L

k=0

3. Taylor Expansion of the Function (1+Z)%X
Let us set,
. .
(1+Z)% = 1+ T b(x)Z _ (34)

n=2

~for |Z| <1 and any complex number X.

Theorem 5: For n=2,3,..., the coefficients b,(x) in (34) have the
explicit representations, '

w2 S(n—k,k)

b.(x) = L Xk 35
(x) S TwRr © (’)
and
w2 Xk 1 1 1
o= B X b (L L L ) g
W=Cr L g Pl 5 n=2k¥1 (0)

where [n/2] denotes the greatest integer less than or equal to n/2.

Proof : With the help of (1) we obtain the expansion,

(1+Z)*2 = exp [XZ In (1+Z)] (37
& ®  S(n,k)
= LXztp 27 7
k=0 n=k n:
oo (n/2] —_
Lz & SOTkR

a=0 k=0 n—K):
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® a1 Sn-kk)
=1+ £ Z ¥ : k,
n=2 k=1 @—Kk)! X

The comparison of (37) and (34) gives the formula (35). The formula (36)
follows from (35) and (4).

In particular, for x=1 if we set b,=b,(1). n=2,3,..., then (34) is
reduced to,

[ ]
(1+2) =1+ L b, 2, |Z|<1, (38)

and Theorem 5 yields.

Corollary 5.1: For n=2,3,..., the coefficients b, in (38) have the
explicit representations,

b = [}5’21 S(n—k,k)
i i1 (@K
and
CE T | 1 1 1
b,=(-1»*L _—_ D,.- (_ s o geeny e )
=D e K AT 2 n—2k+1
Theorem 6: The coefficients b,(x) in (34) satisfy the recurrence
relation,
nb(x) = x T (=1 X by (x), (39)
. k=2 } k=1

n=23..bx)=1,b(x =0,

Proof : We can write (34) in the form,

e [x £ ODY a]o14 € o (40)
L L T T I '

Differentiating (4) with respect to z, we obtain
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— 20:° k k k 20:0
T nb(x)Z° = -1 Z. I b(x)Z
Ln (x) X k=2( )E_l— L (x)

k

Z D1 i Be), b =1, bi(0)=0,

[+ -]
=x L
ne

whence we obtain the relation (39).

With the help of (39) we find the first few coefficients,

bi(x) = X, by(x) = = o, bu(X) = o (3x+2),

bs(x) = — 7"( (2x+1), be(x) = T;U (202 +55x +24),
box) = — ‘IXT Cx+1)(3x+2), ... . (41)

From Theorem 5 it follows that (~ 1)¥ by(x)> 0 for n=2,3,... if x>0.

In particular for x=1 Theorem 6 yields

Corollary 6.1: The coefficients b, in (38) satisfy the recurrence
relation,

k

nbn= E:O(—l)k k_I‘_ bn—ky nZ 17 bO: 1’ bl:O (42)

From (42) (or (41) for x=1) we obtain the first few coefficients,

1 5 3
b2=1’b3=———2' ab4= —E‘ab.i:——z— s
33 5

b6= W ab7= —6— ’

From Coroliary 5.1 it follows that (—1)" b,>0 forn=2,3,... .
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Theorem 7: The coefficients b,(x) in (34) satisfy the recurrence
relation,

b,/(x) = '§:=2 %:Tl%'i ba_i(x), 122, by(x)=1, by(x) =0, (43)

Proof : We apply the method in the proof of Theorem 3 to (36) and
(34) in order to obtain (43).

From (39) and (43) we obtain.

Corollary 7.1: The coefficients b,(x) in (34) satisfy the recurrence
relation,

Xb,(x)—nb(x) = x I (-1 boeyl(X), ' (44)
k=2 )

n=2,b,(x)=1,bx)=0
If we integrate (44) with respect to by(x), then we obtain.

Corollary 7.2: The coefficients b,(x) in (34) satisfy the recurrence
relation,
dx = -
by(x) = x* | 5 E (=Dt by—y (%), (45)
k=

2

n=2, b(x) = 1, by(x) = 0.
With the help of (45) we can easily continue the table (41).

Theorem 8: The polynomials W=b,(x), n=2,3,..., of degree [n/2]
in X, determine by (34), satisfy the Euler differential equations, - .

(2] X
E(—1) - wh =0, wO = w,
k=0 k!

of order [n/2], n=2,3,..., respectively, where the derivatives of w are taken
with respect to x.
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Proof : This follows with the help of the methods in the proof of
Theorem 4 (and (43) for the second method).
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Abstract

Methods are presented in this paper for estimating solutions of ill-
posed problems in the form of Fredholm integral equations of the first kind,
given noisy data. These are regularization methods and regularization is
effected by maximwm likelihood technique and regular filtering by WCV
Method.

In these methods optimal amount of smoothing may be computed,
based on the data dnd the assumed known noise variance. We shall compare
our method with the method of Al-Faour [2], over the same highly ill-posed
problems and for comparison purposes the results are shown in the tables and
the diagrams.

Introduction

For many years ill-posed problems have been considered as mere
~ mathematical anomalies. However it appeared in early sixties, that this was
erroneous and that many ill-posed problems generally inverse problems [4],
arose from practical situations. Now a days the systematic study of these
problems has undoubtedly proved of great relevance in many fields of applied
physics [21, 22]. : ‘ '

25
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Ill-posed problems are generally inverse problems. With the growing
recognition of the significance of inverse problems in applications, it is
important to examine the techniques available for their approximate solution.

In this paper we will consider the most prominant of these methods
i.e. the method of regularization. Although this method can be applied to
general inverse problems, we focus our attention on the important special case
of integral equations of the first kind of convolution type.

It is well known that these equations are ill-posed in the sense that
small perturbations in data g can lead to large errors in the solution f.
Moreover these equations serve as a good model for general ill-posed inverse
problems. Sometimes it is possible and useful to determine the degree of ill-
posedness of an inverse problem by comparing it with a first kind integral
equation.

The degree of ill-posedness of such type of equations depends upon
the rate of decay of eigen-values, the faster decay, the more ill-posed the
problem. There are the results which relate the smoothness of the kemel
K(x,y)=K(x—y) to the decay rate of eigenvalues. Basically the smoother the
kernel, the faster the decay rate and hence the more ill-posed the problem. See
[13] for a detailed discussion of these points.

For regularization to be useful in practice there must be some method

for choosing a good value of (the regularization parameter) A for any given
data set. We shall consider two such methods as described below.

1. Method 1.: Rectangular filtering by WCV

Al Faour [2], discussed this method for finding an optimal rectangular
filter and the choice of optimal cut-off point using Wahba’s weighted cross
validation (WCV) {21] method.

Descriation of the Method

The problem of finding an optimal k¥ in the case of rectangular
filtering can be set in the following manner. Consider the integral equation
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oo

_j'mk(x—y)f(y) dy = g(x) — o <x< 0— (1.1)

where g(x)=g(x) + E(x). Assuming that both functions K(x) and g(x) are
sampled at the points k=nh when n=0, 1, ... N—1 and let them be
interpolated at {x,} by trigonometric polynomials of degree at most N with a
period of Nh.

Let Ty be the space of trigonometric polynomials of degree at most
N-1 with period T=nh.

For gyx) € Ty, let gy = g(x) = grxa), n=0,1,2 ..., N—1

The DFT of the data set (x,, g,) is then.defined by

~  N—1
8= 'E gaexp(—iwyx)) ¢g=0,...,N-1 (1.2)
n=0
where w, = 27 = 27
T 1T w1

The inverse DFT is,

1 N—1 A A
&= 33:0 8q eXp (iwg x,) (1.3)

which samples the finite Fourier series

1 N7 .
gmx) = N L g exp (iwgx)
q=

0

A

where g1= 8-

Approximating g and k by their trigonometric interpolants gy and ky
on the interval [O,T], equation (1.1) is approximated by the finite convolution
equation
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T
oj Kn(x = ) ANO) dy = gux)

. where Ky assumed periodically continued outside [O0,7] (T may be 1.0) and f«

€ Iy
The Fourier coefficients are then related by I‘Eq ﬁ, = :g:q
fim &
k‘l
1 N-1g
and fi= — L 2% exp(iwgx,)
N q=0 2
qQ
1 N—1 >
Mx)= . K °%  exp(iwgx)
N o = .

-

Writing f = (f, ... fy—))"

There exists an N X N matrix K such that
T
(K f)n = Oj KN(xn - )’)fN()’) dy
and X is given by
K=y KyH
where K = diag ( 7(0 f(,v_,)

and Vo = L___ exp ( E qr
VN N

where g¢,r = 0, ... N—1

so that

(1.4)

(1.5)

(1.6)

n
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Where ¥ represents the DFT matrix in equaton (1.2) and ¢” represents the
inverse DFT matrix in equation (1.3) and we observe that y is unitary matrix

i.e.
PP =y =T

. Now equation (1.5) should give an accurate solution of (1.1)

if % is known exactly.
kq

. However in practice, g, and therefore g, always contain some error.
Thus due to ill-posedness of the problem, the solution obtained by (1.5) is
unstable. To stabilize’f, we multiply the ratio (1.4) by a filter z,. Al-Foour [2]
has restricted his discussion to the rectangular filter of the form

" (1.8)

1 0<g=<Q0-1
Zy=2Zy—g = } !

0 otherwise

where Q is a cut-off frequency to be determined.

In order to determine optimal Q simply from the observational data
Al-Faour [2} has applied. Wahba’s principle of weighted cross validation in
Fourier space [21].

