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ABSTRACT

By considering the interval (0, 1) on the real line it is easy to show
that it is not possible, in general, to obtain boundary of a given set by u.sing
the complementation, he closure and the interior operations on that set.
Therefore one can generalize the Kuratowski closure-complement problem
in special sense. In this paper, we will show that if any pair of operations
among closure, interior, boundary and complementations be chosen, then
by -using only two of the operations on any given set X we obtain that X
belongs to a specific finite family. In addition, for any pair of these
operations we will give necessary and sufficient condition that the related
family puses the largest cardinal number.

1980 Mathematical Subject Classificaton (1985 Revision) Primary 54B98S.

KEY WORDS AND PHRASES: Closure, Intecrior, Boundary, Relative .
topology and Connected topological space.

INTRODUCTION

.Let S be a topological space and b, ¢, i and & denote the
boundary, the closure, the interior and the complementation,
respectively. (See [1] for definition and properties of these
operations). If X is a non-empty subset of S and « and [ are any pair
of the operations, then Xa and Xo3 denote the image of X and Xa
respectively under o and 3. We will show that if & and [3 are any
pair of the operations, then the family AB(X) = BAX) = {X, Xa, XJ3,
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Xoa , XaB, XBa, XBP, Xaaa, Xaof, Xapa, XapB, Xpoaa, XBap,
XBBa, XBRB, ...}; which will be formed from a given set by using
only the operations o and [3, iterated in any order; consists of the
sets which will be specified. We also give necessary and sufficient
conditions, in every case, for AB(X) to have the greatest cardinal
number. Moreover, for all o and 3 an example is given of a subset X
of a topological space S such that AB(X) have the greatest cardinal
number. In the case @ = 3, the problem will have the obvious

solution. Therefore we assume that a#[3. We consider six cases:

Case(1): . =c and 3 =&

This is the same as the Kuratowski closure-complement
problem [3]. With due attention to Xckckcke = Xckc and Xkckckcke
= Xkcke, we have CK(X) = {X, Xk, Xc, Xke, Xck, Xkek, Xcke, Xkcke,
Xckek, Xkckek, Xckeke, Xkckeke, Xckekek, Xkckckek}

// Xcke \

- Xek — Xckckek Xkckckc — Xkc

Xkckck

Xckek \
Xkck —» Xkchekek _ Xc_kckc — Xe
\ Xkcke /

X
Fig. 1 - diagram of the family CK(X)

(n this diagram and future diagrams the arrows denote inclusion relations)
By considering the above diagram, we can easily see CK(X)=CK(XK).
In the following theorem, necessary and sufficient conditions on X in
order for CK(X) to consist of pr ec1sely fourteen distinct sets are
mentioned.
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Theorem 1

Let X be a subset of the arbitrary topological space S. Then X
is a 14-set iff the following five conditions hold:

(A) Xbi = Xkbi = Xci\Xic # ¢

(B) X N Xckckck = X\Xcic # ¢

(C) Xk M Xkckckek = Xici\X # ¢

(D) Xecib = Xcic\Xci # ¢

(E) Xkcib = Xic\Xici # ¢

Moreover, the conditions are independent, i.e., i_n general, no
four imply the fifth.
Proof. [4]

It is not hard to see that the subset X=(0,1)\(1,2)U Q(2,3)v
{4} of R with ordinary topology is a 14-set. (Q(2, 8) denotes the set of
rationals in (2, 8)) [4]. Also X = {1, 8, 6} in finite topological space
= {1,2,3,4,5,6,7} with base {¢, S, {1}, {7} {1,2..16,7},{3,5}} is

a 14 set ([2], [5]).

Case (2): a=cand P =i

With due attertion to Xicic = Xic and Xcici = Xci, we have
CIX) = {X, Xi, Xe, Xic, Xci, Xici, Xcic}

AN

Xi — Xici Xeic — Xc ‘

N,

Xic
X
Fig. 2 - diagram of the family CI(X)

We know Xi is equal to Xkck, hence CK(X) = CI(X) v CI(XK). By
uging the above relation, it is easy to show that CI(X) consists of
p*ecisely seven sets iff CK(X) consists of precisely fourteen sets, i.e.
iff X is a 14-set. Therefore every 14-set of a topological space is an
example of a set X that |CI(X)] =



Case (3): =i and B =4

By using CK(X) and Xi = Xkck, we can show that
IRX) = {X, Xk, Xi, Xki, Xik, Xkik, Xiki, Xkiki, Xikik, Xkikik, Xikiki,
Xkikiki, Xikikik, Xkikikik} = CK(X).

Therefore the diagram of family IK(X) is the same as the

diagram of CK{X).
o }\
"~

Xki > Xkikiki Xikikik — Xik

Xlkl/

Xkiki
Xi — Xikiki Xkikikik —> Xkik

A
~

Xikik
X
Fig. 3 - diagram of the family KI(X)

It is obvious that IK(X) consists of precisely fourteen sets iff X is a
14-set. Hence, every 14 set of a topological space is an example of a
set X that |[IK(X)| =

Case(4): a=b and B =%
By using the relations Xbbb = Xbb, Xbkb = Xbb, Xkb = Xb,
we have BK(X) = {X, Xk, Xb, Xbk, Xbb, Xbbk}.

\\

/

/\

Xbb
1
X X» Xk Xk
l
Xbbk

Fig. 4 - diagram of the family BK(X)
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Theorem 2

Let X be a subset of a topological space S. Then BK(X)
consists of precisely six sets iff the following two conditions hold:

(A) Xb= S
(B) Xbi+ ¢
Moreover, the conditions are independent.

Proof _

First, suppose that BK(X) consists of precisely six sets. Since
Xbbk # Xbk and Xbbk = Xbi \U Xbk, so that Xbi # ¢. If Xb = S, then
Xbk = ¢ and hence Xbb = Xbk. Thus Xb # S.

Second, we shall show that the two conditions are sufficient.
Suppose that Xbi # ¢ and Xb # S, then X is neither open nor closed

(since if X is open, then X = Xi and therefore Xbi = Xibi = ¢, thus
we will have a contradicton; similarly, Xk isn’t open and hence X

isn’t closed, since Xkbi = Xbi # ¢). Now, we can show that the sets
X, Xk, Xb, X0k, Xbb and Xbbk are pairwise distinct. It is obvious that

Xb # Xbk, Xbb # Xbbk and X # Xk; also X # Xb since Xb is closed but
X isn’t closed. Similarly we have X # Xbk, X # Xbb, X # Xbbk, Xk #
Xb, Xk # Xbk, Xk # Xbb and Xk # Xbbk. On the other hand, Xb = Xbi
 Xbb and Xbi # ¢ so that Xb # Xbb. Also, if Xb = Xbb then Xbk =
Xbb < Xb and hence Xbk = ¢ or Xb = S; thus Xb # Xbbk. But Xbk #
Xbb since Xb # Xbbk. Also Xbk # Xbbk since Xb # Xbb.

The sets X; = @ and X, = 0, 1) on the real line under its
usual topology, show that the conditions (A) and (B) are
independent.

Corollary 3 _

Suppose that X is a 14-set, then BK(X) consists of precisely

six sets.

Proof

Xbi # ¢ since X is a 14-set. Also Xecib # ¢. On the other hand
if Xb = S, then Xc = S, hence Xcib = ¢; thus Xb # S. Now, by the
previous theorem, BK(X) consists of precisely six distinct sets.[]




By the above corollary, every 14-set is an example of a set X
that |BK(X)| = 6.
Case (5): =0 and 3 =1
With due attention to Xibb = Xib, Xibi = ¢, Xbbi = ¢ and
Xbbb = Xbb we have BI(X) = {{, X, Xi, Xb, Xib, Xbi, Xbb, Xbib}.

@<Xib>)(bb Xb

Xb;
Fig. 5- diagram of the family BI(X)
Theorem 4 _

Let X be a subset of a topological space S. Then the following
conditions on X are necessary and sufficient for BI(X) consists of
precisely eight distinct sets:

(A) Xib# ¢

(B) Xbib# ¢

(C) Xbb — Xbib # ¢

(D) Xbb —Xib = ¢

(E) Xib A Xbib = (Xib w Xbib) — (Xib ™ Xbib) # ¢

Moreover, the conditions are independent.

Proof

It is obvious the mentioned conditions are necessary. To
show these conditions are sufficient, suppose that X satisfies the
above conditions. We will show that the sets ¢, X, Xi, Xb, Xbi, Xib,
Xbb and Xbib are pairwise distinct. If X = ¢ then Xib = ¢. Thus X=¢.
It is easily shown that Xi = ¢, Xb # ¢, Xbi # ¢, Xib # ¢ and Xbib # ¢.
Also, Xbb # ¢ since Xib < Xbb. Moreover, Xbi # ¢ and hence, as it
was already shown, X is neither open nor closed. Therefore X # Xi,
X+ Xb, X # Xbi, X # Xib, X # Xbib and X # Xbb. Also, if Xi = Xb
then Xib = Xbib and hence Xib A Xbib = ¢; thus Xi # Xb. Since
Xi N Xbi = ¢, it follows that Xi # Xbi. If Xi = Xib, then Xi=Xibi=¢.
Thus we have Xi # Xib. Similarly we can show that Xi # Xbib and
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Xi # Xbb. If Xb = Xbi, then Xbi is open and closed, so that Xpib = .
Thus we have Xb # Xbi. If Xb = Xib; then Xbi = Xibi = ¢ and so that
Xb # Xib. Similarly we can prove that Xb # Xbib, Xb # Xbb, Xbi#Xib,
Xbi # bib and Xbi # Xbb. By the hypothesises Xbb — Xib # ¢ and Xbb
— Xbib # ¢, so that Xbb # Xib and Xbb # Xbib. Finally, if Xib = Xbib,
then Xib A Xbib = ¢. Thus Xib # Xbib.

Now, consider the subset X; = {1} U Q(2, 3), X, = {0} L
(2,8),X3=Q(0,1) U(1,2)UQ2,3),X,=(0,1DUR1L2DUEI
of the real line under its usual topology, and also consider the subset

= @Q(=2, -1y U (-1, 1) U (1, 2) w {3} of the space S=R—{-2,2}
under its relative Euclidean topology. Then by using the set X; we
can easily show that the i-th condition is independent of the other

conditions.[]

IfX = (1, 2) W Q(3, 4) is a subset of the real line under its
usual topology then Xi = (1, 2), Xb = {1, 2} v [3, 4], Xbi = (8, 4),
Xib = {1, 2}, Xbib = {3, 4}, Xbb = {1, 2, 3, 4}. Therefore BI(X)
consists of eight distinct sets. It is posisble that X is a 14-set but
BI(X) consists of less than eight distinct sets. An example of such a

set is the set X = (0, 1) L (1, 2) U @(2, 3) w {4} in the topological
space S = R — {2, 3} with relative Euclidean topology.
Case(6): a=b and B =¢

With due attention to Xbec = Xb and Xcbb = Xcb, we have
BCX) = {X, Xb, Xc, Xbb, Xcb}.

Xcb — Xbb — Xb > Xc

T

X
Fig. 6 - diagram of the family BC(X)

Theorem 5

Let X be a subset of a topological space S. Then BC(X)
consists of precisely five distinct sets iff the following two conditions
hold:

(A) Xbi#¢
(B) Xci N Xbb # ¢

Moreover, the conditions are independent,
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Proof

Suppose that BC(X) consists of preciseey five sets. Then Xb #
Xbb and hence Xbi # ¢ since Xb = Xbi  Xbb, Xcb C Xbb, so that if
Xbb = ¢ then Xcb = Xbb. Thus Xbb # ¢. Since Xbb # Xcb, there is
some element x belonging to Xbb such that x ¢ Xcb. But Xbb C Xbe
C Xce so that x € Xce. Also we know that Xce = Xei \w Xcb; therefore
x & Xcb and so that x € Xci, hence x € Xbb N Xci. Thus XbbXci#d.

Now, suppose that Xbi # ¢ and Xbb M Xci # ¢. We shall show
that the five sets X, Xb, Xc¢, Xbb and Xcb are pairwise distinct. X is

neither open nor closed since Xbi # ¢. Therefore X # Xb, X # Xc,
X#Xcb and X # Xbb. If Xb = Xc then Xci = Xbi, but Xei N Xbb # ¢;
hence we have Xbi m Xbb # ¢, that it is impossible. Thus Xb # Xc.
Also Xb # Xcb since otherwise Xbi = Xcbi = Xcbbi = (Xc)bbi = ¢,
_ that it is contradict to the hypothesis (4). Since Xbi # ¢ and Xb =
Xbi U Xbb we have Xb # Xbb. If Xc = Xcb then Xci = Xcbi = ¢ and
hence XcinXbb=0¢; thus Xc#Xcbh. Similarly, it is proved that Xc#Xbb.
Finally if Xcb = Xbb then Xci m Xbb # ¢ and therefore XcinXcb#¢
which is impossible; thus Xeb # Xbb.
Moreover, by using the set X; = Q(2, 8) and X,=(0,1)U(2,3)
on R under Euclidean topology, it is easily shown that the two
conditions are independent.”

Corollary 6 _
If X is a 14-set, then BC(X) consists of precisely five sets.
Proof ’

Xbi # ¢ and Xici — X # ¢ since X is a 14-set. If x € Xici — X
then x € Xici C Xci. On the other hand x € Xici C Xic = Xi U Xib
and x ¢ X; hence x € Xib C Xbb and therefore x € Xci m Xbb; thus

Xci ™ Xbb # ¢. By the previous theorem BC(X) consists of five
distinct sets. Therefore every 14-set is an example of a set X that
[BCX)| = 5.

Of course, we can simplify some of the theorems or obtain
new results under special conditions on the set X or the underlying
space S. For example ([4])) if S is a connected topological space, then
subset X of S is a 14-set iff Xbi # ¢, X — Xcic. # ¢ and Xici -~ X # ¢.
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Also it is easily proved that if 'S is a connected topological space then
BK(X) consists of preciselv six sets iff Xbib = ¢. '

Finally, we conjecture that in a connected topological space, if

X is a 14-set then BI(X) consists of precisely eight distinct sets.
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1. GENERAL INTRODUCTION

In recent years considerable interest has arisen in algebraic
systems with binary operations of addition and multiplication
satisfying all the axioms of & ring except perhaps one of the
distributive laws and commutativity of addition. Such systems are
generally called near-rings. The properties of such systems have been
implicitely used by mathematicians ever since the development of
calculus. For instance, the systems < C(&, R), +, 0>, <D(R, R),+,0>
and <R[x], +, 0> consisting of all real valued continuous functions
in one variable x, all real valued differentiable functions in x, and all
polynomials in an indeterminate x over the reals, respecitvely, in
which the operation + is defined pointwise and o is the usual
composiion of functions, satisfy all the axioms of a ring except left
distributive law. Therefore, these systems are near-rings (but not
rings). The first formal study of a near-ring like concept was however
made in 1905 by Dickson, in connection with his studies about the
independence of the axioms of a field. He showed by constructing
examples that the commutativity of multiplicaton and one of the
distributive laws were not a consequence of the other field axioms. In
terms of the present day terminology, Dickson’s example was that of
a "near-field", which is a very important type of a near-ring. Shortly
afterwards, in 1907, Veblen and Wedderburn used Dickson’s near-
fields to give examples of non-desarguesian planes. In the mid
1930’s, H. Zassenhaus determined all finite near-fields, and used
them in describing sharply transitive permutation groups. In the late
1930’s, H. Wielandt initiated the study of near-rings which were not
near-fields. In 1950, D. Blackett published some important papers on
simple and semisimple near-rings. In the late 1950’s and early
1960’s. A. Frohlich published a series of important papers dealing
with distributively generated near-rings. In his papers, Frohlich
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developed a non-abelian homological algebra of modules over near-
rings. Since the publication of the papers of Blackett, Frohlich, and
others, there has been a steady flow of papers on near-rings and
related topics.

In terms of applications, near-rings have proven to be useful
in other areas of Mathematics. For example, in addition to their
applications in geometry and group theory as mentioned above, near-
rings have been applied to combinatorics, design of statistical
experiments, coding theory and cryptography. A near-ring is exactly
what is needed to describe the structure of the endomorphisms of
various mathematical structure in an adequate manner.

For basic notions in near-ring and their structure theory, we
refer to [Pilz; 1983], and for their links with group theory, we refer
to [Meldrum; 1985]. We also refer to [Clay; 1992) for geometrical
aspects of near-ring theory. For a complete and up to date
bibliography of the literature on near-rings and related topics we
refer to a recent issue of the Near-ring News Letter, No. 16, 1995.

2. FUNDAMENTAL CONCEPTS

2.1 Basic Definitions and Examples

We begin with the definition of a near-ring.

Definition 2.1.1

A (right) near-ring R is a triple <R, +, .> consisting of a set
R with two binary operations “+" and ".", called addition and
multiplication, respectively, such that

(1) <R, +> is a (not necessarily commutative) group;

(2) <R, .> isa semigroup;

(8) Forallag,b,c € R: (a + b) ¢ =ac + be (Right distributivity).
Left near-rings can be defined similarly.

Let us consider a natural example of a right near-ring.

Example 2.1.2

Let G = <@, +> be a (not necessarily commutative) group

G (#(0) ). Let T(G) denote the set of all mappings from G into itself.
On T(G) we define + to be the usual pointwise addition of mappings
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and multiplicati'on is the composition of maps.: for f,g € T.G) and
x e G:
F+g) &) =71kx)+gkx), (fg) &)= [flgx).

Then <T(@), .+, .> is a right near-ring which is not a left
near-ring (and so not a ring).

A ring is & right and left near-ring but not conversely. A
near-ring with a commutative multiplication is both a right and a left
near-ring. Yet such a near-ring need not be a ring, since, for
example, any non abelian group G = <G, +> with trivial
multiplication, xy = 0 for all x, y € G is a near-ring <G, +, .> with
commutative multiplication but non commutative addition. One may,
however, prove the following.

Proposition 2.1.3 [Pilz; 1983]

A near-ring R satisfying both distributive laws and R = R? is
a ring. _

One may note the following two properties which follow
immediately from the basic definitions.

Fact 1. 0.x = 0forall x € R and 0 is the neutral element of <R, + >.
Fact 2: —(ab) = (—a) b foralla,b € R.
Remark: It is possible to have x.0 # 0 in a (right) near-ring.

Example 2.1.4

Let G = <G, +> be a (nontrivial) group, and let fa be the
constant map:

fax) = a,x € G. Then C(G) = {f, : a € G} is a near-ring in
which f, is the neutral element. , ' :
but . fo=f,#f for a=0.

The transfer of many interesting results from righs to near-
rings is made possible by the following axiom:

4) x.0=0 forallx € R.

Definition 2.1.5

Near-rings with the additional axiom (4) are called zero
symmetric. Thus all rings are zero symmetric near-rings.

12




Let us' consider an example of zero symmetric near-ring
which is not a ring.

Example 2.1.6

Let To(G) be the subset of T(G) in Example 2.2 which
consists of these mappings which leave 0 fixed is a (right) zero
symmetric near-ring.

In the sequal, all near-rings are essumed to be zero symmetric.

If R contains an identity element 1 that isx.1 = l.x = x for
all x € R, then it is unique and is called the identity of R; R is, in this
case a near-ring with identity. A right near-ring R = <R, +, .> is
called an abelian near-ring if <R, +> is abelian. If the nonzero
elements of R form a multiplicative gorup, then R is called a near-
field. In {Pilz; 1983], it has been shown by Neumann that a near-field
is an abelian near-ring.

Definition 2.1.7

An element r of a right near-ring R is called (left) distributive

if forall s, t € R:.r(s + t) = rs + rt (for example, 0 is always a
distributive element). A near-ring R is called distributively generated
(d.g.) if R contains a multiplicative subsemigroup D of (left)
distributive elements which is a generating set for <R, + >.

Example 2.1.8

Let G = <G, +> be a (not necessarily commutative) group
and let E denote a multiplicative semigroup of endomorphism of G,
and let

E@G) = {fjif,-;fieE}.
i=1

Then E(G) is a d.g. near-ring whose generating semigroup is E.

Remark: Distributively generated near-rings are zerosymmetric.

Definition 2.1.9
A subset A of a (right) near-ring K is called a (left) R-
subgroup of R if A is a subgroup of (R, +) and RA C A (Here BC =

{bc:b € B,c € C} for any subsets Band C of R). Right R-subgroups
of R are defined analogously. A (right) ideal of R is a normal
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subgroup A of <R, +> such that AR C A. A (left) ideal of R is a
normal subgroup A of <R, +> such that ry(ry + a) —ryry € A for all
ry, ro € R and for all a € A. The word ideal will always mean a

subset of R which is both a right and a left ideal of R. If S is any
subset of R, then <S> will denote the ideal generated by S.

Definition 2.1.10

For near-rings R and R*, a mapping f : R — R" is a near-ring
homomorphism if for allx,y € R:

flx +y) = flx) + o), flxy) = fx). fy).

In [Pilz; 1983], it has been shown that A is an ideal of a near-
ring R if and only if A is the kernel of a near-ring homomorphism.

Remark: The sums and products of ideals are defined as in rings.
However, unlike ring, the product IJ, for ideals I and J of a near-ring
need not be an ideal.

2.2 GEOMETRICAL ASPECTS OF NEAR-RINGS AND
SOME OF THEIR APPLICATIONS

Planar near-rings were defined by J.R. Clay in 1967 in hope
of extending the construction of Veblen and Wedderburn [Weblen &
Wedderburn; 1907] of a plane having unusual properties using near-
fields. It turned out that this class of near-rings has a close
connection with incidence geometry, combinatorics and experimental
designs (see [Ferrero; 1970] and [Chen; 1991]. Following the
example of circles in the Euclidean plane, Clay singled out a subclass
of planar near-rings in 1988, which has "circular" property. This class
of near-ring has been proved to have nice applications in coding
theory and cryptography (see [Modisett; 1988], [Fuchs, Hofer & Pilz;
1990] and [Clay & Kiechle; 1993]).

We review here some basic definitions and ideas of planar
near-rings and it’s connection with Ferrero pairs. For any given
near-ring N, define a relation =m on N, and define a =m b if and only
if ax = bx for all x € N. One can readily check that *m is an
equivalence relation. Following J.R. Clay, a near-ring N is called
planar if N/=m has at least three equivalence classes, and for all
a,b,c € N with a *mb there exists a unique x€N such that -
ax = bx + ¢ (see [Clay; 1992]).
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To afl); given planar near-ring N there corresponds a
uniquely determined Ferrero pair, i.e., a pair (N, @), where N is a
group and @ < Aut(N) such that if ¢ € D is not the identity
mapping, then —¢ + 14N is bijective. Actually, numerous planar near-
rings can be constructed from any Ferrero (N, @) (see [Clay; 1992]
for more details).

Let N be a finite planar near-ring with corresponding Ferrero
pair (N, @), and set

N =N\{xeN|z*m0)
and B*={N'a+b=a®+b|abeN,a=0},

where a? is the orbit of a, then the incident structure NV, B*, €) is a
balanced incomplete block design, which is to say that there are
positive integers ¥, T and A and so that (i) each block B € B”
contains exactly K elements, (ii) any given element x € N belongs to
exactly T blocks from B* and (iii) any given pair y, z € X of distinct
elements belongs to exactly A subsets from B*. The term "balanced
incomplete block design” is usually abbreviated as "BIBD". (see [Clay;
1992]).

Next, a finite planar near-ring N (and the corresponding Ferrero pair
(N, ®) and BIBD (N, B®, €) as well) is called circular if any three

distinct points x, y, z € N belong to at most one block B € B*. In this
case, a block N*a + b is referred to as a circle with center b and
radius a. The class of circular planar near-rings is a proper subclass
of the class of all planar near-rings. The circularity property provides
some important and useful additional properties of geometries,
combinatorial objects (for example, BIBD’s), codes and cryptography
systems arising from planar near-rings as well as related Frobenius
groups.