An-optimal Q is then defined by that which minimizes the weighted
mean-square prediction error,

Z

—1

V(Q) =1—:l- ng,q - g’q}zwq () 1.9
q=0
where the weights ¢, [Q] are
w(Q) = (1-8,)° (1.10)

(LN Tr(I-AQ)F
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Wahba has shown in a different context that VW(Q) in (1.9) with
weights given in (1.10) can be simplified to the form (Seee Al-Faour [2] page
50)

1 N—Q . 3 .
Vg - Ko % (L.11)
[1- 2Q+1 47 .
N
2. Maximum likelihood method with non-negativity Constraints

We have worked out in detail the procedural steps of the method
without non-negativity constraits in [7]. In order to compare this method with
the method of section 1, on n same test problems we shall concentrate on
maximum likelihood method with non-negativity constraints.

Description of the method :

We estimate the solution of
I kx=nf)dy = g(x), —© <x <o

where we know in advance that £ is non-negative and hence our estimate fy is
constrained to be non-negative.

We first describe Wahba'’s [22] constrained algorithm in our setting.

Let fa= (flz), .. fan-)T and

consider the pth order regularization functional in Tj.
N 2
Cfi N = | Ky fi —vian o+ MMy g ey @.1)

where ;( =yHky
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and J = diag {(iw)¥} 2.2)
Let f) be the minimizer of (2.1) subject to fy = 0

with components f, .. The indices n;, n,, ..., ny for which f,, = 0 are to be
determined. :

Let E be the N X L indicator matrix of these indices. That is E has a
unit element in the mth row and ath column if m=n;, j=1, ..., L and zeros
elsewhere. In what follows we denote by 1 the set of indices (n, ... ny) of
inactive constraints.

The constrained minimizer of (2.1) is

Fa) ™~ N

g, = EEV YKV KW E+NE Y JY )T ERy KM g, (2.3)

Defining
g = kf,

There exists an N X N influence matrix A, (M) satisfying
g = AL (M) gn

It can be shown that,

n .
AN = Y K YU EE, + NE)~ By Ko ya 2.4)
where L =ERyKMKYME and L, = E¥ yJ yH
with the property that
Trace (1—AL (A\)) = N—L + X Trace (B)
where B = E] (EK +k Ej)_l

Wahba argues that the optimal A in the constrained setting may be found by
minimizing
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V) = KW — wig|? 25
(A) [1/N (N—L +X\ Trace (B)]? 2.5)

approx

Clearly f, depends non-linearly on E and X\ and so E must be recomputed
whenever f, is computed.

These iterations can be expensive and unhandy.
Moreover V,,,..(M) need not be a continuous function of A.

Fora given A Wahba [22] uses a quadratic programming algorithm to
minimize (2.1) subject to fy = 0. A unique minimum always eXists (See e. g
Butler [6]).

Having found E and fy she then calculates B by solving L linear
system defined by

E+AL)B =1L ’ " (2.6)
using Linpack (Dongarra etal [10]). She then examines the value of V°,,,..()\),
adjusts X\ accordingly if a minimum is not found, then repeats the process. This

is an expensive procedure computationally.

Our method is . simpler than Wahba’s algorithm™ and quite less
expensive computationally.

3. Maximum likelihood regularization with non-negativity
We notice that since Y(K" K + \ J) y#

is circulant, so is (X« + X L)™' and consequently so is EZ, + NL)"' E¥in
equation (2.4). Thus A, (\) is clearly circulant.

In principle we can use the L. - dimensidnal DFT to evaluate A.;()\).
Thus avoiding the necessity of solving the L linear systems in (2.6).
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Now consider,
RUSEE, + AL)~ E¥ ¢ R = diag (Z,0 G.1)
where 7
R A

For pth order regularization we recall from. equatioh (3. 1)that '

. IKNq|2
TR T NawE

Zi\ =

From equation (3.1) it follows that
AN=Ydag @ ., (3)

and so from equation (3.3) we have

Vo ) = MMEei (1-Z) 1842+ Lugn Bl (3.4
P I/NIN=L + (Rye, (1 — Z;)))]

We minimize Vba «(A) in (3.4) by makmg a linear search in . The function is
not always continuous because the index set i, changes with A. At each step we
minimize C(fy ; A) in (2.1) subject to non-negativity constraints using the
NAG quadratic programming subroutine EO4LBF, which yields the index set I
for any given \. When a minimizing value of A is found, the corresponding f,
is given by NAG subroutine EO4LBF.

We conclude that the indicator set 1 obtamed through the NAG
quadratic programming subroutme EO4LBF, plays a key role in the algonthm
It affects the filter function and ultlmately affects the expression. for. Vu.(A)
(where ML means Maximum Likelihood).

If Iis the indicator set underlying the matrix-E, i.e. the set of inactive
constraint indices; and Vi, (A) in the constrained case may be approximated by
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WLappmx()‘) = VZNIOg [quel (1 - Zq'k) |gq|2
+ e lgql ] = Eqe lOg a- Z N
where L is the number of inae_tive constraints.

To minimize Wi ,(N), we used the NAG quadratic programiming
subroutine EG4LBF for each k evaluation in the minimization process.

Since Vhu_, ()) is not necessarily a continuous function of A, we have
made a linear search in order to find X, corresponding to the least value of
Vum (M) and noted the corresponding solution vector f;. '

Note :

Ais the regularization parameter and )\q, is the optimal value of & to
be determined. ,

4, : Convergence of regularizedSolution

Assume that the function K(x,y) defined in (1.1) is conﬁnuous on
[0,1] X [0,1}. Consider the integral opéerator- T with kernel K(x,y) defined by

t . e .
TRx) = OI Kx, y) Ay) dy : @.1)

Has eigenvalues A, = A\, 2 ... = 0 satisfying A ; = 0 with
corresponding orthonormal eigenfunctions ¢; € C[0,1]. We also need the
following - quadrature “assumption. Assume there exist u and » such that
O2u=2land0< p <1 — (l/4p)and sequencek,,—»Osuch that for all f; g
€ H (Hilbert space).

| n ’
] s LE fugad | skl lel, @2

i=1

where H, L (0 1). It is clear that if 4 > p.then Hy ¢ H, and I ||H isa
stronger norm than ||. | H, the following theorem is proved in (Lukas, [13]).




35
Theorem Statement : With assumptions (4.1) and (4.2). Let f € H,
where s = max (v, p) and i < 2 — v — (1/2p). Suppose that A0 (regulanza-
- tion parameter) as n—>oc in such a way that )\M - 0.
The proof of. the above theorem begins by decomposmg the expected

mean square error into the bias squared plus the variance. Now f is- the
approximate solution and f;, is the true solution.

Elfix=fil@=EEfix—f+fir - Efur |2
= D Efn =5 2+ E | fir — Efun I
+2E(Efon = fo for — Efn,x)n
= Efr~£l2 + ENfir —Efur b= 0

~ Remark : The optimal convergence rate with particular reference to
the specnal case of a convolution equation

j' k(x—y) f(y) dy g(x) in which the functlon kis penodlc with period 1. (See
Lukas [14] page 31-32).

5. Test Problems

Problem P(I) : This example has been taken from Turchin [19].
3.4 V . .
§, Jx=3)f0) dy = s)

where f is the sum of two GausSia’n functioﬁs

f(x)—OS o[- Sog- 1+ expl- 130_%6)_]

the esentlal support of g(x) is -2 5 <x<27, the problem is made highly ill-
posed by choosing a wider kernal.
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(5/12) (-x+1.2) 0<x<12

Kix) = ] (5/12) (x + 1.2) -1.2<x<0
] 0 x| = 1.2

the function £, g and K are displayed in diag (1) with a spvacing 0.1 and n the
no. of grid points is 64.

Problems P(2)

This example has been taken from Medgyessy [15]. The solution
functin is the sum of six Gaussians and the kernel is also Gaussian.

T K@y ) dy = 5.

where g(x) =: él Acexp| - E:C?‘)_z_

Al =10  BI= 0.5  Cl = 0.04
A2 = 10 B2 =07 - 2=0.02
A3 =5 | B3 = 0.875 C3 = 0.02
A4 = 10 | B4 = 1.125 C4 = 0.04
AS =5 . ~ B5=1.325 Cs = 0.02
A6 =5 B6 = 1.525 C6 = 0.02

The essential support of g)is0 < x < 2.
The kernel is
Ko =L ep(- 3 ) r=0015
VA

with essential support (—0.26, 0.26).
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The solution is
Sx) = E {( Uj'ikexp - %}X}f")z ]}

with essential support (0.26, 1,74)

The functions f,g and X are displayed in diag (2). With a spacmg 0.1
and » the number of grid points is 64.

6. Addition of random noise to the data functions

In solving the problems P(1) and P(2) which are highly ill-posed,
even then we have demonstrated their solutions by considering the data
functions contaminated by varying amounts of random noise. To generate
sequences of random errors of the from {€ a8 =0,1, .. N-1 We have used

to NAG Algorithm GOSDAA which returns pseudo-random real numbers taken
from a normal distribution of prescribed mean 4 and standard deviation B.

To mimic experimental errors we have

A=0
B = __I%%_ maXQsFSN—I lgni (6.1)

Where x denotes a chosen percentage, e.g. x = 0.7, 1.7, 3.3 etc.

Thus the random error &, added to g, does not exceed 3x% of the
maximum value of g(x).

7. Numerical Results

In this section we describe the application of the two methods
discussed in section 1 and section 3 over the same test problems enlisted in
section 5.



38

Problems P(1)

WCYV method : AL-Faour [2], considered this severely ill-posed
problems when a=1.2, the values of Sy (cut-off frequency), when gs’ are
subject to quadrature error x=0.77 only, can be found in Table (1). With the
best fo(x) and fg(x) [Biraud’s method] Al-Faour has discussed Biraud’s method
also and compared it with WCV method. The results are shown in Diag (3).