Ke and Wang [Ke & Wang; 1991] investigated the Frobenius
groups having kernels of order 64 since 64 is the smallest possible
order for a nonabelian kernel to exist (c¢f. adams [Adams; 1976]).
Among the 267 nonisomorphic groups of order 64 (cf. Hall and
Senior [Hall & Senior; 1964]), only three nonabelian ones can be the
kernels of a Frobenius group. In these three cases, only two of them
yield circular Ferrero pairs. However, both resulting circular BIBD’s
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of these two Ferrero pairs have block size three, i.e., they are
automatically circular. '

In order to get a closer investigation of circular planar near-
rings, Clay used computer to calculate circular pairs (Zp, ) where p
is a prime, 4 < p < 1000, and @ is a multiplicative subgroup of Z*
with |®] > 3 (see [Clay; 1988] or pp. 61—64 of [Clay; 1992]). These
examples are proved to be very useful for exploring the structure of
circular planar near-rings in the following few years.
Modisett characterized circular Ferrero pairs constructed from finite
fields, i.e., those Ferrero pairs (F, ®) with F being a field while @

being a subgroup of the multiplicative group of F such that || 2 3.
For more details we refer to [Clay; 1988, 1992 & 1993] and
[Modisett; 1988].

2.3 MODULES OVER NEAR-RINGS

Analogous to the notion of modules over a ring, we have the
notion of ‘modules over a near-ring’ defined in the following way.

Definition 2.3.1
A near-ring module R™ (briefly M) over a ring R is a pair
(M, 8) where M = <M, + > is a (not necessarily commutative) group

and 6: RxM — M is a mapping such that if 6(r, m) is denoted by rm,
then the following conditions hold:

@) (ry+ r) m =rym + rgm, (i) (rjrg) m = ry (rgm)
forallry,ro € R and m € M.

If R is a near-ring with 1 and 1.x = x for all x € M, we say
that R is a unitary near-ring module.

Example 2.3.2

(i) A near-ring R is a near-ring module over itself, denoted by
RR,

(ii) ~ For any group G = <@, + >, G is a unitary near-ring module
over Ty(G).
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Definition 2.3.3

A mapping f: M — M" between left R-modules M and M" is
called an R-module homomorphism (or for short, R-homomorphism)
ifforall,x,y e M,r € R:

flx +y) = flx) + f(y), flrx) = rf(x)

Definition 2.3.4
(i) A subset A of an R-module (that is, a near-ring left R-
module) M is an R-subset of M if RA = {ra:reR,acA} C A.

(i) An R-subset A is an R-subgroup of M if <A, +> is a
subgroup of <M, +>.

(iii) An R-subset A is an R-submodule. of M if

() <A, +> is a normal R-subgroup of <M, +>;

b) rim+a)-rmeA forallreR,a€ A me M.

Remark: The intersection of an arbitrary collection of R-subsets
(R-subgroups; R-submodules) of an R-module M is an R-subset
(R-subgroup; R-submodule). The intersection of all R-subsets
(R-subgroups; R-submodules) containing a subset B of M is called
the R-subset (R-subgroup; R-submodule) generated by B. If a € M,
then Ra is an R-subgroup of M.

Definition 2.3.5

Let M be an R-module over a near-ring R. M is called simple
if M has no proper non-zero R-submodules. In particular, if
rM = gR, simple R-submodules of pR are called simple ideals of R.
M is called irreducible if M contians no proper non-zero R-subgroups.

Remark: Every R-submodule is an R-subgroup. The converse,
however, need not be true. Hence every irreducible R-module is
simple, but every simple R-module is not necessarily irreducible.

Definition 2.3.6

Let A be an R-submodule of an R-module M (respectively
ideal of R). The factor group M/A (respectively R/A) can be regarded
as an R-module (respecitvely near-ring) called the factor module
(respectively factor near-ring) by defining r(m + A) = rm + A
(respectively (r; + A) (ry + A) = ryry + A). The natural group
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epimorphism 0 : M — M/A (respectively 8 : R — R/A) becomes an
R-epimorphism (respectively near-ring epimorphism).

Definition 2.3.7

Let {M; : i € I} be a family of R-submodules of an R-module
M. Then M is the direct sum of the family {M; :i € I} if the additive
group <M, +> is the direct sum of the normal subgroups
{<M;,+>:i € I}. In this case, we write M = 3 ® M,.
iel

Using the standard arguments, the following result can be proved.

Proposition 2.3.8

(i) Let {M; :'i € I} be a collection of R-submodules of an
R-module M. The subgroup H of the additive group (M, +)
generated by

iel
is an R-submodule of M and H = 3 M; where Y M; denotes
iel iel .
the collection of all finite sums of the elements from M".
() M=3YOM © M=3 M,
iel iel
and MM = 3 M;=(0)foreachiy€l.
= \
(i) M=3YoeM o M=73 M,
iel iel
every m € M has a unique representation m = 2 my
m; € M;, and every element of M; commutes with every
element of MJ-, foralli,j, i #j.
A submodule A of M is a direct summand if there exists a
submodule B such that A®B = M. If (0) and M are the only direct
summands, M is indecomposable.

Using properties of submodules and direct sums, the
following important near-ring analogue of the classical Wedderburn |
structure theorem for ring modules can be proved.
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Theorem 2.3.9 [Pilz; 1983]
For a near-ring R-module M the following assertions are
equivalent:
(1) Every R-submodule of M is a sum of simple submodules;

(2) M isasum of simple submodules;
(3) Misa direct sum of simple submodules;

(4) Every submodule of M is a direct summand.

Definition 2.3.10

" A near-ring module M is called semisimple if M satisfies one
of the conditions of the above theorem. A near-ring R is called -
semisimple- if pR is semisimple. Therefore, a near-ring R is
semisimple if and only if R is the direct sum of simple left ideals. If R
has an identity 1, the number of summands is finite.

Concluding Remarks: One of the most important questions in the
structure theory of near-rings is to determine conditions which
characterize semisimple and “strictly semisimple” near-rings (that is,
near-rings which are direct sum - of irreducible ideals). Such
investigations have led to the discovery of many unring like
properties of near-rings. For earlier developments in this direction
we refer to [Pilz; 1983].
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ABSTRACT

We introduce semi-weakly semi-continuous mappings and
investigate some of their properties.

1. INTRODUCTION

In 1985, T. Noiri and B. Ahmad [Noiri & Ahmad; 1985]
introduced the concept of semi-weakly continuous mappings and
studied their several properties. The purpose of the present note is to
introudce a new class of mappings called semi-weakly semi-
continuous mappings and investigate some properties analogous to
those given in [Noiri & Ahmad; 1985] and [Noiri; 1974] concerning
semi-weakly continuous and weakly continuous mappings
respecﬁvely.

2. PRELIMINARIES

Let X be a topological space and let S be a subset of X. The
closure and the interior of S are denoted by CI(S) and Int(S)
respectively. A subset S is said to be semi-open [Levine; 1963] if
there exists an open set U such that U < S < Cl(U). SOX) will
denote the class of all semi-open sets in a topological space X. Te
cmplement of a semi-open set is called semi-closed. The union of all
semi-open subsets of X contained in S is called the semi-interior of S
and denoted by sInt(S). The intersection of all semi-closed subsets of
X containing S is called the semi-closure of S and denoted by sCI(S).

1991 Mathematics Subject Classification: Primary 54C; Secondary
54H. ,

Keywords and Phrases: Topological space semi-open set, semi-
closed set, semi-weakly semi-continuous mapping, irresolute, semi-
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weakly continuous mapping, S-connected space, Ty-space, semi-Ty
space, Urysohn space, s-Urysohn space.

Throughout this note, X and Y denote topological spaces and by
f:X > Y we denote a mapping f of a space X into a space X.

3. SEMI-WEAKLY SEMI-CONTINUOUS MAPPINGS

Definition 1

A mapping f : X —> Y is called semi-weakly semi-continuous
(briefly s.w.s.c.) if for each point x € X and each semi-oepn set VC'Y
containing f(x), there exists a semi-open set U € X containing x such
that f(U) C sCI(V).
Definition 2

A mapping f: X — Y is called an irresolute if and only if the
inverse image of each semi-open set in Y, is a semi-open set in X.
Theorem 3

[Latif; 1993]. A mappingf: X — Y is called an irresolute if
and only if for each point x € X and each semi-open set V containing
f(x) there exists a semi-open set U containing x such that fAiU) C V.
Theorem 4 ‘

Let f: X —> Y be an irresolute. Then [ is semi-weakly semi
continuous.
Proof

By using theorem 3, the result follows immediately.

The following example shows that the converse of theorem 4
may not be true in general.
Example 5

Let X = {1, 2, 3}. Let T* = {¢, {1}, X} and T = {¢, {2},
{1, 2}, X} be topologies on X. Let Id y : (X, T") — (X, T) be the

identity map. Then Idy is not an irresolute. We note that Idy is semi-
weakly semi-continuous because sCI{2} = X in (X, T).

Definition 6

[Noiri, Ahmad; 1985]. A mapping f: X — Y is called semi-
weakly continuous (briefly s.w.c) if for each point x € X and each
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open set V & Y containing f(x), there exists a semi-open set U € X
containing x such that f(U) ¢ sCI(V).

Theorem 7

Let f: X — Y be semi-weakly semi-continuous. Then f is
semi-weakly continuous.

Proof
Note that every open set is a semi-open set.

The next example reveals that the converse of theorem 7 may
not be true in general.

Example 8

Let X ={1,2 8} and ¥ = {1, 2, 3}. Let T = {4, {1}, X} and
T" = {4, {1}, {2}, {1, 2}, Y} be topologies on X and Y respectively.
Definef: X = Y by f(1) = f(2) = 1, f(3) = 3 be the identity map.
Then clearly fis semi-weakly continuous. Note that f(3) = 3 € {2, 3}
€ SO(Y). The semi-open sets in X containing 3 are only {1, 3} and X.

Now f({1, 3}) = {1, 3} and sCI({2, 3}) = {2, 8}. Thus f({1, 3}) &
sCI({2, 3}). Hence f is not semi-weakly semi-continuous.

Theorem 9

Let f: X — Y be semi-weakly continuous. Then
sCI[f-1 0] c fHCIWN)

for each semi-openset VY.

Proof

Suppose there exists a point x € sCI[f-1(V)] — fCI(W)].
Then f(x) ¢ CI(V). Hence there exists an open set W containing f(x)

such that W m V = ¢. Since V is semi-open, we have V. sCI(W)=¢.
Since f is semi-weekly continuous, there exists a semi-open set

Uc X contianing x such that flU) < sCI(W). Thus we obtain
f() NV = $. On the other hand, since x € sCI[f-1(V)], we have
UNfYV) # ¢ and hence f(U) NV # ¢. We have a contradiction.
Therefore we have sCIL[f-}(W)] c -1 {CIW].
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Theorem 10
Let f:X — Y be semi-weakly semi-continuous. Then
sCUf WM < - sCIN).
for each semi-openset VCY.

Proof

Suppose there exists a point x € sCI[f-1(W)] — f-UsClW)].
Then f(x) ¢ sCI(V). Hence there exists a semi-open set W containing

f(x) such that WAV=4. Since V is'semi-open, we have VsCI(W)=¢.
Since f is semi-weakly semi-continuous, there exists a semi-open set
U C X containing x such that f(U) < sCI(W). Thus we obtain
f) AV = ¢. On the other hand sinec x € sCI[f-1(V)], we have
UNf1(V) # ¢ and hence f(U) NV # ¢. We have a contradiction.

Thus we have sCI[f-1(W] C f-UsCI(W)].

Theorem 11

Prbve that a mapping f : X — Y is semi-weakly' semi-

continuous if and only if for every semi-open set T in Y f1(T)
sInt[f-1(sCI(T))].

Proof

Let x € X and T a semi-open set containing f(x). Then
fx) € F-UT) < sintlf-1(sCIU(T))]. Put S = sInt[f-1(sCI(T))]. Then S is
semi-open and f(S) C sCI(T). This shows that f is semi-weakly semi- -
continuous.

Conversely let T be a semi-open set of Y arid x € f~1(T). Then
there exists a semi-open and f(S) < sCI(T). Therefore we havex € S
C fUsCI(T)] and hence x € sInt[f-1(sCI(T))]. This proves that f~1(T)
C sint[f-1(sClU(T]. ’

Theorem 12

Let f: X — Y be a mappingand g : X = X X Y be the graph

mapping of f, given by g(x) = (x, fix)) for every point x € X, If g is
semi-weakly semi-continuous, then [ is semi-weakly semi-
continuous.
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Proof

Let x € X and T be any semi-open set contianing f(x). Then

by theorem 11 of [Levine; 1963], X x T is a semi-open set in X x Y
containing g(x). Since g is semi-weakly semi-continuous, there exists

a semi-open set S containing x such that g(S) € sCI(X x T). It
follows from lemma 4 of [Noiri; 1978] that sCI(X x T) ¢ X x sCI(T).

Since g is the graph mapping of f, we have f(S) c sTI(T). Thls shows
that f is semi-weakly semi-continuous.

Theorem 13

A space (X, T) is semi-T', if and only if for every x, y € X such
that x # y, there exist disjoint semi-open sets U and V such thatx €
Uandy e V.

Theorem 14
Iff: X — Y is a semi-weakly semi-continuous mapping and Y is
semi-T,, then the graph G(f) is a semi-closed of X x Y.

Proof

Let (x, y) € G(). Then, we havey ¢ f(x). Since Y is semi-T,,
there exist disjoint semi-open sets S and T such that f(x) € S and
y € T. Since f is semi-weakly semi-continuous, there exists a semi-
open set R containing x such that f(R) < sCI(S). Since S and T are
disjoint, we have T M sCI(8) = ¢ and hence T N AAR) = ¢. This
shows that (R x T) N G(f) = ¢. It follows from theorem 2 and 11 in
[Levine; 1963) that G(f) is semi-closed.

Definition 15

By a semi-weakly semi-continous retraction, we mean a semi-
weakly semi-continuous mapping f: X > A, where AC X and f/A is
the identity mapping on A.

Theorem 16

Let Ac X and f: X - A be a semi-weakly semi-continuous
retraction of X onto A. If X is a Hausdorff space then A is a semi-
closed set in X,
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Proof

Note that f is semi-weakly continuous by theorem 7. Now the
result follows from theorem 4 of [Noiri & Ahmad; 1985].

4. S-CONNECTED SPACES

Theorem 17
(Thompson; 1981]. A space X is said to be S-connected if X

-can not be written as the disjoint union of two non-empty semi-open

sets.

It is already known that S-connectedness is invariant under
semi-continuous surjections. Our next result shows that S-
connectedness is invariant under semi-weakly semi-continuous

surjections.

Theorem 18

If X is an S-conected space and f: X — Y is a semi-weakly
semi-continuous surjection then Y is S-connected. :

Proof
Suppose Y is not S-connected. Then there exist non-empty

. semi-open sets V; and V, of Y such that V; NV, = ¢ and VUV, =Y.

Hence we have f-1(V,) n f-1(Vy) = ¢ and fU(V) U UV, = X.
Since f is surjective, f-1(V,) # ¢ for i = 1, 2. By theorem 11, we have

FUVy) < sInt{f-YsCUVN] because [ is semi-weakly semi-continuous.

Since V; is semi-open and also semi-closed, we have

V) C sInt[f~Y(V))]. Hence f~1(V}) is semi-open for i = 1, 2. This
implies that X is not S-connected. This is contrary to the hypothesis
that X is S-connected. Therefore Y is S-connected.

Definition 19

A space X is called a Urysohn space if for every pair of
distinct points x and y in X, there exist open sets U and V in X such

thatx € U,y € Vand CI(U) N CI(V) = ¢.

Theorem 20

If Y is Urysohn space and f : X — Y is a semi-weakly
continuous injection, then X is semi-T; space.
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Proof

For any distinct points x,, x, € X, we have f(x;) # flx,)
because f is injective. Since Y is Urysohn, there exist open sets V;
and V, in Y such that f(x;) € Vy, f(xy) € V5 and CI(Vy) N Cl(Vy) = ¢.
Then sCI(Vy) N sCl(Vy) = ¢ since sCl(Vy) < CUV)) forj = 1, 2.

Hence we have sInt[f-1(sCI(V))] M sIntlf~1(sCl(Vy)] = ¢. Since f is
semi-weakly coontinuous, so by theorem 1 of [Noiri & Ahmad; 1985],

we have x; € f'l(VJ-) C sInt[f'l(sCl(Vj))] for j = 1, 2. This implies
that X is semi-T,.
Definition 21 _

A topological space (X, T) is said to be s-Urysohn if for each
pair x, y of distinct points in X, there exist U, V € SX) such that
x € U,y € Vand Cl(U) N CU(V) = ¢.

Theorem 22

IfYisa s-Urysohri space and f : X —> is a semi-weakly semi-
continuous injection then X is semi-T,. '

Proof
‘ For any distinct points x, y € X we have f(x) # f(y) because f
is injective. Since Y is s-Urysohn there exist semi-open sets U and V
in Y such that f(x) € U, fiy) € Vand Cl(U) N CI(V) = ¢. Hence we
have sInt[f~1(sCI(UN] M sInt[f-1(sCl(V))] = ¢. Since f is semi-weakly
semi-continuous, so by theorem 11 we have x € f I C
sInt[f-1(sCl(U))] and y € f~L(V) C sInt[f-1(sCI(V))]. This implies that
X is semi-T,.
Theorem 23 -

If X is an S-connected sapce and f:X — Y is an irresolute
mapping with the semi-closed graph, then fis constant.
Proof .

Suppose that f is not constant. Then tere exist distinct points

x, y in X such that f(x) # f(y). Since the graph G(/) is semi-closed and
(x, f(y)) is not in G(f), there exist semi-open sets U and V containing

x and f(y), respecitvely, such that f(U) NV = ¢. Since f is irresolute,
U and f-1(V) are disjoint non-empty semi-open sets. It follows from
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theorem 17 of [Thompson; 1981] that X is not S-connected.
Therefore, fis constant.

Corollary 24

Let X be irreducible. If f: X — Y is an irresolute mapping

with the semi-closed graph, then fis constant.
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ABSTRACT
In this paper we obtain further results on the structure of a finite
group G having & subgroup isomorphic to the centralizer of an involution in
F4(2) such that the image of this involution in G is not central.

1. INTRODUCTION

The centre of a Syllow 2-subgroup, S, of the Chevalley Group
F,(2) is the four-group. Following [3], we denote the three
involutions of this centre by xq;, x94, X9;X94. According to section-2 of
[3], we have, S = IIS;,i=1,2,..,24; M = D,, = I1 S;, i #10;
Dy =1I1S;, i # 5, where, S; is a subgroup of order 2 generated by x;.
The centralizer of x5, in F,(2) is generated by the x;’s, w{, w, and wg
subject to the action of w;’s on the xJ’s given in Table 1, the
commutator relations between x; and x; given in Table 2, and the

2_ %= 2
relations w) =W, = wg = (w1w2)4 = (w2w5)3 = (wwy)? = 1.
We are investigating a finite group G 'in~ which, the

centralizer of a noncentral involution y; is isomorphic to C(x9;) in
F,(2). In Husnine [3], the following results have been proved.

Theorem A ([3)])

Let G be a finite group with a noncentral involution y; such
that C = Cz(yy) is isomorphic to Cp (2)(x21) = C,. Identify C with C;.
Then the following hold:
(i) Ng(8) is a Sylow,-subgroup of G and [Ng(S) : 8] = 2
(ii) Ng/M =Y4and Ng(M) C Clxgy).
(i)  Sisits own normalizer in N;(M). In particular no two of the
involutions x4, X94 and x9;x,, are conjugate in Ng(M).
For necessary details about the group F,(2), we refer the reader to
[3]. We, however, mention the following results from [1] and [2],
which are repeatedly used in this paper.
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(1.1) [1). For any three elements x, y, z of a group G, we have
[x,y2] = [x,51% [x, 2]
(1.2) [2]. Let x be an involution of S. Then x is conjugate in S to an
involution of one of the forms [T x; or @ (1 x;) where  is one of the
sets listed in Table 3 and O is ltehe graph allletomorphism of F 4(2).
The integers c(I) listed in Table 3 is such that the number of
conjugate elements of iI;II x;in S is 2¢@.

Table - 3

1 e I e I e I <) I el
24 0 a7 4 N8 7 hi1s21 7 5,717 9
21,24 0 p17,21 4 1821 7 W16 8 br11a1 9
23 1 [9,16 5 178,16 7 h.16,18 8 .7.16 10
1,23 1 16,21 5 17.8.16,21 7 his 9 57,621 10
17,23 2 b5 .7 8,14 9 hisas 9 k.11 11
o2 2 b4 7 b 6 12 10 k5,10 12
21,22 2 b3 8 21 6 h11 1 7
17,22 3 18, 5 5,17 7 W7 10 2,24 7
16,20 4 1821 5 .16 6 b 8 221 7
b0 3 h718 6 k.16.21 6 PBa421 8 221,24 7
20,21 3 li6,18 7 k617 7 pa421,24 8 pus 8
17,20 4 h518 8 P15 9 bas 10 |2.18.24 8
16,20 4 l1418 9 lo.14 7 b 7 pa7 8
16,17,20 4 13,18 6 k.15.21 7 B2l 7 R2,17.24 8
15,20 6 13,1824 6 f5.1417 8 a7 8 jp17.18 9
19 4 f31s20 7 b4 9 |16 9 |14 10
19,21 4 13,1819 8 [5,12 10 f5.15 7 lka4as 10
17.19 5 R 5 k.7 8  [515,21 7 ka3 10
16,19 6 Js.21 5 §6.7.21 8 515,17 8 |18 10
15,19 5 |s.17 5 ),7,17 g8 1516 9 f10 12
15.17,19 5 Is17.21 5 l6.7.17.21 g b4 8 P71 11
15,19,20 5 |86 7 k115 10 b.14,21 8 123 8
14,19 6 Is15 6 M 6  |5.14.17 9 324 9
14.19,22 6 [8,15.21 6 M.24 6 514,16 9 a2l 9
14,15,19,20 6 [8,15,16 7 hat 6 5141516 9 [23.2124 9
¢ 4 B4 9 |4,21,24 6 .7 9 2318 11
9,21 4 813 9 l.18 7 B2l 9 P37 11
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(1.3) [2]. Let x € S be an involution. Then there is an involution y of
one of the forms listed in Table 4, such that x is conjugate in Cj, te
centralizer of x91xy4 in F(2), to y or to O(y), where @ is the graph
automorphism of F,(2) defied in (2.14) of [3]. The sets F3(y), listed in
Table 4 are complete sets of representatives of the distinct conjugacy
classes of involutions in S, which are used in C3 to give S M cclcs(y).

The integers d(y) in Table 4 satisfy d(y) = |S M CClcs(Y)l-

Table 4
y Fa(y) d(y)
Xo1 . {xq;} 1
X91%24 {x31%24} : 1
X93 {x; | i = 19, 20, 22, 23} 2(24-1)
X21%23 {xq % | u € Fy(xq3) 2(24-1)
X17%93 {ILerx; | T = {17, 23}, {17, 22}, | 22(22-1)(24-1)

{16, 23}, {16, 20}, {15, 22},
{15, 19}, {14, 20}, {14, 19} }
Xg6X22 {IT;;x; | T = {17, 20}, {17, 19}, | 24(22-1) (24-1)
{16, 22}, {16, 19}, {16, 17, 20},
{15, 20}, {15, 28}, {15, 17, 19},
{15,22,28}, {15, 10, 20}, {14,22},
{14,238}, {14,16,19}, {14, 15, 20},
{14, 20, 23}, {14, 19, 22},

{14, 15, 19, 20} }

% | % 1i=5,6,89} | 2tet-n
Xg¥21 | {uxg; | u € Fy(xg)} 24(24-1)
Xgx17 {Iierx; | I=1{9,17}, {9, 16}, | 242%-1) (24-1)

{8, 17}, {8, 15}, {6, 16}, {6, 14},
{5, 15}, {5, 14} }

*g¥17%21 {uxg, | u € Falxgx )} 24(22-1) (24-1)
Xg%15 {M;epx; | T=1{9, 15}, {9, 14}, |27(22-1) (2*-1)
{8, 16}, {8, 14}, {8, 15, 16}