It is interesting to observe that WCV predicts the minimizer of S,

- reasonally well.
Maximum Likelihood (ML) Method

This highly ill-posed problem could not be satisfactorily treated using
unconstrained- regularization. For constrained regularization the results are
enormously superior. '

With 0:7% noise and .7 % noise the ML constrained method gave the
solution to a very-good accuracy and better than the WCV method as shown in
Diags (4,5) '

Problem P(2)

WCYV method : AL-Faour says let us solve this problem when g(x)
is given to maximum accuracy at x = ph, n = 40 + 1, ..., ¥ 128, h =
0.025. V(Q) in this case becomes almost flat at 32 < Q < 128 which makes it
difficult to predict the optimum cut-off point.

Notice that for 47 < Q < 53 ﬂx) is estimated very well by both f,
(WCV method) and fg (Biraud’s method) i.e. for the clean data as shown in
Table 2 and Diag (6).

: For 1.7% noise, Table 3 shows that Q=33 gives the best f, while the
best f3(x) is for Q=32 as shown in Diag (7).

Maximum Likelihood (ML) Method

For clean data ML-constrained method yielded a good solution as
compared with WCV method resolving all the six peaks.




39

With 1.7% noise again ML-constrained method gave a good solution
yielding 4 clear peaks, as shown in diag (6). .

Conclusion

For mildly and moderately ill-posed problems and with low noise
level, ML-constrained method is comparable with WCV -and Biraud’s
- methods. For highly ill-posed problems with low level noise ML-constrained
compares well with WCV and Biraud's method but for higher level of noise
ML-constrained is superior to WCV and Biraud’s methods.

Table - 1
(wcv Method)
Q - sQ SB
4 0.764732 . 0.553854
5 0.524304 0.795284
6 10.291213 0.142554

7 0.133506 0.052124

8 1.725080 1.431321
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DIAG.(1) PROBLEM P (1)

DATA GRAPH OF PROBLEM P(1)
- 1 A l A L 1 i L i ] 1 1 1 H
00 =300 -2:00 -1-00 0-00 1-00 2:00 3-00 4-00
X
F(X)=
G (X) = a a
K _(X) = o o
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3200 pIAG (2) PROBLEM P(2)
- DATA GRAPH OF PROBLEM P(2)
28-00 -
24-00
20-00 |-
16-00
12-00 |
8-00}
4-00 |
0-00
-4-00 N t : i i " i 1 ‘ ! f H PR |
-0-§0 -0-18 0-14 0-46 0-78 1-10 1-42 17 2-06
F(X) =
K{X)= a
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(X)%3 ----
(x)84° 000
x) 3

X)3

(1)d W31904d GOHL3IW ADM
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DIAG (4) PROBLEM P(1)

1-28 T ) .
- SOL. BY M. L. TRIG. APPROX. NON-NEGATIVITY

0-00 |-

-0-16 i L " - 1 M 1 " 1 o 1 H PR
-400 -3:00 -2:00 -1-00 O'OOX 1-00 2-00 3-00 4:00

TRUE SOL.
‘NUM. SOL. CLEAN DATA a a a
SOL FOR 0'7°/o ERROR 'o o o
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1.y DIAG (5) PROBLEM P (1)
SOL. BY M. L. TRIG. APPROX. NON-NEGATIVITY

0-80

0-00 -

-0-16 : 1 1 1 i L i ) i L I 2 I 1 i
-4:00 -3-00 -2-00 -1-00 0-00 1-00 2:00 3-00 4-00

TRUE SOL. -
NUM. SOL. CLEAN DATA & & &
SOL. FOR 1:7°%% ERROR o o o
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" DIAG (6) PROBLEM P (2)
WCV METHOD PROBLEM P (2)

f(X).
20
f (X
o 0 0 O fB(X)
10
. _ I 1
0 : 1-25 2-50



46

(X)$

ST-} SZ-4- - 0§-2-
| T "1 T T - T
° - QJ\ <]
9
~
a
= o1
|
o (x)% —=--
& PR (X)8 0 0.0
- Y (X) 5
o) P |
o 1
I “{Nd +
o E X |
~ = C , 402
o . .
<5 U
o=
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24-00
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16:00

12.00 |-
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- 400 -

0-00 L

-4-00
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"'DIAG. (8) PROBLEM P (2)
SOL. BY M. L. TRIG. APPROX. NON-NEGATIVITY

-0'50

-0-18 0-14 0-46 0'78x 1-10 1-42 1-7% 2-06

TRUE SOL. ——
NUM. SOL. CLEAN .DATA a a &

SOL. FOR 1-7% NOISE o o o
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Table - 2
(WCV Method)

Q SQ SB
47 1.390969 0.612892
48 0.924925 0.485427
51 0.530770 0.370364
52 0.471659 0.358874
53 0.397499 0.344118

Table - 3

(WCV Method) 1.7 % error in q(x)

Q SQ SB

25 282.571376 241.672912
26 282.501506 226.835827
27 295.806563 222.624116
28 324.233600 _ 268.658815
29 353.035351 3‘4‘9:395071
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VALUES OF CERTAIN MONOMIAL SYMMETRIC FUNCTIONS
OF THE ROOTS OF UNITY

PAVEL G. TODOROV

Department of Mathematics, Paissii Hilendaraki University, 4000
Plovdiv, Bulgaria.

Abstract
In this paper we find the values of the mondmial symmetric functions
(1.

The subject of the present paper is an old problem unsolved
heretofore. Let n(n=1) and m be integers and let g,(n,m) denote the monomial
symmetric functions,

0y o (n,m) = E Xim X" . Xp™, k=1,...,0, a(n,m) =

where C denotes that the sum is taken over all combinations Xj,, Jﬁz,...;&k of
the roots,

@) X =6, j=1,..n ¢ = exp (i i”’r_ )

of the equation,
3) X-~1 =0,

taken K at a-time, Here our aim is the find the values o,(n,m) of the symmetric
functions (1). As it is well-known, the vlues o (n,m)=0 if the degrees km of
the functions (1) are not divided by the degree n of the equation (3). An open
problem is to find the unknown values o,(n,m) if km are divided by n (cf.
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Comtet [1], pp. 158-159, No.9). The solution of this problem is contained in
the following. .

Theorem 1: If n(n=1) and m are integers, then we have the identity,

“ sr:Il‘(x—em)=,ixd~—1)ﬂ,e'=arp(i 2 ),
where
S) = |m)

is the greatest common divisor of the numbers n and |m]|.

Proof : Let n (n=2) and m (1 <m<n—1) be positive integers. Then
for j=m from (2) it follows that ¢ is a root of (3). '

1. If n and m are relatively prime, i.e. d=(n,ni)=1. then €™ is a
primitive root of (3). Hence, the numbers,

©®  X=emS=1..n

represent the different n roots of (3), i.e. the numbers (6) are the same as the
numbers (2) but written in another order. Therefore, we can write,

e

@ @-x)= I @-p=x-1

From (6) and (7) we obtain (4) - (5) if d=(n,m)=1 for the examined » and m.

2. If n and m are not relatively prime, i.e. d=(n,m)> 1. than €™ is not
a primitive root of the equation,

® X —1=0,
Hence, the numbers

© X!t =em S =1,..,n/d,




bb

represent the different n/d roots of (8). Now from (2)-(3) and (8)-(9) we get
the equations,

n d=—1 n +nl
(10) JL X —em= O I (X — &)

—{ I a-xn Y=oty = 2

From (10) we obtain (4)-(5) if d=(n,m) > 1 for the examined n a;nd m.
II. Let n (n=1) and m be arbitrary integers.
1. Ifm = 0, then we set,
(11) m=nqg+r,q=200<r=n-—lI,
where ¢ is the quotient and r is the remainder from the divison of m by #, i.e.,
(12) d=(n,m)=(n,nr),

According to (2), (11)-(12) an what has been proved in section /, we get' the
equations,

a3 N X—em = I (X — e = (O — 1),
s=1

s=1

which are evidently true for r=0 if we set d=(n,nq)=(h,0)=n.
From (11)-(13) we obtain (4)-(5) for the examined »n and m.

2. If m < 0, then from (2) it follows that,
~ (. 27 )
ms — e[mi(n—9) o— =
(14) €™=¢ ,5=1,....n, € exp(: -

According to (14) and what has been proved in section /I 1, we get the
equations,
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jan 2}
=

(15) X —e™) =

1 s

(X — el=l) = (X — 1),

»
[

where d=(n,|m|). From (15) we obtain (4)-(5) for the examined n and m.
This completes the proof of Theorem 1.

Theorem 2: If n (n=1), m and k (0<k<n) are integers, then for the
values of the functions (1) we have the formulas

| d
(16) amm =1 (4)
If X is of the form K=ns/d, and
¢%)) on,m)=0

If k is not of the form K=ns/d, where in both cases s (0<s<d) is an integer
and d is given by (5).

Remark : If m=nq, q=0, +1, +2, ..., i.e. d=(n, n|q|)=n. then
the equations (17) are omitted.

Proof : From (1)-(2) and (4)-(5) we obtain the identity

¥ - d t] d -n,s
as) P:(S—'l?“ak(n,m)x‘ = L(-1) (s) Xoons gy = _Z_

Equating the coefficients in (18) yieldsA the equations (16) and (17).

_AThis completes the proof of Theorem 2.
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MATRIX TRANSFORMATIONS OF X INTO Cs
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Abstract

The purpose of this paper is to characterize the matrices in the class

Xp, Cs).

1. Introduction

Let X and Y be any two non-empty subsets of the space of all
sequences of complex numbers and let A=(ay), (n, k=1,2,...) be an infinite
matrix of complex numbers. We write Ax=(A,(x)) if A, (x) = LKy ay x
converges for each n. (Throughout summation without limits runs from 1 to
o). if x=(x) € X implies that Ax=(A,(x)) ¢ ¥, we say that 4 defines a matrix
transofrmation from X into ¥ and we denote it by A: X— Y. By (X,Y) we mean
the class of matrices A such that 4 : X = Y. If in X and Y there is some notion
of limit or sum, then we write (X,Y,P) to denote the subset of (X,Y) which
preserves the limit or sum.