{8, 17}, {6, 15}, {6, 14, 17},

{6, 16, 17}, {6, 14, 15}, {5, 17},
{5, 16}, {5, 14, 17}, {5, 15, 16},
{5, 14, 15, 16}, {5, 15, 17}, -
{5, 14,16} }
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{4, 11}, {2, 13}, {2, 10},
{2, 18, 18} }

y F.(y) d(y)
Xg¥13 {IT,;x; | I = {9,183}, {9, 12}, 28(22-1) (24-1)
28(22-1) (24-1) {8, 11}, {8, 18}, '
{6,10}, {6,12}, {5, 16}, {5, 11} }
vx18 {xlg} 25
x18%21 {x1gx91} 25
X14%18 {xixlg | 1 =14, 15, 16, 17} 26(24_1)
X13%18 {x;x15 | i = 10, 11, 12, 13} 26(24—1)
x13x18x24 {ux24 I u e F3(x13x18)} 26(24_1) '
x13%20%18 {dL; ¢ xp) xy5 | I = {18, 20}, 27(22-1) (24-1)
{13, 19}, {12, 22}, {12, 19},
{12, 22, 24}, {11, 23}, {11, 20},
{11, 23, 24}, {10, 23}, {10, 22},
{10, 28, 24}, {10, 22, 24} }
Xy {x;|i=2,4} 26(22-1)
x4x21 {ux21 l ue Fa(xq)} 26(22"1)
x4x24 {ux24 I u e F3(x4)} : 26(22—1)
X4%21%24 {uxg gy | u € Fylx,)} 26(22-1)
X4X16 {IT;rx; | I={4,16}, {4,15}, | 2%@22-1)2
{2, 17}, {2, 14}, {2, 17,24} }
X4%q {uxy | u € Fg(x,)} 210(22—-1)
x4x18 {uxlg | uec F3(x4)} 27(22—1)
| *4%18%21 {ux gxe; | u € Fylx,)) 27(22-1)
X4%16%18 {dLerx) x5 11 = {4, 16}, 28(22-1)2
{4, 15}, {2, 17}, {2, 14} } ,
X4X19 {dL;px; x5 1 T = {4, 12}, 210(92—1)2
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h Faly) - d(y)
X3%y {IL;px; | x5 | T = {3, 4}, 28(2-1)2(1+2.2)
{3, 2}, {1, 14} }
X3X4Xo4 {uxg, | u € Fylxsxy)} 28(2-1)2(1+2.2)
X3¥4X91%X94 {uxgixgy | U € Falxgx} 28(2-1)2(1+2.2)
XgX X135 {uxg | u € Falegry)} 2102-1)2(1+2.2)

We investigate the action of Ng(S) on S in the next two
sections. For this we denote by Z,(S) the centre of S and by Z;(S) the
inverse image of the centre of S/Z;_(S) in S for i > 1. Thus the
action of N;(S) on Z(8S) is already given in Lemma (38.2) of [3].

2. THE ACTION OF N(S) ON Z 4(8):
Here we prove the following result:
Theorem B

Let G be a finite group with a noncentral involution y; such
“that C = C;(y,) is isomorphic to C(xq91) in Fy(2). Identify C with this

rcentralizer. Then there exists an element u in Ng(S)\S such that

v u u u . 92
Xg) = Xgg Xgy = Xgj, Xgg = X7 and X1, = Xo3 U € MM Ds.

Remark

The action of the involution to on Z,(S) turns out to be the

same as that of the automorphism @ of F,(2) mentioned in (2.14)
section 2 of [3] as can be verified directly from Table I. Hence the
importance of Theorem B.

Lemma (2.1)
Z(8) = 8918545 Zo(S) = 8§17893Z1(8); Z5(S) = 84599Z5(S);
Z(S) = S155890Z5(S); Z1(M) = 8178912945 ZoM) = S1S93Z,(M);
Z4(8) = 815899ZoM); Z1(Dg) = S93591S94; Z9(Dg) = 8178992 1(Ds);
Z3(Dg) = S15S9022(D5);
Proof

This is directly verified from Table 2.

From now onwards, we write T for N;(S). So we have:
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Lemma (2.2)
There is an element u in T\S, such that xlf7=x23 and x;3=x17
u _ d u
or x17—x23x21 an x23 = x17x24.

Proof
Let u € T\S. Then by Lemma (3.2) of [3], we have, xgl = Xoy»

X9, = X313, M* = Dy and (Dg* = M. Thus Z,(M)* = Z1(Dp) and
Z(Dg)* = Z(M). Since u normalizes Z(S), Lemma 1 gives us,
u u ux

Xoy = X172, 2 Z1(8). If x5 = x17X9) OF X 7%9 %9y, then x,510 = %47 or
x17%94 from Table 2 and ux;; acts upon x5; and x,; in the same
manner as u. We write u for ux;, in such a case. Now x;3 = X7

implies x';7 is a conjugate of x93 by u?. Since u? € S, we must have

x'{,l = Xg3 OF Xg3%Xg, from Tables 2 and 3. If x'{,l = Xqg¥q4, then uxg

. } . u . . u
conjugates x17 t0 x93. Again x,, = XX, implies (xy7x90)* = xo3 or

. u u
Xoa¥oy 1.6 X[, = Xg3Xoy OF XogXgiXos. If x, = X9gx91x94 then uxs

conjugates x;; to x93%9;. In both the cases uxy acts upon xyy, X94, x93
in the same manner as u. We write u for uxy in such a case. This
proves the lemma.

Lemma (2.3)
There is an element u in T\S, such that x;3 = X7 le47 = x23

and u? e M N Dy,

Proof

Let u be an element of T\S, satisfying Lemma (2.2). Then
(Zoy(MD))* = Zy(Dg) and u normalizes Zy(S) = Z{(M) Z(Dg). Thus

’IG = X992, 2 € Z5(S). Now from Table 2, x'f7 =[x, xgl* = [x'f, X992]

by (1.1). But x'f eMn D5 by Lemma 3.2 of [3].. Hence by Table 2,

X

[x'f, 2] =1 and [x'f, X99] = 1, x93 or xg4. This forces [xlf, Xg9)? =
(2% x50, since 2€2,(S). Thus x¥. = [x" x5]. Thi Mo e
xl,x22 , Since 2 2 . us x17—- xl,x22 . 1S means x17 = x22 29
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u

Now let xlf7 = X9q%9;. Then x;l = XggXgg¥g) = (Xg9X9;)™ 2 by Table 2.
~ This implies Xq9 is conjugate to x9o%q; in S. But according to Table 3,
" these two elements belong to different conjugacy classes .in S.
Thus xlll7 = X93. |

Finally, we note that u, € S and centralizes x;; and x95. But
Cs(x,7) = M and Cglxyg) = Dj5. Hence u? € M M Dy This proves the
i.emma and thereby Theorem B is established.

3. ACTION OF N;(S)/S ON Z4(S)

We prove the following theorem in this section:

Theorem C

, Let G be a finite group with a noncentral involution y; such
that, C = C4;(y;) is isomorphic to the centralizer of x5, in F,(2). We
identify C with this centralizer. Then the following hold:

(i)  There is an element u in NG(Sj\S, such that u acts on Z,(S)
as the graph automorphism of F(2), and u? does not involve
X1, X9, X3, Xy, X5, Xg» Xgy X105 X115 X2
(ii)_ There is an element w in Ng(M), such that w acts upon Z,(S)
as wyg in Fy(2).
Lemma (3.1) ; _
There is an element u in N;(S)\S such that u acts on Zy(S)

. u .
as in Theorem B and x,, = x¢.

Proof

Let u be as in Theorem B. Then u permutes M and Dy. Thus
u.permutes Zo(M) and Zo(Djy). Since u normalizes Z,(S), we have,

due to Lemma (2.1), x;2 = x165, 2 € Zo(S). Now, if x93 occurs in z, we
2

have [x5,x;2] = [x5,X94] = x9, by (1.1) and Table 2. Thus [ch,x;‘2]=x21

which means x9; = [x;, X99%93(Q) x9,(B)], @, B € {0, 1}. But xgeDs.

2
u u . . . . . .
Thus, x9; = [x;, x,,] which implies x,, is conjugate to x9;x99 in S.

Since this contradicts Table 3, xo5 cannot occur in z.

36




If-xl-, occurs in 2, x;‘z = X16%17W, W € Z{(S). Thus ux,
conjugates xg5 t0 xjgw and acts on Zy(S) as in Theorem B according
to Table 2. We write u for ux;. Thus, x;‘z = x6w. If x5, occurs in w,
then ux,; takes x99 t0 x5 or x gxo, and acts on Zy(S) as in Theorem
B. We write u for ux;;. Thus, :’c;2 € {xg x1gXgq)- Let x;‘z = X1gXoy4.
Then uw,u~! takes xg5 to x53%,; and centralizes x5; and xg,. This
contradicts Table 4. Thus x;‘Z = x; and the Lemma is established.

Lemma (3.2)

There is an element « in Ng(S)\S such that u acts on Z,(S)
as in Theorem B, and permutes x5 and xq4.

Proof
2
Let u be as in Lemma (3.1). Then xl;6=x;2, where u2e MND;,.

Thus, from Table 2, x|, = %55%93(c) xo4(B), &, B € {0, 1}. Now from

Table 2, uxy(cxg(B) takes x g to x59 and xyq to x;5 and acts on Zy(S)
as u. We write u for uxy(at) xg(f3) and the lemma is proved.

Lemma 3.3)
There is an element u in Ng(S)\S, such that u satisfies

Lemma (3.2) and :’clz‘0 = X1g.

Proof

Let u be as in Lemma (3.2). Then u normalizes Z3(S) and
Z4S) and permutes Z3z(M) and Z3(Dg). Thus by Lemma (2.1),

;0 = X152, 2 € Z3(8). If x95 occurs in z, then, [x;, x;‘o] = x5, by (1.1)

-1
and Table 2. Thus x; takes xg9q to x9p%g;. This contradicts Table 3.
-1
If x9o occurs in z, then xg conjugates Xxoq 10 Xgg%g;, again

X

contradicting Table 3.

If x;7 occurs in z, then x;O = X5%17W, W € S1657,S94. Thus

uxs conjugates xgq to x;5w and satisfies Lemma (3.2). We write u for
uxs. If xo; occurs in w, we take ux;, for us and call it u. This u

satisfies Lemma (3.2) and x;o = X155, S € 816594
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Let xgo = X5%94. Then uwyu~! conjugates xy, to x9 %9, But
uwou-! centralizes x,; and x,,. This contradicts Table 4 since x, is
conjugate to xo3 and x9.x9p IS conjugate to xgxe3 in

Let x;O = x,.%,5. Then ux,woul is in Cg and conjugates x,
to x51x94. This also contradicts Table 4.

Finally let x;o = X15% X9 Then uwou1 conj}igates X17%9q to
X1g%90- BUt x;7%o¢ is conjugate to xigx9e and xygx99 is conjugate to
X17X93 as shown in Tanle 4. This again is a contradiction since
uwqu~lis in C3. Hence the Lemma.

Lemma (3.4)

There is an element u in Ng(S)\S such that u satisfies
Lemma (2.2) and permutes x5 and xy,.

Proof 2

Let u be an element as in Lemma (3.3). Then .7c15 = xzo’
uw2eMn Dy and u? centralizes %16 and x9o. Thus, from Table 2, and
(2.8) of [3], we find that x;, x5, x5, Xg X0, X1; cannot occur in u2,
Thus, x\, = x59%g3 () x9,(B) where &, B € {0, 1. Now ux,(c) xg(B)
conjugates x;5 to xoq and satisfies Lemma (8.3). Thus lenammg
ux, (o) xg() as u, we have proved the Lemma.

Proof of Theorem C

Let u be an element in NG(S)\S such that u satisfies Lemma
(3.4). Then u? centralizes x; for i = 15, 16, 17, 20, 21, 22, 23, 24.
Thus, from Table 2, u2_cannot involve x; fori = 1, 2, 3, 4, 5, 6, 8, 10,
11, 12.

Finally, we write w = u~lw.u. Then w acts on Z;(S) as w;, due to
Lemma (3.4) and Table 1. This proofs all parts of the Theorem.
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ABSTRACT

In this paper we improve the result of Husnine [4] on a group G
with a noncentral involution y; such that the centralizer of y; in G is
isomorphic to the centralizer of a central involution in the Chevalley Group
Fy2). : Co

4

ABSTRACT

The centre of a Syllow 2-subgroup, S, of the Chevalley Group
Fy2) is the four-group. Following [8], we denote the three
involutions of this centre by x5;, x94, X91%94.