Let X be the set of all real sequences x=(x). A functional f from X
into the non-negative extended real number system is called a semi-norm if for
every x and y in X,

® f0) =0

(ii) Aax) = |a| fx), for every real number a
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(iit) fix+y) < fix) + Ay).

In stead of (i) f satisfies the condition that {0)=0 if and only if x=0, then fis
called a norm.

We denote by X; the collection of all sequences x satisfying f{x) < co.
Obviously X is a linear space, and we called X a normed k6the sequence space
of nonabsolute type with the semi-norm f. If X; is complete with respect to the
norm f, then Xy is called a Banach sequence space of nonabsolute type, since
we did not assume the property fx) = f{|x|) where-|{x| = ({x]).

From now on, we shall always assume that X; is a Banach sequence
space of a nonabsolute type. Given a semi-norm f, we define a new semi-norm
[ as follows;

f(x)=sup{|‘z:xk)’k|; =1}

and put f(x) = oo if the series L, x, y, is divergent for some y satisfying
f) < 1. The semi-norm f° is called the associate semi-norm of f. The space
Xy consisting of all sequences x € X with £(x) < oo is called the associate
space of X;. For any x € X;and any y € X;’ we always have,

|Exyl < f9.£0)

A semi-norm:fis said to be saturated, if for every non-empty subset E
of positive integers, there exists-a nonempty subset F of E such tha fixp) < oo,
where the sequence x¢ = (x) is defined as k=1 if ¥ € F and x,=0 if
k & F. It is easy to see that f is saturated if and only if X; contains all finite
sequences, i.e., all sequences having only finitely many non-zero terms. The
following is a consequence of the Banch-Steinhaus Theorem.

Theorem 1: Let f' be saturated and y € X. Then y € Xy if and only
if the series L, x, y, is convergent for every x € X;.

In [2] Ng and Lee have introduced the Cesaro sequence spaces of
nonabsolute type as follows ;
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Xo={x: [ x],=¢( |_}I_ExklP)"P<oofor1$p<oo
k=t

and

1 n
Xoo = {x: [ x § o = sup{| = IK)3=|Jck|l’), n=1,2,3,...} .

Note that the above norms are saturated except for p=1. It is easy to
prove that X (1 <p < oo) are Banach sequence spaces of a nonabsolute type.

Let ¥, be the space of all y € X such that,
(1) lky| <M forallk=1,2,3, ....
2) . ANO) = (K] kO —)’k+xii")”" < o, for .15q<oo
and  Aa®) = sup {[kOx — yu)| 5 k=1,2,3,....} < oo.

Theorem 2: (see, Ng and Lee [2]). The associate space X, of X,
(1sp< ) is the space Y, with the norm Aq, where p~! + ¢7! = 1.

We define (see, Stieglitz and Tietz {5])

C = {x:{ > X; } is convergent}
i=1

2. Matrix Transformations

The following notatien is used throughout. For all integers n = 1, we
write - : :

A = T AQ) = L bux,
i=1

where

bn.k = T

Ol ke
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The following result due to Zeller ({3} p.29). .

Lemma 1: A matrix A4 transforms a BK-space E into a BK-space F
then the transformation is linear continuous.

Theorem 3: A matrix transformation A=(a,) maps the space X,
(1 =p < ) into the space C, if and only if

(1) sup " {k(boy — b))z " < oo,
) sup | kby | < oo for every fixed n,
k=1
3) lim & (b — byvy) = 8, for every fixed %,

wherep™' + ¢~ ' = 1.
Proof : Necessity : Let A € (X, C)). Then the series

tn(Ax)= Ek bnk-xk

is convergent for every x € X,. Then by Theorem 1 and sequence (by)i=) is an
element in ¥, for every n, it follows that the condition (2) holds and

| kb — bucs)lzr | < .

Since X, and C, are BK-spaces by Lemma 1 |7,(4x)| < k | x [, for some
real constant K and all x € X, or :

sup {n(A)| < & Isi

N K .
for all x € X, with s=(s,) where s, = _;. L x;. It follows that

i=1

L k(bu-bucs1) Si
sup k < K.
n21 I S I
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sup | {k(bu — buslis | < K

Then the condition (1) holds.

To prove that condition (3) is necessary, we take for each fixed k a
sequence x® in X, with,

k ifj=k
x® = -k ifj=k+1
0 if j#k, k+1.
Then we see that
L Fyo=
S = T j=lx_f = 1.
and

For this sequence x® we have,

L(AX©O),

Therefore (3) holds.

Sufficiency :
and (2) the series,

1(Ax)

= L byx®
j

= E J(bs = by) 5
J

= k(by — byy)) 208 as n—> oo,

Suppose that the conditions hold. Then by conditions (1)

= E bnkxk
k
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is convergent for every x € X,. By condition (3) we have
|kbut - buce)] 4> |84] as n—> o
and since for every positive inteéer m
(I [Kbu- b)) S sup, By | Mbucbai)|9¥e=5.
by lettng n - o0, we get
(1809 < sup By [bus - buc) |94
Since this is true for every positive integer m, it follows that
(T |&)< o
k
Now for every sequence x € X, we have
1 n .
S, = — Exp—»0 asn-» oo,
LY
Given any € > 0, there exists N > 0 such that
o0 .
( T |sr)® < €/48.
k=N . ‘
And by condition (3), there exists integer N’ such that
N
l :‘:I {k(bux - buxs1) — 0} Skl < ¢

foralln = N’. Now foralin = N'

l él {k(bux - buxs1) — &} Skl
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N . '
< l Z:=[ {k(bnk - bnk+|) - 5k} Sy I
+ l r {k(bnk - bnk+l) - 6k}.sk l
k=N+1 4 _

-]
< ¢el2 + ( L | k(b - bur) | + | 5k|}q)uq

k=N+1

(L sl

k=N+1

&
<eglR+28 - =ec¢.
8 e

So we have

mEL k(hy — bur)su= L &5
n k k

It follows that

lim £,(Ax) = lm I by x,
n n k

I

lim T k(bnk - bnk+l) Sy
n k

L &8
k

This show that Ax € C,, and A=(ay) maps X, into C,. And this completes the
proof.
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PRINCIPLE OF EQUICONTINUITY FOR TOPOLOGICAL GROUPS
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Abstract

In this nite we obtain a version of the principle of equicontinuity for
topological groups by making use of Baire’s category theorem. Our result
constitutes a generalization of the Vitali-Hahn-Saks theorem for group-valued

measures due to Drewnowski. A uniform boundednes principle type theorem is
also established for uniform topological smigroups.

Preliminaries

Through out this note G will denote a commutative Hausdorff
topological group and R a ring of subsets of a set X.

A set function 7 : R-[0. 0] is called a submesure if,

) n(¢) = 0,
G)  nEUF) £ n(E) + n(F) with ENF = ¢

(iii) ECF implies n(E) < n(F) where E,F ¢ R.

A submeasure 7 on R is said to be complete if for each sequence {E,}
in R with n(E, A E,;) -» 0 as n,m —>oo(A stands for symmetric difference), there
exists E ¢ R such that the ring R is complete with respect to 7.
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A real-valued function ¢ on G is said to be quasi-norm of G if (a) ¢
(x) = 0(b) q(0) = 0(0) q(x) = q(—x) (d) q(x+y) < q(x) +q0), (y € G). If
q is a quasi-nom on G then we say that (G,q) is a quasi-normed group. Let u
be a finite sumeasure on R. The triplet (R, A, %) is aquasi-normed topological
goup. It is well known that if (G,I') is a topological group then T is
determined by the family of -continuous quasi-norms on G. However in our
main result we shall use meighbourhood apporach for topological groups as
given in {4}. ‘

2. PRINCIPLE OF EQUICONTINITY

Drewnowski [1] has indicated that the following result holds.

Theorem 2.1

Suppose that R is complete with respect to a submeasure 9, {u,} is a
sequence of n-continuous additive set functions on R to G. If, for each E ¢ R,
lim p,(F) = p(E) exists then the sf function y is additive and 5-continuous and
the set functions p,(n € N) are equi-n-continuous.

Example 2.2

A ring R complete with respct to a submasure on it is metrically
complete and so a space of second category by Barie’s theorem.

Remark 3.2

There exist Baire spaces or spaces of the second category which are
not metrizable and so these spaces can not be metrically complete.

“We now generalize theorem 2.1 to the case in which the domain of the
family of functions is a group of second category. We shall use the techique as
- given in ([3], theorem 2,p 158) to get the following prmmple of
equ1cont1nu1ty for topological groups. :
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Theorem 2.4

Let (G,T') be of second category and (H,\) a Hausdorff commutative
topoloigcal group. Suppose that {u,} is a sequence of continuous
homomorphisms from G to H. If for each x € G, lim,... p,(x) = p(x) exists
then p is a continuous homomorphism and {u,} is sequence of equi-I'-
continuous homomorphisms.

Proof
Suppose that thetopology I' is generated by a family {ngiel} of

continuous quasi-norms on G. Since {u, is a sequence of continuous functions
therefore for each I'-closed neighbourdood U of o in H the sets

Gom={xeH: pty () — pnn @) e U}, n = 1,2,...

are I'-closd sets as the inverse image of a closed set under a continuous map is
a closed set.