According to secton 2 of [3], we have S = II S, i = 1, ..., 24;
M=Dy=I1S;, i # 10; D5=I1S,, i # 5, where, S; = <x;> is a subgroup
of order 2. The centralizer of x9; in F4(2) is generated by the x;’s, w,,

wy, and wy subject to the action of w;’s on the x;’s given in Table-],
the commutator relations between x; and x; given in Table-2, and the

relations wi = wg = wg = (wwy! = (wawg)3 = (wywy)? = 1 as stated
in {3].
In Husnine [4], the following result has been proved:

Theorem C

Let G be a finite group with a noncentral involution y; such
that, C = Cgz(y,) is isomorphic to the centralizer of xy, in F(2). We
identify C with this centralizer. Then the following hold:

(i) There is an element u in Ng(S)\S, such that u acts on Z,(S)
as the graph automorphism of F(2), and u? does not involve

X1y X9, X3, Xys X5, Xy Xgy X100 X115 X19-
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(ii) Thereis an element w in Ng(M), such that w acts upon Z;(S)
as wygin Fy(2).

We refer the reader to [3], for the description of the group Fy(2). All
notations are standard and follow [1] and [2]. The only information
we are quoting from [2] on the conjugacy of involutions in C(xy;) in
F4(2) is as follows:

(1.1) [2]. Let x be an involution in S. Then x is conjugate in C|,
C, = CF4(2) (x97) to an involution y of one of the forms listed in

~Table-5. The sets F;(y) satisfy S m cclcl(y) = ve;‘Jl(y) (8 cclcs(v)).

Throughout the remainder of this paper, we shall refer to the
Tables 1 & 2 of [3], Table-3 and Table-4 of [4] and Table-5 of this
paper by their numbers without refering to the papers. -

Table - 5
y ' CF»
X1 {xa1}
%o, {x; | i = 18, 23, 24}
X91%94 {uxg) | u € Fi(xg )}
|EXE {x, | i=13,17}
*17%24 {11, x; | 1=117,24},{17,23},{13,18},{13,23} }
*16%22 {11, _x; | I={16,22},{13,24},{13,20},{17,18},
(13,18, 24}, {183, 23, 24}, {13, 18, 20} }
Xq {x;|i=4,9}
*9*21 {uxgy | u € Fy(xg)}
Xo¥17 {10, px; | I=19,17}, {4,18}, {4,24}}
Xg¥17%21 {ux2.1 fu= Fl(x9x17)}
XgX15 {I;erx; | 1= {9,15), {9,138}, {4,12}, {4, 16},
{4, 16, 18} } '
% {x;|i=317)
X7%Xg4 {xgrgy, 27 %94}
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y Fi()

X7X23

Xq7Xg

X7%gX91

X7XgX15

x4x7

{0, x; | T = {7,23}, {3,18}, {8,22}, {3,24},
(3,21, 24} }

{Topx; | 1= {7,9%, (8,4}, (3,71}

{x7xgx91, Xg%4%91, X3X7Xg4} '

{H;ezii | I ={7,9,15}, {3,4,18}, {3,7,22},
{3,4,24}, {3,4,21,24} }

{0, x| T=14,7),1{3,8),{3,4,7}}

act of Ng(S)/S on Zg(8S).

We prove the following result in this section.

Theorem D

that C

Let G be a finite group with a noncentral involution y;, such
= Cg(yy) is isomorphic to the centralizer of x,; in F,(2). We

identify C with this centralizer. Then the following hold:

03]

There is an element u in normalizer of S in G such that u
acts on Z5(S) as the graph automorphism of F,(2), permutes

u
Xg and X19; x7 = x18x21(a) x24(B) and xlfs = x7x21(‘3)x24 (a);

-, B e{o1}.

(i)

There is an element w in Ng(M), such that w acts upon Z5(S)
as wlo in F4(2).

Lemma (2.1)

Proof

Z4(Dg) = SgS13S18S19Z4(S); Z5(D5) = S;S5S12S15Z5(S)
Zy(M) = $,845,55,,Z(S); ZgM) = S45,55515Z5(S).

This is verified by direct calculation from Table-2, keeping in

view (2.8) of [3] and (2.1) of [4].
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Lemma (2.2) :
There is an element u in Ng(S) such that u satisfies

u
Theorem C and x4 = x4

Proof

Let u be an element of Nz(S) such that u satisfies theorem C.
Then u normalizes Z5(S) and maps Z,(Dg) onto Z,(M). Thus, due to

(2.1), we must have xlfg = xg(0) 3P x (M 2,2 € Z)(S); a, B, v €
{0, 1}. If o # 0, we have, by Table-2, [x18, xlfg] = X93. This implies
[xllls, x1g] = xy7 which means x4 is conjugate to x;;x,9 in S. This

contradicts Table-3. Hence 0.=0. Thus we have xlll9 = x13(B) x4, 2,
-1
z € Z,8). If B # 0, we have, [x4, xlfg] = x,, which means [x: » X10]

= x,3. This implies, x4 is conjugate to x;9x93 in S, a contradiction to

Table-3. Thus 3 = 0. Now y cannot be 0. So, xlllg = x142, 2 € Z4(8).
-1
If x5 appears if 2z, then [xs, xZIQ] = x,¢%17- This implies xg

. X4
conjugates x1g t0 X;gXgoXog. But (x;gxgexeg) “® = xy9x5,. Thus x4
becomes a conjugate of x;4xy;, a contradicton to Table-3. Hence x5

. . u -
does not appear in z. Let x,g appear in 2. _Theq X1g = X14%16%90(0)2",

ae{0, 1} 2’ € SS) N Cglxy). So, uxju! Conjﬁgates X19 10 X1g9%90%a3’

x1g(Qxgq(e), which is conjugate to x,4(Q®) xjg%e; in S through
xoxgxg(0). This shows x4 is conjugate in S to x;gx,; if =0, and to
X1g% 9% = (X1e¥pg)" M if =1. Thus x;q cannot appear in xlug, due to
Table-3.

22 N . . .
Now x,, = xy%.2 implies wxju~! conjugates x4 to

19
X16X19¥90¥94 Which is conjugate to x,x g Via xoxg. This contradicts

! conjugates x;q

Table-3. Thus x‘fg = x142". If 29, appears in 2’, uxqu™
to X17%19 and Table-3 is violated. Thus xlfg € x14sl7821523524. If X913

appears in xlllg, then [xg, xlfg] = x5,. Applying u~1 on both sides, we
find that x,g becomes conjugate to x;4x9; in S, a contradiction to
Table-3. Thus xl]l:g S x14317521324. Let xlIg = x14x212, Z € Sl7S24’
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then ux,3 conjugates x4 to x4z, and acts on Z(S) in the same way
as u. Writing u for ux,3, we have xlll9 = x1,%17(0) x94(B), a,B€{0,1}.
Now uwqu~! € C3 = Clxy;) M Clxyy) in G, and it conjugates x;g to
x,42 and acts on @, B € {0, 1}. Now uwu~! € C3 = Clxg;) M Clxgy)

in G, and it conjugates x4 to xog%g; (B) xgq (A). If &L # B, X1 becomes
conjugate to XgpXgy Or 10 Xo9pXg9 in Cg. But wiw, conjugates xgpxq; to
x91%23 and x; conjugates xo5x9q to xo9pxe; by Table 1 and 2. Thus xg

becomes conjugate to x4;x93. This violates Table 4. Hence x 9 € {214
x14%17%94}. Finally, if x7y = x14x17x24, then wwu~! is in Cz and

conjugates xy5x19 10 X1gX90%91 X9, Which is conjugate to x;gx17% 19 Via
x,Wy. Since w W, is also in Sy, we find that x;xx 9 becomes conjugate
to X15%19%19 in Cg. This contradicts Table 4. Hence the lemma.

Lemma (2.3)
There is an element u in Ng(S) such that u satisfies Theorem C
u u

and x4 =X14; X4 Xq

Proof
‘ 2

Let u be as in Lemma (2.2). Then xl;4 = xlllg. Thus, from

Theorem C and Table 2, we are left with xlf4 = Xig O XygXo4-

u .
Ifx,, = x1g% 14, then x9x,,, then uxg conjugates x;, to x;q, x19 to x4

and acts as u on Z4(S). We replace u by uxg in this case and call it u.
This proves the Lemma

Lemma (2.4)
There is an element u in N(S) such that u satisfies Lemma

(2.3) and xg = x3%4,(0); x4 = xgxg1 (), & € {0, 1},

Proof

Let u be as in Lemma (2.3). Then u normalizes Z5(S) and
permutes {Z,(M), Z,(Dg)}. Thus by Lemma (2.1), x;€Z4(M)r\Z4(D5)
= 84813Z4(S). Let xj = x9(0) x13(B) 2, 2 € Z,(S), o, B€{0,1}. Then
ux;gu~! conjugates xq to xgxy (). Thus by Table 3, we have
Xg = X132, 2 € Z,(S). If x4 appears in z, 5, xg] = [xp, 2] (x5, x13) =
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X15%99%94. This implies x4 is conjugate to x;gxgg%9; Via uxzu~1, which
is in S. But x;; conjugates xgxgX9pxg; t0 Xgxy;. Thus xg becomes a
conjugate of xgxy; in S, a contradiction to Table 3.

Let x55 appear in z. Then [xg, x;] = [xg 2] [xg xy3]. Thus
u~! . u~1 .
[xg ,%g]l = xy7%9;x99. This means x; conjugates xg to xgx;7x9;X99 =
(xgxgy) M. This violates Table 3.

Let x;5 appear in z. Then [x,, x;] = XjgX94. This implies xg is
conjugate to xgxgXgp = (x9x17x21)x“ in S. This contradicts Table 8.

Let x9, appear in z. Then [xg, x;] = xg4. This forces x4 to be a
conjugate of xgxo in S, a violation of Table 3.

Now let x; = x13x16x17 ((1) x21 (B) x24 (Y). Thel’l uw2u'1
conjugates xg to XgXgpXog = (x9x17x21)w‘x1x“x1° and belongs to C(xy)
in G. This contradicts Table 5. Thus we have, x; = x15%17(0) 297 (B)
xg4 (). But then, ux,(at) x;,(B) conjugates xq to xqx94(Y) and satisfies
Lemma (2.8). We write u for ux,(a) x14(B). Thus x; = x13%94 (O

2
Now xlfa = x; x91(Q) = xgxg(Q) x93(B) x94(Y) by Theorem C and

Table 2. Thus ux;3(B) x;9(Y) conjugates xq to xjgxg,(Q) x;3 to
Xg%o1(Q) and satisfies Lemma (2.3). We write u for ux,g(B) x,4(y) and
the Lemma is established.

Lemma (2.5)

There is an elemnt u in Ng(S) such that u satisfies
Lemma (2.4); xl.; = x1g%g1(0) x94(B) and xlfs = x7%91(B) xg ().

Proof

Let u be an element of N5(S) satisfying Lemma (2.4). Then u
normlizes Z,(S) and maps Z, (M) onto Z,(D5). Thus from Lemma
(2.1), x5 = x1g%1g(0) x,3(B) 24(Y) 2, 2 € Z5(S). Now [xyg, x7] = xg4(Y)

-1
by Table 2. Hence xlfg_ conjugates x, to x,xg9; (Y) which contradicts

Table 3ify = 1. Soy = 0. Now [x,, xl.;] = x,,(B) which implies x, is
conjugate to x;x9,(B) in S. Table 3 again forces B = 0. Thus

xl:; = xlgxlg(a) 2,z € Z4(S)

44




. u . . .
If x5 occurs in 2, [xy9, x;] = x9; which makes x7 a conjugate
i . . u . .
to x9xgy, if X1 occurs in z, (x4, x.] = xo) which makes x; a conjugate
. . u . .
to x7x94, if 217 Occursin z, [xy, x,1 = x9; which makes x; a conjugate

to x7x94, all contradicting Table 3. If x5, occurs in z, [x, xl.;] = Xg91X99.
. . x . . :
This means x; is conjugate to x;xgxgy = (x7x94) ' in S, violating
Table 3. Let x99 appear in z. Then [xg, xl.;] = [xg, X1gX99] = Xgo¥9y-
. . . . X X
This implies x; is conjugate to x.x gxy; = (x7x9,) ''"'® by Table 2.