Put G, = Nym>p Gom (P=1,2,3...). Each G, is a I'-closed set

being the countable intersection of I'-closed sets. It can easily be verified that
G = U®,_; G,. Thus G can be represented as a countable union of I'-closed
sets. As G is of second category with respect to the family {n;:iel} of quasi-
norms on G so at least one of the sets G, must have non-empty interior. Thus
there exists an integer g, a positive number r, a point a ¢ G and i, € I such that,

Un(X) — p(*) e U fornm = gand x ¢ K,
where K = {x e G: T, [x—a] < r} € Ggq. That is
(b — ) @) € U
provided n,m = g and %, (x—a) < r @)
By continuity of u,, given a neighbourhood U of o inH there exists a

ﬁmte set niy (1<i<p) and 51 > o (1<i=<p) such that u(b) e U whenever b ¢
Pl fxe GOy (B) < .q} Since the arguments are similar, we shall
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consider, in the sequel, x in any of the following two equivalent I'-
neighbourhoods in the sequel, x in any of the following two equivalent T'-
neighbourhoods of ¢ in G given by,

M =. {xeG:M (») < 5} N {xeG: n, (63) ‘< r}
L= {xeG: n(x)< & where n, and & are defined by,
0, = min (M, i), § = min (r, 8.

fxelL(=M)then Dy, (x+a-a) =0, (x) < randso (x+a) e K

Following Husain ([4], P.46) if V is any k-closed neighbourhood of o
in H, then there exists a closed, symmetric neighbourhood U of ¢ in H such
that U+ U+ UC V.

We have by (*), u,(x) — uo(x) € Ufr n = q and x € K. By hypothesis
wx) = limy.o. pu(x) € U so pu(x)—pu (x) € U provided x € K. This gives with x =
a,x + a; u(a — pga) e Uand pu(x+a) — py(x+a) e U. Now u(x) = [u(x) +
W@ = po®) = pol@) — wla) + pg(a)] + pe(x)]

=[u(x+a)—p(x+a)]—~[u(@) —pfa)]+puXeU-U+USV (By(**))

Thus u(x) e V whenever X belongs to the neighbourhood M of o in G and so y
is '-continuous as required.

The function y is a homomorphism because u,, n = 1, 2, 3, ... are
homomorphisms and addition is continuous in G.

Next, we prove that {tta : 1 € N} is equi-T'-continuous.

Clearly pu(x) = pa(x)—px)+ux)eU+USV. Moreover each u;,
1 < i < q-—1 is I'-continuous therefore there exists an Mi(a T'-neighbourhood
of 0 in G) such that y;(x) ¢ V whenever x ¢ M,. ’

Taking M= M, NnM,N ... N M~ N M, wehave

pox) e Voralln = 1,2,... and xe M.
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Hence {u, : n € N} is equi-T'-continuous as desired.

"Remark : 2.5

A vrsion of uniform boundedness principle. for topoological groups
has been obtained by khan and Rowlands [6] without the use of Baire’s

theorem.

In sequel S denotes a Hausdorff uniform semigroup (cf. [2]).

Definition 2.6:

An S-valued additive set function p on R is said to be exhaustive if
and only if, for every sequence {E,} of pairwise disjoint sets in R, limty... u(E,)
= Q.

For completeness sake we quote the following theorems.

Theorem 2.7 ([5], theorem 6(3)) :

Let (u; : i € I} be a collection of exhaustive G-valued measures on a
o-algebra A which are pointwise bounded. Then the family {u; : i € I} is
uniformly bounded.

Theorem 2.8 (Drewnowski [2]) :

Let U be a Hausdorff uniformity on S. Then the following are
equivalent :

(1) There exists a commutativ Hausdorff topological group (G,T’) and a
map h : § - G such that & is an isomorphism of S into A(S) and A :
. (S, U) = (h(S),T'| h(S)) is a homeomorphism.
(i) For ach U ¢ U there exists a Ve U such that if,

(x+2z, y+z) € Vthen (x,y) e U (x,y,2 € S).
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We now geﬁeralize theorem 2.7 due to. Kalton for uniform
semigroups.

Theorem 2.9 :

Suppose S satisfies the.condition (ii) of theorem 2.8. If {u; : ie I} isa
collection of exhaustive and pointwise bounded S-valued functions on A, then
{w i € I} is uniformly bounded.

Proof :

. By theorem 2.8, S can be embedded isomorphically and
homeomorphically in a toplogical group (G,I'); that is, there exists and
isomorphism A: § - G such that h:(S Ty) = ((S), T|h(S) is a
homeomorphism. Now {u; : i € I} is exhaustive and pointwise bounded and h
is continuous so {hoy; : i € I} is exhaustive and pointwise bounded. Now by
theorem 2.7 {hoy; : i € I} is uniformly bounded. Since ™! is continuous so {u;
: i € I} is uniformly bounded as required.
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Abstract

In this paper, we define weak left-self maps in BCl-algebras and
characterize BCl-algebras with weak unit in terms of these self-maps.

1. Introduction

In [4], [5] and [6], the concepts of left self-map, right self-map and
left regular self-maps have been introduced with some of their properties
studied. In [10], BCl-algebras with weak unit have been investigated. In this
paper, we define weak left self-maps in BCl-algebras and characterize BCI-
algebras with weak unit in the language of these maps.

2. Preliminaries

A BCl-algebra X is an algebra (X,*,0) of type (2,0) with following
conditions for x,y,z ¢ X :

ey (*y)*(x*2) < 2%y
@ x*xty) <y
3) x<x
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(6] x <y y<ximply x=y

&) x < 0 implies x=0

where x < y iff x*y=0. If (5) is replaced by O0<x for all x ¢ X, then X is
known as BCK-alebra ([9]). Let X be a BCl-algebra and M = {x ¢ X: 0%x=0}

€ X; Then M is known as BCK-part of X.

6) ForxeM,ye X—M, x*y, yXxe X—M,

) *yy*z = (x*)%y,

(8) x;“O = X,

) x < y implies x¥z < y*z and 7%y < z*x for x,y,z € X ([9]).

Definition 1 [1] : Let X be a BCl-algebra. Let x, ¢ X be an e]ement
such that for y€ X with y % x, = 0 implies y = x, and define ‘

Alx,) = {xeX:x,*x =0}

The point x, is known as the initial element of A(x,); Let 1 denote the set of all
initial elements in X. We call it the centre of X.

(10) Let x be a BCl-algebra with I as its centre. then, for x,#Yy,, X,, ¥, € 1,
Alx,) N A(y,) = ¢. and UelA(x° = X. ([1]).
Xa

11) Let X be a BCl-algebra with 1 as its centre. Then / is a p-serru51mple
BCl-algebra ([2]).

(12) Let X be a BCl-algebra with I and M as its centre and BCK-part
respectively. Let x.el. The, x,y, A(x,) imply x*y, y*x e M. ([1]).

(13) Let X be a BCI-algebra with I as its centre. Let X¢el. For x,y ¢ A(x,),
o*x = o*y ([2D.

a4) Let X be a BCI-algebra with 1 as its centre. Let 0 #x,, 0 #Yy,, X,, ¥, € 1.
If x € A(x,), 0*x € A(y,), then o*x = y, € A(y,) ([12)]).
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(15) Let X be a BCl-algebra. Then following are equivalent.
(i) Xis p-semis.mple
(i) x¥(o*y) = y*(o*x)
(iii) x*y = 0 imply x=y
@) xty = 0¥
for all x,y e X ([7], {10], {11)).

Definition 2 [10] : A BCl-algebra X is called a BCl-algera with weak
unit if o*x < x for all x ¢ X.

Definition 3 [1] : A BCl-algebra X is called associative if o*x=x for
all x e X.

Lemma 1 : Let X be a BCl-algebra with I as its centre. X is a BCI-
algebra with weak unit if and ony if I is associative BCI-algebra.

Proof : Let X be a BCl-algebra with weak unit. Let x, ¢ I. Since
0*x,<x,, it follows that o*x,=x,. Thus I is associative.

Conversely, suppose that I is an asociative BCl-algebra. Let y ¢ X.
Then y is contained in some A(y,) for y, e I and y, < y. By (9) o*y < o*y, =
Y, or 0¥y < y, < y implies 0*y < y. Hence X is a BCI-algebra with weak
unit. This completes the proof. .

In [4]; we defined left self-map in BCK-algebras, which is denoted by
I, : X - X, for some fixed x ¢ X and is given by L (f) = x*t, for all 7eX. We
adopt the same definition for BCl-algebras. -However, we- generalize this
concept to weak left self-map in BCI-abgebras and shall note that left-self map
and weak left self-maps coincidg:in BCK-algebras.

Definition 4: Let X be a BCl-algebras. For a fixedx e X, themap L, :
X - X given by L(t) = (x*)*(o*x), for all ¢ ¢ X, is called a weak left self-

map.
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Remakrs : Let X be a BCK-algebra, then forxe X, L, : X> Xis a
weak left self-map if and only if L,(f) = (x*)*(o™*x) = (x*)*o = x* = [,
thus left self-maps and weak left self-maps coincide in BCK-algebras.

" Theorem 1: Let X be a BCl-algebra with weak unit and M as its BCK-
part. Then followings hold :

1) L(@)eM, forlIe M.
2) L,(t) ¢ M for

Proof : Let X be a BCl-algebra with weak unit and 7 as its centre. By
lemma 1, o*x, = x,, for all x,EI. Let t ¢ M. For any fixed x ¢ X, Lx(t) =
(x*t)*(0*x). By (10), x is contained in some unique A(x,) € X, for x,el. Now
x,<x implies o*x < o*x, = x, or o*x = Xx,, because x,e/ and we canl write
L,(t) = (x*t)*x, = (x*x,)*t. By (12), X, X,A(X,). Imply x*x,eM. Thus x*x.eM
imply (x*x,)*teM, because M is closed under *. Hence L,(¢) ¢ M, for t e M.

(2) Let t ¢ X—M. Then Lx(?) = (x*t)*(o*x) = (x*t)*x, = (x*x,)*t.
Since, x*xeM; therefore by (6), (x*x,)*te X—M which given L,(t) ¢ X—M, for
L X—M. Hence the theorem.

Theorem 2: Let X be a BCI-algebra. Foe x,y X, if x<y, then L, <L,.

Proof : Let x,y € X and x<y. Then x*y=0 or (x*y)*x = o*xr or
(x*y)y*y = o*x or o*y = o*x. Again x<y gives (x*f) < y*f or (x*)*(0*x) <
*)*(o*x) or (x*)*¥(0*x) < (y*)*(o*y) or L(r) < L(1), for ¢ ¢ X. Hence L,
< L,. This completes the proof.

The identity self-map idy : X > X s given by idx(t) = t fort e X.

Theorem 3: Let X be an associative BCl-algebra. For x€X, L,=1d,.
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Proof : Since X is associative, therefore for x ¢ X, o*x = x holds. Let
t € X, then L (t) = (x*)*(0*x) or L(t) = (x*)*x = (x*0)*t = o% =t =
idy(r) or L,(t) = idx(t), for all t ¢ X, which gives L, = idy. This completes the
proof.

We characterie BCl-algebras with weak unit in terms of weak left self-
maps in the sequel.

Theorem 4: Let X be a BCl-algebra with ] as its centre, X is a BCI-
algebra with weak unit if and only if id; = the restriction of Lx, to I, x, € X.

Proof : Let Xbea BCI—algebra with weak unit an 7 as its centre. By -
lemma'l, 1 is an associative BCl-algebra. By theorem 3, Lx, = id), for x, ¢ I.

Conversely, Lz, = id;. Let x,, t, € I, then L (t,) = (x,*t,)*(0o*x,). By
~(15)(i1), Lx(t,) = (xo*t Y*(o*x,) = x,*¥(0*(x,*t,)). Thus L:(t,)=1d(¢,) implies
XHO*(xM,) = t, of (XHHO*AH )M, = 0 or (XM )X * (X)) = O or
(xS} )*(t.*x,)=0, by (15)(iv). By (15)(iii) x,*, = 1.*x,. Put x,=0. Then
o*t,=1,; for all tl, which implies I is associative BCI-algebra. By lemma 1, X
is a BCI-algebra with weak unit. This completes the proof.

Theorem 5: Let X be a BCl-algebra with [ as its centre. Let x.e/ and
A(x,) € X. Then L,[A(x,)] _EA'(xo) for x € A(x,).

Proof : Let X be BCl-algebra with I as its centre and x, ¢ I, then
A(x,) S X. Let xeA(x,). We show that L,(f) € A(x,), for teA(x,). Now L,(f) =
(x*)*(o*x). By (12), x, tGA(xo) 1mply x*teM. Put x*t = meM (say). Then

L) = m*(o*x). ;

Again by(13), x,x, ¢ A(x0) imply o*x=o0*x,. By (11), o,x.el imply
o*x.el. Let o*x,=y.el, thus L,(H) = m*y,. By 15(iii), o*x,=y, imply o*y,=x,.
Now 0<m imply o*y, < m*y, or x,<m*y,. By definition of A(x,), x,<m*y,
= L,(r) implies L,(f) e A(x,). Hence LJA(x.)] A(x,). This completes the proof.
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EQUIVALENTE OF STRONG AND REGULAR IDEALS IN
BCI-ALGEBRAS

SHABAN ALI BHATTI

Department of Mathematics, Punjab University, Lahore, Pakistan.

Abstract

In this paper we show that strong ideals and regular ideals coincide in
BCl-algebras.

1. Introduction

In 2] the concept of strong ideals was introduced. Some results
related with these ideals had been established in [2] and [4].

M. Daoji [5], gave the notion of a regular ideal in BC/-algebras. In
this paper, we show that strong ideals and regular ideals in BCl-algebras

coincide. Some other facts about strong ideals have also been investigated.

Our notions of BCK/BCl-algebras shall be as are developed in [6], [7]
and [1]. The BCK-Part of a given BCl-algebra X will be denoted by M.

Definition 2 [2]: An ideal 4 in a BCl-algebra X is called a strong
ideal if for deA, xeX—A, a*xeX—A.

Definition 3 [S]: An ideal 4 in a BCI-algebra X is called regular if
x*yeAd, xeA 1mply yeA. :
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In theorem 3.2 of [2], it is shown that every strong ideal in a BCI-
algera X contains its BCK-part M. However, the following example shows that
every ideal which contains M may not be necessarily strong.

Example 1 [8] : Let Z be the set of integers and ‘—’ the minus
operation, then (Z, —, 0) is a BCI-algebra. Since 0 —x=0 implies x=0 for xeZ,
its BCK-part M={0} and hence Z is a p-semisimple algebra.

Let us consider A = {0, 1, 2, 3, ...} and B={0, —1, =2, ...}. Then
A and B are ideals in X. Nete that for —2eZ—A, 3ed, we have 3—(-2) =
5€A, but —2& A which implies A is not strong, but A contains M = {0}.
Also note that A and B are not sub-algebras. S

Theorem 1: Let X be a BCl-algebra and AS X an ideal in X. Then
followings are equivalent:

(i) A is strong.
(ii) A is regular.

Proof : (i) implies (ii). Let A be strong. We show that A is regular.
Let x*yed, xeA, then we claim that yed. Suppose yeX—A. Then x*yed4 implies
A is not strong, a contradiction. Hence yeA and A is regular. ‘

(i1) implies (i). Let A be regular, we show that A is strong. Let xeA,
yeX—A. We claim that x*yeX—A. Suppose x*yeA. Now xed, x*yedA and A
being a regular ideal implies yed, A contradiction. Hence x*yeX—A and A is

strong.
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ON THE ISHIKAWA FIXED POINT ITEhATIONS FOR SOME
CONTRACTIVE MAPPINGS ‘

R.A. RASHWAN*
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Assiut, Egypt.

Abstract

In this paper, we establish some fixed point theorems for Ishikawa
* iterates of mappings on a normed space under various contractive conditions.

1. - Introduction

Let C be a nonempty subset of a Banach space B and let T be a
mapping of C into itself. The sequence {x,} associated with T is called an
Ishikawa scheme [1] if

x5 € C,
Xort = (1=t 0, TVns Yo=(1 — Bxa+BuTx,, 120 )

In the Ishikawa scheme (1), {a.}, {B.} satisfy 0<a,<@,<1 for all n,
Lim B, = 0and L o, 8, = cc. In this paper, we restrict them to satisfy
o>

(i) 0=<a, f<1l - (ii) Lim 3,>0 - (iii) Lima,=h<1. (2)

*At Present : Department of Mathematics, Faculty of Education, Taif, Saudi Arabia.
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In [2] and [3], it has been shown that for a mapping T and for two
mappings T, and T; satisfying certain contractive conditions if the sequence of
Mann iterates associated with T and with 7, and 7, conmverges, then it
converges to a fixed point of T and to a common fixed point of T} and T>.

‘In the present paper, it is proved that for the mapping T and for two
mappings 7|, 7, which satisfy conditions (I), (II) and (III) below if the
sequence of Ishikawa iterates converges, then it converges to a fixed point of T
and to a common fixed point of 7; and 7T,. These results extend the
corresponding results of Khan [2] and Pathak [3].

. The contractive conditions to be used are the folloWing. There exists a
~ constant g, 0 < g < 1, such that for all x, ye B,

_ _ Jx=Tx| [1-[x-Ty]1 |

®  An-nl < gmar {lx-yl, ad N
le-mfn-lx-zl1 . Iyl o-ly-nl) |

1+ Jx—Ty] 1+ [Tx—y]

aid BUSd vl VI
1+{y-1|

1 ezl < amad e x| = x=T|] |
W 17Tyl < amax { x>, s
-tyl n-le=Taly, I Tayl 0= ly-Tolh,
1+ [x-Ty] 1+[Tix—y]

-2l o-I7x—yll 3
1+]y-Tyj

dim) At least one of the following conditions holds :
) For each x, y ¢ B, ||x—T1x " + ||y—T2y|l Sa“x—y " , a=0.

(i) Foreachx,yeB, |x—Tx| + |y-Ty| =
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Blelx—yl+ [x—Tyl+ly-Tx[1,0 <8 < 1, c > 0.
(i)  Foreachx,yeB, | Tx—Ty| + |x—Tux| + |y— T}
< llx-Tyl+ly-7x[1, 1=y < 2.
@) N Tx-Tp| < marfc)x-y|, fx~Tx| + |y-Tol,

lx~Tyl + ly~Tx]|}, 0<é<1, c>o0.

2. Main Results

We establish three fixed point theorems using the technique as
appeared in Rhoades [4] and Naimpally and Singh {5] for the mappings
satisfying contractive conditions (I), (II) and (III) as defined before.

Theorem 2.1 : Let C be a closed, ¢cohvex subset of a normed space
X. Let T: C - C be a continuous seff-mapping satisfying (I). Suppose {a.},

{B.} satisfy (2) with {a,} bounded away from zero. If {x,} defined by (I)
converges to a point u, then u is a fixed point of T.

Proof : From (1), x,,,—x, = «a, (Ty,—x,). Since x, = u, "x,m—x,, "
~ 0. Since {a,} is bounded away from zero, [ Ty,~x, | = 0. It also follows
that | u—7y,| — 0. We shall show that « is the fixed point of T. Now
consider,

fu—Tull < fu—xoer |+ fxm~Tue|

< Ju—xoii | + 10—t o Tya—Tu]
< fu—xan |+ =0 =T +ou| Tya—Tu|

< fu+x,. H +(1—ay) Hx,.-Tu" +a, max{ "y,,—u" ,

lyam 1yl 11— lya—Tul1, lya—Tul (01— y.—T3al1,
1+ [ya— Tl 1+ [y.—Tul|
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| Tya—u] (1- Ju-Tu]] Ju—Tu| [1- | Ty—u]] |

1+ || Tya—ul 1+ fu—Tul|

where
Iye—nl = A8+ Ba Tr—u

< (1B lx—ull +6. | Tr-ul

< [x—ul + | To—x.|,
ll'ynQTy..ll = [0 -B)%+B.Tx— Tl

< (1B |x— D]l +8. | Tea— T3l

< =Tl +8. | -

< |u-Dul + | x|,
DTl = §1-B) m+6, Tr,—Tu |

< (1B | xa—Tu] +8.) Tx,—~ Tu

< fx-Tuf +8. | x|

< |x~Tul + Jx.—Tx|.