This offends Table 3. If x93 occurs in z,[x5,xl;] = x94 making x;
conjugate to x;x;. This contradiciton to Table 3 leaves us with xl.; =

x1g%19 (¥) Sg1Sgy. Finally, [xg, x7] = x5 x93 if y = 1. This shows x; is
conjugate to x;x,7x94 = (Jc—,3524)xla in 3, which violates Table 3. Thus
y must be 0. We have shown, x; = x gx,1 (@) 294(B). Now x5 = x5
x5(B) x94(ct). But u? centralizes Z,(S) by Theorem C, x,, and x;4 by

Lemma (2.3), xg and x5 by Lemma (2.4). Thus, due to Table 2, u?2
cannot involve x; for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19.
So u? centralizes x; and x,5. Hence x}, = x7xg)() xg4(), and the
Lemma is proved.
Lemma (2.6)

There is an element u in N(S) such that u satisfies Lemma
(2.5) and permutes xg and x,.
Proof

Let u be an element of N;(S) satisfying Lemma (2.5). Then u
normalizes Zg(S) and permutes {Z5(M), Z5(Dg)}. Thus by Lemma

-1
(2.1), we have, xj = x5(0) x15(B)z, 2 € Z5(S). Now xg 20%  =xgxy; ()

alongwith Table 3, forces & to be 0. Also, since x'; cannot(belong to
Z(S), {3 cannot be 0. So we have xz = X192, 2 € Zg(8S).

If x)g appears in 2, then uxqu~! conjugates xg to xgxg;, Which
cs)ntradicts Table 3. If xg appears in z, x4 becomes conjugate to xgxs)
via ux qu~l, if x;5 appears in z, xg becomes conjugate to xgx;; via
uxqu~lx gx 10, if xoq appears in z, uxgu~lx,, conjugates xg to xgxo;, all
contradicting Table 3. Now, if x,5 appears in 2, xg becomes conjugate
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to xgxy; via uxgu~lx,, if x5, appears in z, xg becomes conjugate to
XgXoy Vie uxgu~l, if x,, appears in z, then ux,u~! x;, conjugates xg to
XgX17%g1, 8ll contradicting Table 3. If xo; appears in 2z, then uxg
satisfies Lemma (2.5) and xgux;s does not involve x,;. Hence by

writing u for uxg, if necessary, we can assume x;emelsSlGS”SM.
Now if x,; appears in z, xg becomes conjugate to xgx17 by uxqu=! x4,
if xg appears in z, xg becomes conjugate to xgxi;xe.(Ct), via
ux U xox 5 all contrading Table 3. Thus ng = x15%17(Q)xq,(B). But
then, uw,u~1x,,(0) conjugates xg to xgx7(Q) x91(B), & contradiction
to Table 4, if o # 0, and B # 0, since, xg is conjugate to xg in Cg, but
Xg is not conjugate to any of xgx;q, Xgx91, XgX17%2; in C3 = Cilxe) M

Cgflxgy). Hence xg = Xx,. Finally, xliz = xg . Thus from the proof of

Lemma (2.5), xlf2 = xgxo4(q). Now uxyp(at), permutes {xg, x;5} and
satisfies Lemma (2.5). We write u for uxep(ct) and the Lemma is
proved.
Proof of Theorem D:

Let u be an element of N;(S) such that u satisfies Lemma

(2.6). Then by Lemma (2.4), x; = Xx13%94(C) and xl;B = xgke(C). Let

o = 1. Thus uwu! is in Cgz(xy;) and conjugates xg to xgxy;, a
contradiction to Table 5. Thus u must permute x4 and x5.

Finally we put w = uwzu~! and the theorem is established.
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ABSTRACT

'In this paper we determine the ambiguous numbers of a subset

Q‘(\/l-l_) of the real quadratic field where Q*(\frT) is invariant under the
action of the Modular Group PSL{(2, Z), for some non square positive

rational integer n.

1. INTRODUCTION

For each non square positive rational integer n, let us define

2—pn al-
Q (\/_) {a * \/— I @ %{s a rational integer and (a, 3 2 oy= 1}

A real quadratic irrational number o = a + b \/7_1- € Q(\ln )
is called an ambiguous number if ot and its conjugate @, as real
numbers, have different signs.

Mushtaq [2] has proved that Q*(\/n_) is invariant under the
group action of G = <x,y :x% = y3 = 1>, where x(d) = -1l/Q,
y() = (a-1)/aL.
~ He has further proved that Q*(\/n_ ) contains a finite number
of ambiguous numbers and those occurring in a particular orbit of
Q*(\/n_) under the action of ¢ form a unique closed path in the coset
diagram.
Thus it becomes interesting to know the actual number of

ambiguous numbers in Q"(\/n_) as a function of n on one hand and
the number of distinct closed paths formed by these numbers on the
other hand.

In this paper we attempt to attack the fust part of the
problem.
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The notation is standard and we follow [1] and [2]. In

particular, for any p_ositive rational integer n, T(n) denotes the
number of positive divisors of n and for any real number n, the
largest rational integer not greater than n is denoted by [r].

We start with the following simple result whose proof is
_trivial. '
Lemma 1

For any non-square positive rational integer n- the number of
2
as-n

elements of type a_+c£ , such that is a rational integer and

a? < n,is

N
2t(n) + 4 Y, T(n—a?)

a=1
For each ron-square positive rational integer n, we shall’
denote the number ' o

N
21(n) +4 Y tn-a? by T(n)

a=1
In the following theorem we determine the number of
ambiguous numbgrs of Q*(\[n_ ), where nis a square free positive
rational integer.
Theorem 2
Let r be a square-free positive rational integer. Then the
number of ambiguous numbers in Q'(‘\/;—) is 7% (n).

Proof
Let n be a fixed square-free positive rational integer. Then
2
a= ECAEis an ambiguous number of Q'(\[n—) if and only if‘—z—c—ri

2
. . . at+n
is a rational integer, a2 < n and (q, P c) = 1.
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By lemma 1, the number of ambiguous numbers of the form

2
n as+n . . . .
ufi, such that T isa rational integer, is T*(n) = 2t(n) +

[y
4 Y t(n—a?).
a=1
as-
Now we claim that for any c¢ dividing a? — n, (a, < c) 1.

For if any rational prime p divides (a,

and ple.

Nowplc=>c = ~n=c'""¢p = c'"c'p?

So p? | (a% - n). But p2|a2. Sop?|n.
This contradicts our assumption that n is square-free.

Hence the number of ambiguous numbers of Q*(\/n_) is

*(n).
Nlustration
As an jllustration we consider the following examples.
Example 1
Let n = 2. Then
T() =212 + 4T12-1)
= 2(2) + 4(1)
=8

These 8 numbers are \IE +\[ ) ! :_1\[— ) 1- \E , and only

these are all the ambjguous numbers of @ (\/_).
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The distribution of the ambiguous numbers in Q '(\/2_ )
on the coset diagram under the action of

G on Q°(\2) is shown in figure 1

The only closed path in the coset diagram under the action of
G on Q*(2)
Figure 1
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Example 2

Let n = 3. Then
() =271(3) + 4T3 -1)
= 2(2) + 4(2)
=12
These 12 numbers arei 3 ) i\/§’ 1+-\/§, _1+\/§, 1+.\/§,
1 3 +1 +1 +2

-1 __:—23[3: , and only these are all the ambiguous numbers of Q‘(\/3_)_
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The distribution of the ambiguous numbers in Q"(\/.?)
on the coset diagram under the action of

G on Q‘(\/.S’—) is shown in figures 2 and 3.

Closed path in the coset ﬂiagram for the orbit (\/3— )G
Figure 2
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Closed path in the coset diagram for the orbit (—\]3_ )G
Figure 3
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Remarks:
1. According to theorem 6 of [2] the above diagrams show that
there are exactly two orbits of G in Q'(\[-3_ ), namely \/3— © and
—\3°
2. In the light of theorems 5 and 6 of [2], the above examples
reveal that G acts transitively on Q"(/2). But it does not do
so on Q'(\/3— ).
The following theorem gives a generalization of theorem 3.2
for n = p24n', where p is a rational prime, u is a positive rational
integer and n' is a square free positive rational integer.

Theorem 3

Let n = p2n’ where p is a rational prime, « is a positive
rational integer and n’ is a square free positive rational integer. Then
the number of ambiguous numbers in @*(\/n ) is T*(n) - T*(p2¢~2n").

Proof

Suppose that n = p24n’, where p is a rational prime, u is a
positive rational integer and n' is a square free positive rational
integer. ' )

Then o = a—*’cﬂ is an ambiguous number of Q"(\/n ) if and

2
n, . . a‘—n
is a rational integer and (a, — c) =1,

. a
only if a2 < n,

By lemma 1, the number of ambiguous numbers of the form

. [ 2
a+n a‘—n, . . .
- , such that - is a rational integer, is T"(n).

We claim that in the above T"(n) numbers exactly T*(p24~2n')
numbers are not in Q*(\/n—) and all the rest are in Q*(\/n—).

Now consider the following two cases.
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Case I p does not divide ¢

Here (a — c) is not divisible by p. Now if any other

a? -
rational prime ¢ divides (a — c) then qla, qlc and &

rational integer.
Thus ¢2|(a? — n) and ¢2|a? forces ¢2 divides n = p2in’ i.e.
g?|n’, a contradiction to the choice of n’.

2 _
Hence (a,a - n’ c) = 1.

Which shows that o = a_?E € Q).

Case Il  p dividesc
Here ¢ = pc’

2 _ 2 2u,, !
a*—n a*—-p“n' . . . N
Further P P - being a rational integer implies

pc

p | (@ —p2%n').

So pla?i.e. p|a and hence

- apwherea’ € {0, 51, ..., £ g AT}

Now c | (a® - n) = pc’ | (a’*p? - p2en’)
= c|p @? p-2n)

We consider the cases
@ ¢ 1 (a*-p2-2n)

(i) ¢ | @ - p2u-2p’)

@ c't@? p%in')

2

a’-n _p((12 _p2u—2n’)
c

is a rational integer, so ¢’ =pc"’.

Since p

c
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2 u-2,ny
Also we claim that la —p=n) is not divisible by p. For if

cll
12 ou-2, 12 oyeo s
la—p™n) p” n) is divisible by p, then (L-—-ETn—) must be a
c pc

rational integer.
i.e. ¢ = pc'’ divides (a'2 — p2u-2p"), a contradiction to the
p 2 p
assumption thate' t (@' —p2"‘2n')
2u-2n )

Thus (a c) (ap,p(a - ,pc')
12 ou-2,t
- (ap, B 2 ) Ly
‘ pe
12 _ o 2u-2,!
= (a'p,(a p” L ),pc') is not divisible by p.

a2 —
Also if any other rational prime g divides (a p c) then

-n. . .
is a rational integer.

2
gla, g|cand =

Thus g2 | (a2 - n) and ¢2|a? forces g2 divides n = p%n’ i.e. a
contradiction to the choice of n'.

- 2u 2
Therefore (a . L ¢) = (a p,Sg—-cT—ﬂ,pc') =1
So a = 9—?@: € Q ().
i) | (a'2 — p2u-2p")
2 2 9u-9.1
Here (a c) (a p, (@ 1? L ),Pc')
pe
12 ay-9 ')
- (ap, 2@ B2 pe)
c rd
is divisble by p.
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‘\/211'
Thereforea- +\/— ap + Np*n

pc i
2u-2,"
ul[};———- does not belong to @ (‘\/— )
¢’
pZ% Zn] -
So T' @22’y = 21(@%-2n"y + 4 )  t@*W'-a’")
a'=1

>, 87

numbers are not in @*(\n ).
Thus the number of ambiguous numbers in @*(\/n) is
() — T (%),
Jlustration
Example 3
Let n=22.3=12 Then

7(12) - t*(3)
3
=27(12) + 4 3 1(12-a®) - {21Q3) + 418 - 1)}
E - a=1
=12 +4(2 + 4 + 2) — {2(2) + 4(2)}
=12 +32-12
= 32
+ ."
These 32numbelsa1e+\/— "3/—,*‘\/_,""\[5’ E2 s
4 - 12 +1
+ + + + +
,_1+ 12 2+\/_2, 2+\/_2’ 3+\/—’ 3+\[_,andonly

S ¢ I & | +8 11
these are all the ambiguous numbere of @ (\/_)

Butthenumbels_hC i D[—— 3@ +z+\'/—2,+1:4
'i2+£_i1+\/-
+4 12

14

’

are all the ambiguous numbers of @*(\[3).
Thus the number of ambiguous numbers of Q*(12) is T 12)-1*(3).
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The distribution of the ambiguous nunibers in Q'(\/12 )
on the coset diagram under the action of

G on Q*(\12) is shown in figures 4 and 5.

y y
112
-J Ly N

X
-3
Yy 3
v
y
-3+J17
3-112
y, 3 :
X
y

Closed path in the coset diagram for the orbit (\/12 )¢
Figure 4
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/_lﬁ y 3

-2 l_Hz 3
y T

RV asva

Closed path in the coset diagram for the orbit (—‘\/1_2-)G
Figure 5
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Example 4
Let n= 24A, 3 = 48. Then
1%(24.3) - 1%(22. 3).