3

@

©)

NG

Putting each of .(4)-(6) in (3), letting n—>00, and using the continuity of 7, we

obtain

la—Tul [1-2]u—Tu|)

lu—Tu| <1~y u—Ti| +hg max { Ju-1u],

2fu-Tu) 1-Ju-Tu] Ju-Tu| }.
1+2[u—Tu] T T+ Ju—Tu]

If |u-Tul| < (1-0) fu-Tul +hg Ju-Tu),

then we have

1+ [Ju—Tul
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h(1—q)u—Tu| <0 i.e., u=Tu. Hence u is a fixed point of 7, and if,

lu—1ul
1+ Ju—Tul

lu—Tul <(1—h)fu—Tul +hq

then Jlu—Tul|2 = —(1—¢q) [u—Tuj.

Suppose that Tu#u and let ﬂu Tuﬂ =§. Then we have § < —(1—q),
a contradiction. Hence u= Tu, i.e., u is the fixed point of T and this completes
the proof.

Theorem 2.2 ;: Let Cbea cloéd, convex subset of a normed space X
and let T, and T, be continuous self-mappings on C satisfying (II). Then {x,},
the sequence of Ishikawa iterates associated_with T, and T, is given below:

For x, e C set xh+,=_(l —a,,)xz,,+an leh’ y2n=(1 —B,.)xz,,+'ﬁn Tle,, and
Xon+2=(1 = )Xo +1 + T2yt 1s Yoms1=(1—LB¥sm+y +BuTkny, for n=0, 1, 2, ...,
where {o,}, {B.} satisfy (2) with {o,} bounded away from zero. If {x,}
converges to u in' C and if u is a fixed point of either 7| or T3, then u is
common fixed point of 7, and T5.

Proof : As in the proof of theorem 2.1, it follows that || T\y2—xa ||
and Jlu—Tyx| tend to zero as n—»oo. _

Now we shall show that u is the common fixed point of T, and 7,. Let
Tiu = u. Then we have

lu—Tu| < Hu—ih+,ll+!|xh+l—7'2u_ﬂ
< Ju—xni f + | (1 —din+a, Tym—Toul
< Joxsr—ull +(1 —a) | x2— Tt | + 0o || Tiyo— Tt
< xomsr—u |+~ |22~ T |+t g max { | y2—ul,

Iyn—Tyul (1= fyu=Twl] | dym—Taf1~|yu-Tyu] |
A+ | yu~Tyxl _lq)’h_Tz“"
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| Tysn—u|| 11~ Ju—Tou]] , Jouo—Tou || [1- || Tiyma—ue]] , )

1+ [ Ty —u| 1+ Ju—Tou|

where
lyn—Tyul o= 11 =Bz +BuTixe~ Ty

= (1=62) |xn—Tiya | + 8. | Tixn— Ty

< xon— Tyl + | Tixzm—xa . ¢))
|yl = | (1 =Bz +BuTixa—u |

< a8 el 48 Tl
< Jxm—ul + | Tz —xall, )
YTt = (1 =Btz + BTt~ T |

+8. || Tix—Tou "

< (1-B) | xa—Tou
< Joom— Tt | + | Titan—xau |, - (19)

Substituting (8)-(10) in (7), letting n—»0o and using the continuity of 7,, we
obtain ‘

lu-tul  fu-tul )

+h max.(0,0, , 0,
1 1 [a=n] i+ [a—Tu

lu—Tul <@ —m)|u—Tou

N u—Tou
1+ "u—Tgu" .

ie., |u—Tw| <0 —h)| u—Tue|| +hg

This gives,

g ~(1—9q) ||u—Tu||

fu—Tu

which implies that Tow=u. Similarly we can prove that if Tou=u then T\u=u
i.e., u is the fixed point of 7, and T.
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The above results extend ([3], Theorems 1,2) to Ishikawa scheme. We
next extend the result in [2]. '

Theorem 2.3 : Let X be a normed space and let 7T, and T, be
continuous self-mappings on X satisfying (III). Let {xr,}, the sequence of
Ishikawa iterates associated with T, and T,, where {a,}, {8.}, satisfy (2) with
{a,} bounded away from zero. If {x,} converges to u and if u is a fixed point
of either T, or T,, then u is a common fixed point of 7| and 7.

Proof : As in the proof of Theorem 2.1, it follows that || Tyys, —xa |
and || T\yw—u H tend to zero as n—»o0. Let T\u=u. Now we shall show that u is
a common fixed point of T, and T,. We have,

lu—Tul < |a=xmur | + X201 — Tote]

uu—-xz,,H " + u(l —a,,)x;,,+a,,T1yzD—.T2u "

A

Ju=x0ns1 | + A=) | xoa—Tote | + . || Tiysa—Tot | - ' an

A

If T, and T, satisfy (III) (i), then,

| Tym=Tael < | Tym=yaul + Dysm—ul + | u— T
< (1+0) |yn—u|
< (1+a)[ | (1 =B xm+BuTixsa—u ]
< (1)l oo~ ) +8 | Toz—u ]
< (+a)l o~ + | Texsa—xa | 1. (12)

If T, and T, satisfy (IIT) (ii), then,

| Tyu—Tu| = [ Tiym=yal + I ym—u] + | u—Tu

+||"‘T1Vzn"]

< lym—ul +6lclyn—ul + | yu—Tu

< (1+80) [xm—u | +A+8+80) [| Txa—x20 |
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+ Bllu=Tyul +8 ) xa—Toue] .
If T, and T, satisfy () Gii), then,
T Tl <41 ysmeToa | + = Toms 1= fymueTiom I-Ju-Tu|
< Y [ xa— T | + |u=Tyn |1+ (v = 1) | Tixz =2 {1
— 22— Tyall = Ju— T .
If T} and T, satisfy (II) (iv), then,
I Tym—Tull < 8 maxelym—ull, |ym—Tynl + |u-Tl,
Iyl + hwTyady

< 8[|~ Tou | + “ Tytag =X | + [ u—Toue|f 1.

(13)

(14)

(15)

Substituting each of (12)-(15) in (11), letting n—>o0o and using the continuity of

T,, we obtain
fu—Tul < X Ju-Tu],
where

N = max [1—h, 1—h(1—B), 1 =h(2—7), 1—h(1-8)] < 1.

Hence Tou = u. Similarly we can prove that if Tou = u, then T\u = u, i.e., u

is a common fixed point of T} and T-.

Finally, we conclude this section by the following question. Does the
conclusion of the above theorems hold if the continuity of T and 7, T is

removed?
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Abstract

This paper outlines graph-thcorctic-techniques in the investigation of
generalized Hadamard matrices. The techniques arc illustrated by applying
them to the matrices described by Drake and Dawson. A dctailcd study of the
case GH(8,G), where G is a group of order 4, is reportcd.

In this paper, we are concerncd with the construction and
investigation of generalized Hadamard matrices of size 2m with cntrics from
.a group G of order m. Such matrices arc associated with gencralized
“Hadamard designs as described below, and this association introduccs a
natural equivalence relation on the set of generalized Hadamard matrices - an
equivalence class is the set of matrices corresponding to a given design.

With each generalized Hadamard matrix we associate a sct of graphs,
usually directed. We ask when the corresponding class contains a matrix
whose graphs are undirected. This corrcsponds to the matrix being symmectric

* This paper was written during a visit to the University Collcge of Walcs, Aberystwyth. The
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and the design having a polarity. We cxaminc thc possibility of constructing
such matrices from a plausible sct of graphs.

Early constructions of such matriccs have been glvcn by Bosc and
Bush[l] Shrikhande[6] and Butson([2]. The case in which m is an odd primc,
given in Butson[2], was gencralized indcpendently by Jungnickel{S] and
Street[7). We use thc construction given by Dawson[3], and described below,
which includes both Jungnickel and Street constructions. Drake[4] describes
a construction when m is a power of 2. We investigate this below also.

A generalized Hadamard matrix GH(2m,G) is a 2m X2m matrix
H =[h] with cntrics from a group G of order m, writlcn addluvcly, such that
for each i,i"=1,..,2m with i#i" the scquence (hy—h;;j=1, ,2m) contains
each element from G exactly twice. It follows that for cach j,j" =1,..2m with
j#j” the scquence (h;—hy:i=1,.,2m) has thc samc property - sce, for
cxamplc, Jungnickel{5]. If the cntrics in H arc replaced by the corresponding
matrices in the regular represcntation, the rcsulling matrix is the incidence
_matrix of a gencralized Hadamard design T, i.e., a 1-(2m*2m,2m) dcsign.
Other incidence matrices of I' may be obtained by applying thc same proccss
to any matrix obtained from H by any combination of thc following
operatmns :
(i) permuting the Tows,
(i) permuting the columns, -
(iii) -adding to the elements of a row a ﬁxed elecment of G,
(iv) - adding to the elements of a column a fixed clement of G,
(v) applying an automorphism of G to thc cntrics of H.

_ We now show how to associate graphs with a GH(2m,G) H. First we
normalizc H - i.e. we subtract suitable clements from the rows and columns
to ensure that the first row and column, of thc resulting matrix consists

entirely of 0’s. Now let H be the matrix obtained by dclcting the first row and

column,. i.e., the core of H. For each geG, lct A= [a“‘)] be the
(2m—_-1)x(2m 1) matrix dcfincd by o :

a® = { -1‘if (El)ij=g
' 0 if (H),=g

A, is the adjaccncy matrix of a graph I, with vertex set V={1,..,2m -1} and
such that i is joined to j (by a dlrcclcd cdge) if and only if a® =1.If, for
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some palr i, j with i#}, 1 is joined to j and j ls_]omcd to i, we may rcplace the
pair of dlrected edges by an undirccted edge. a® =1 means that [, has a
loop at -i. We note that formally H = E gA, :

In the case of GH(8,Z%) with

0abacch
abaccbo
_ baccb0Oa
H = accbOab
ccboOaba
cb0Oabac
b0Oabacec
we have,
1 2 7 3 6 4 5
‘T, 'C>_o [ ° ° ° ° °
6 4 1 2 3 7% 5

. 7. : ' ; : 3 .
T (C=e— o——o ° ° . D)
In the general casc, each vertex in T, has in-dcgrce and out-degree 1, and
each vertex in I‘g(g#O) has in-dcgree and out-degrec 2.

Given H, wc ask which permutation of - its rows. and columns will
produce a symmctric matrix. For a permutation = of 1,..,2m—1, Ict P, be the
corresponding permutation matrix, ie., P, =[p;] where piy=0i.=1 or 0
according as i=x(j) or i#x(j). Then PP, =P, and P, = P,'=P.
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The matrix K obtaincd from H by pcnhuting the rows according to 7, and
the columns accordmg to ™ | is P} HP Thus K is symmctnc if and only if
P! HP = P} HP, , i.e., P,HP, = H where 0= mym,” 1, or equivalently AP,
is symmetnc “The latter is true precisely when AP, is symmelnc for all geG.

If H is alrcady symmectric, then each A, is symmetric. So
AAP,=AP/P,=PAA, for all gheG. Thus,  must induce an automorphism
of the graphs with adjacency matrices A A, (g,heG). Moreover, every &
corresponding to such an automorphism and for which P; is inverted by the
permutation matrix A, has the property that HP,  is symmetric. By
considcring the obviously lincarly independent set of matrices {A A, geG},
we sec that the centralizer algebra of P, in the full matrix algebra has
dimcnsion at lcast m. In the above example, if we write C for the cycle matrix
of sizc 7, we have Aj2=1, AA,=C'+C% AA,=C+C, AA, =C*+C,
AA,=C+C A A,=C*+C5, AA= C*+C>. An easy calculation shows that the
centralizer algebra contains {C;: i=0,...,6}. Hence P,=C' for.some i mdeed
for all such i, HP is symmetric.

If H is not nccessarily symmetnc we wish to find 4 such lhal A P, is

symmectric for all geG Recall that A, is a permutation matrix, P, say. Let -

x={8. Then A P, is symmetric if and only if x’=1. Also P,A, is symme(r_lc if
AP, is symmctric. So we necessarily have P‘,A‘,AE'A‘,=lﬂx‘,‘AzP,Ao for all geG,
ie. PASA=ASAP,. If A,, denotes the graph with adjacency matrix A 'A,,
we require a permutation 7 of order 2 which interchanges 4,, with 4, for
cach geG\{0}. And from each such 7, we can reconstruct an appropriate-5.

We now describe the graphs associated with a GH(2q,G), where q is
a power of 2 and G is elementary abelian. We use the construction of
Drakef4]. Let H' be the 2q X2q matrix whose rows and columns are indexed
by F,, (the ficld of 2q elements) and such that (H'),,=xz. Then H' is a
GH(2q;F,,). Now take any additive group homomorphism Fp* F,,and letH
be the matrix obtained from H” by applying this homomorphlsm to the
entrics. Then H is a GH(2q,F,). We may suppose that the rows and columns
are listed in the same order, with the row and column indexcd by 0 coming
first. Then H’, and consequently H, are symmetric and both are already
normalized. ‘ '

The graphs associated with H are now casijy described. First we take
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the group homomorphism above to be the one with kernel {0,1} and denote
the image of an clement xby X - so X I X . The vertex sct of cach of the

graphs is V=F,\{0}.

T', has one loop at 1, and the rcmaining cdges join x and x™! for
x# 1. If aeF, \{0,1}, the edges of T'; join x to ax™! and to (a+1)x™", for cach
xeV. Since cach element of F,,\{0} has a unique squarc root, cach T has
exactly two loops, at /a and +/(a+1). These vertices arc joincd by a path of
length 2r, where 2r+1 is the order of the element a/(a+1). The remaining
components of T; are all circuits. Sincc the products of the vertices on
consccutive cdges arc a and a+1, these circuits have cven length. Going in
ong direction around such a circuit, the vertices are x, (a+1)x7?, (a+1)7'ax,
- (@+1)a7*x7 (a+1)~%a%, .... The length of this circuit is 2(2r +1), where
2c+1 is the order of a/(a+1) as above.

Next, we consider the construction of Dawson[3] of a GH(2q,G),
where q is an odd prime power and G is an clementary abelian group of
order q. Let

Hll HIZ

HZI HZZ

where H (ik = 1,2) is a qXq matrix over F, whose rows and columns arc
indexed by the elements of F, and such that (Hy), = oy 2*+B,2x+v,%,
where ay, B, and v, are clements of F, satislying

ap —ay Q) —0y,

Bba - Bba ™
Yu~ Y Y Y2
BB  Buby @
(an—an)(ri—712) - B1By—B1Px : 3)
BuBa BB Bub BBy

8118126218, is a non-squarc in F. 4)
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‘We can find a- matrix equivalent to H with o,=7v,,=0a,;,=7,=0,
B11=0,,=0,, =1. We call this latter matrix H and sct a,,=a, 8,,=8, ¥,,=7v. The
associated quadratic forms arc then (H,).=xz, (H l2),a=xz+%— X,
(H,,)n=xz+%z’ and (Hy),=az?+fxz+vyx>. The conditions satisficd by a, 8
- and vy are

day=p(B-1) (3

" B is a non-square in F,, 47)

Clearly H is normalized and H,, is symmetric. We examinc when H
may be "symmetrized" by permuting the last g rows and the last q columns
among themselves. Let v denote a label for onc of the last q columns and let
v’ denote the label for the corresponding row. Let x denotc a label for onc
of the first g rows. :

If H is symmetric, (hcn (le)w=(H2,)v«x for all xeF, ic,
xv+%x’=v’x+%x’.Thusa=yand vi=v.

If y=a and v" =v for all veF , it is immediate that H is symmctric.
In this case, we may replace (3°) and (4”) above by

B and 81 are non-squares in F, 6)]

d=pB-1). ©)

If qﬁl(mod‘4), there are (q—1)/4 non-squarcs 8 in F,  satisfying
(5); if q=3(mod 4) there arc (q+1)/4 such non-squarcs.

To describe the associatcd graphs, lct V= {(x,i): xeF,ie{1,2} }\{(0,1)}.
(x,1) is the vertex corresponding to the row/column labelled x among thc first
q of H, and (x,2) is the vertex corrcsponding (o thc row/column labcllcd X
among the last q. We use ~ to denotc adjacency.

In T, clearly (x,1)#(z1) for all x,zeF \{0}. Also (x,2)~(22) if and
only if x=2=0, since az’+ fzx+ax’= o:((7+20[)2 B(Za)z) Finally, (x,1)~(2,2)
if and only if ax+pz=0.

Now let aeF, \{0} InT,, (x1)~(z1) if and only le—;, x1)~(z,2)
if and only if z= —Ex+—-' (%,2)~(z,2) if and only if o2+ Bzx+ax’=a.
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We give, as an example the graphs associatcd with Butson matrix
below. The core of the matrix is ~

123412340
241341302
314242031
432110432
144103223
212034143
330421124
403324211
021233414

" The associated graphs are

(0,2) (1,1) (4,2) (2,1) (3,2)

T, Coe . . ' °
(3,1) (2,2) (4,1) (1,2)
° e - e °

S (1,1) (0,2) (4,1)

Iy C=e .
(2,2) (1,2) (2,1) (3,1) (4,2) (3,2)
] [ ] [ ] [ [ [
(1,1) (2,1) (0,2)

Iy /\-
| o, 2)< (2,2) (3.2)

(3,1) (4,1)

Iy and T, are isomorphic to T, and T,, respectively. Thc corresponding
vertices may be obtained by multiplying the first componcnls of the vertices
by 2. ‘
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In the special case of GH(8,G), where G is a graph of order 4, wc
began by enumerating all 7x7 matrices in the 4 symbols 0,1,2 and 3 with thc
following properties.

(i) Evecry row has one 0 and two cach of 1,2 and 3;

(i) Evcry pair of distinct rows/columns has just onc position with the -
same symbol;

(i) The first row is 0,1,1,2,2,33;

(iv) The rows arc ordered lexicographically.

Clearly the core of any GH(8,G) must satisfy thc above propertics.
We found with the aid of a computcr that there were only two such matrices

0112233 0112233
1021323 1230123
1203132 1322310
2130312 2023131
2313021 2131302
3231201 3213012
3322110 3301221

We then tried all possible substitutions of group elemcnts using Z, and Z,xZ,
for the four symbols, replacing 0 by the identity element in all cascs. The only
. situation :-which gave rise:to a core of a Hadamard matrix was thc matrix B,
where 1,2 and 3 are replaced by distinct non-identity clements of the group

ZZXZZ'
We concludc by listing some of -thc-questions raiscd by the above
investigation.

a. Isthere a straightforward graph-thcorctic charactcrization of the scts
of graphs associated with a gencralized Hadamard matrix?

b. Given such a sct of graphs, is therc an efflicicnt algorithm (or
. constructing the matrix?
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Given two such scts of graphs, how can onc determine whether the
associated matrices are equivalent? In particular, docs onc such sct
of graphs dctermine the graph associated with the gencralized
Hadamard matrix uniqucly? '
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