=124 -44 = 80

VI8 38 N3 +1 + 3 +1 + I

These 80 numbers are , s ) s
+1 3 *16 *1 +47

42+ /48 2 +4/48 2 +[48 #2+ 48 £3+ 48 3+ /48

’ b

41 7 44 7 #1107 +44 T 1 +3

i3+3/4—8 ¢3+\/:1§ i4+\@ i4+-5[z§ i5+-5/:1§ £5 + /48

+13 ' 439 41’ 432 41 28

+ w/ +6 + 4/ +6 + '
16 + 48 , 26 + 48 , 6+ 48 , and only these are all the
+1 +3 *4

b

b

ambiguous of Q* §/48 ). v .
By TV48 +4/12 £448  +4/12 £4/48  £412 £f48 +4[12
+2 +1 ' 48 4 ' 6 13 ' 424  H12’
i2+\/48 _ E1++412 i2+3[48 _ E1++/12 $4++/48 i'2+\/12
+2 1 7 422 11 7 42 7 41 ]
+4+4/48 £2+4J12 i6+\/48 _ i3+-\f12 i6+\/48 _ i3+3/12
+16 48 7 42 11 7 16 3

are all ambiguous numbers of @*(4/12) .

+J48 _ 412 23 £1J18  £+[12 _£+f3 4 +[48
4

And ’ ) ’
+4 +2 7 41’ +12 16 87
C#2+4f12 #1448 44488 24412 #1443
+2 +1 +8 +4 +2

are all ambiguous number of Q*(-\/3_2};
Thus the number of ambiguous numbers of Q*(\21.3)is
2. 3) - 1°(24. 3)
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The distribution of the ambiguous numbers in Q'}(‘\/48 )
on the coset diagram under the action of

G on Q'(-\/48 ) is shown in figures 6, 7, 8 and 9.

TANDAY /A\ /\\

x 5 -|—I-J|\ TRy J_ MR 'J— IR
)1:// AT a ' 2.4 N
- 44
< v
S ' ' : Y
NI % T ,
|-3 T | “m/)
X X
¥ PRENITY
<// y
4
¥ 4-J18
n
X
v .
e R
-
< T
; -5-Jag v
) —_—=le B
'A\ 23 6-J48 y
s oy 17 X X e¢+fig Y X

Closed path in the coset diagram for the orbit ('\/48 )G
Figure 6
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X SN NN AT N fw oy oy LRy 2
g R 17 48 17 ufiw \\y
</ Y 44
i y
L NB PR !
"~ | ~ \l
39 J_JZE |~ 2
X X
VoA fis
<
/\)
S
YN 1+075
2
* X
y ~4-fig 2R y
AV n | N
< >
SN e T Y 24
1 y o+ 18 M 5-m/y
5- Jig 2 n__ X N X 6-fw Y x

Closed path in the coset diagram for the orbit (—/48)C
Figure 7
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Closed path in the coset diagram for the orbit (ﬂ)

Figure 8
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Yy }_\\
/ N X
5 dg W - Jig
X 13 -
IR Y
v
5+ 11

Closed path in the coset diagram for the orbit (3[348)

Figure 9
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In the following theorem we generalize theorem 3. for
2u ., 2 . . .
n= plu pz"Zn’, where pj, p, are rational integers and »’ is a square-

free positive rational integer.

Theorem 4

2u, 2 . .
Let n = plulpzuzn’, where p,, p, are rational primes, uj, ug

are positive rational integers and n’ is a square-free positive rational

integer. Then the number of ambiguous numbers in Q‘(‘\/n) is
*, =2 %, ~2 -2 -2

() =T, n) = U0, n) + TP " py 0

Proof

Suppose that n = pf"lpzugn’, where p,, p, are rational

primes, 4, u are positive rational integers and n’ is a sqtfare-free
positive rational integer.

Then o = a—'%\ﬁis an ambiguous number of Q*(\/n_) if and

P
at-n

2 L
a‘—n, . .
is a rational integer and (a, P c) = 1.

only if a? < n,

By lemma 1, the number of ambiguous numbers of the form

2
a+ jn a‘—n, . . .
: — such that o isa rational integer, is T*(n).

We claim that in the above T*(n) numbers exactly

{r*(pfn) - ‘t*(p;Qn) + r*(pI2 p;2n)} numbers are not in
Q*(-\/;_) and all the rest are in Q*(\/n_).

Now consider the following two cases.
Case I. p; does not divide ¢, wherej = 1, 2

a’?-n . L .
Here (a, P c) is not divisible bypj, wherej =1, 2
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. . a’-n ‘

Also if any other rational primesg divides (a, > ¢), then
a?-ny. .. .

gla, g|c andq| (—c——-) implies ¢2|(a2 — n) and g?|a®. Thus ¢2|n i.e.

SOTI . ) , a2—-n
g*|n', a contradiction to the choice of n’. So '(a, — c) =1,

This shows that o = a—+—c3Ebelong to @*(Jn).

Case I1. Dp; divides ¢, wherej = 1, 2
Here ¢ = ¢ pj
We know that if p;|c, then p;|a.
So a = ap;, where a; € {O, 1, £2, ..., [ pj_2 n }

2
a‘—-n, . . .
is a rational integer, so ¢ | (a%2 — n) which

Now since
N 2 2 2 -2
implies that pjc¢;| (aj b= n) = c_i_lpj(aj -p; n).
We consider the cases
. - 2 -2
() ~ ¢; does not divide (aj ~p; n)

- s 2 -2
() ¢ divides (aj - b, n)

(@) Ifc; does not divide (a; —p; " n)

2 -2
az_n_pj(aj —p; n)

Then as = is a rational integer, so
c Cj _
Cj = P
2 -2,
(@;—p. " n)

Also we claim that —-'L—*L—— is not divisible by ;.

C.

J
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2 -2 2 -2
(a-p." n) (a;=p. n)
For if—"—li—— is divisible by p;. Then #*]——- must
¢ pic;

.y . ¢y 2 -2 ..
be a rational integer i.e. ¢ = pjc; divides (aj —p; n), a contradiction.

2 2
_ p- —n)
Therefore (a n ¢) = (a_}pj , :chj)
pjt; .
@ )
a,— n
= (a~ . pj ‘] pJ .c.)
JpJ’ cj ’pj j
pJ (a, )
. (ajpj, ; ’pj
pjcj
2 -2
(a.l “PJ n)
= (ajpj,—'l———,—, pjcj) is not divisible by
c.
’ ;

. . . . a?—n
Also if any other rational prime ¢ divides (a, 2 c), then

gla, gle and ¢%|(@® — n) and. ¢2|a?. Thus q¢?|n ie. ¢%|n', a
a2 —
contradiction to the choice of n'. Hence (a . c) = 1.

Thus o = a—tcAEbelongs to Q*(\/n—).

(ii) On the other hand if ¢ divides (a.2 —pj_2 n), then

-2
a? - bj (a n) e
(a, - (aJpJ, —————J—-— ,pjcj) is divisible by p; .
+ I—- a; +\J/p; n
Therefore o = 2 \[_ ﬁp A \/ does not
J J

belong to Q*(\/n—). However, in 17(p] %2) and 1 (o, Z,) numbers,
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I*(pfp;Zn) numbers are repeated. Thus {I*(pfn) + I*(p;2n)—
I‘(p12p;2 n)} numbers are not in Q*(\/n ). -
Therefore the number of ambiguous numbers in Q*(\/r_z_) is:
* - * - * _2 * "‘2 _2
T(n)-1 (pfn)—r Py n) + TP Py, N
Example 5
Let n = 2% x 3% x 2 = 2592. Then the number of amblguous
numbers in @ (\/_) is 952. ,
These ambiguous numbers form eight closed paths in the
coset diagram under the action of G on Q*(\[r;—). Hence these
numbers belong to 8 distinct orbits with representatives \/2592,

_omo; 2592 3502 3+/2502 3-[2602 -3 + /2502
32

32 7 ’ 7 ’ 7 ’

-3 — /2592
7 .

The number of ambiguous numbers in the orbits of each of

3+ \[2592 8- \/2592 , and =3 _7 2692 is 70, in the orbits of each-
Q259 , ‘259 is 86, and in the orbits of each of \/259 —\/259

is 250.

and
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ABSTRACT

In this paper we derive a new method for evaluating or
approximating sums by means of complex integration. Our result is
sufficiently general that it is applicable to a wide variety of functions. We
consider examples that illustrate the power of the technique; our first
example is an alternative derivation of the Euler-Maclaurin sum formula
for the case in which the remainder term vanishes, and our other two
examples show how our technique can be applied when the Euler-Maclaurin
formula is not uscful.

1. INTRODUCTION

There exists a class of techniques by which sums may be
converted into integrals and vice versa by selecting appropriate
integration contours in the complex plane. One such technique, the
Watson transformation [7], has proved valuable in such diverse areas
of electrical engineering as microwave theory and techniques,
electromagnetic theory and propagation, and has yielded
considerable insight into physical processes in these and other fields.
Related techniques can he found scattered throughout the standard
texts on applied mathematics an analysis. For example, Whittaker
and Watson [8], consider a transformation that uses a contour
integral around an elongated rectangle of a function multiplied by
(e2miz — 1)_1, which has poles at z = n, where n is an integer. Carrier
et al. [3], perform some simple by Tcot (72) and integrating over a
square centered at the origin. Numerous other examples of
techniques of this type abound in the mathematics and electro-
technical engineering literature. '

The purpose of this paper is to present a related new
technique for evaluating or approximating sums. The generality of
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our main result, Equation (12), more than compensates the
complexity introduced by the use of two contour integrals with two
different integrands.

In our first example, we offer an alternative (valid under
certain conditions) to the derivation usually used [8], [3], to obtain
the Euler-Maclaurin sum formuls. Under our assumptions, the
remainder term in the sum formula vanishes. Our derivation is
simpler in many respects: Few steps are needed, the Bernoulli
numbers appear naturally, and the convergence question is answered
in a straightforward manner. There is a scientific utility in that we
can compare this method with the conventional one and thereby gain
‘some insight into the power of complex analysis. The remaining
examples arise from many problems of a type frequently encountered
in the applied mathematics and theoretical electrotechniques. They
are'given to show that the technqiues of this paper are practical and
can be applied when the Euler-Maclaurin series is not useful.

2. DERIVATON OF THE SUM FORMULA

We examine a finite sum of the form

N
S= 3 fln) (1)
n=M

We assume that there exists a function F(z) in the complex plane

such that F(n) = f(n) for n integer, with M < n < N. Further, we
assume (this assumption is not necessary but simplifies the
mathematics that follows) that F(z) has no singularities on the real

axis for M <z < N. We introduce two auxiliary functions ,
F,(2) = F(z) /] (1 — e~ 2niz), (2a)
F (2) = F(2) / (e72™2 — 1), (2b)
These auxiliary functions have two useful properties. First, their
poles on the real axis select out the desired terms for the sum, i.e.,

limeF (n+¢e)=limeF_(n+¢€)= —L_f(n), (3)
g0 £-0 27

Second, their difference is equal to the original function F(z)

ez e~ Tz

F,@-F.(2) = FG) { - .z} = F2) (4

eniz —- e—niz eniz — e~
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Consider ‘a rectangular region R, in the complex z plane
(see Fig. 1) bounded by the straight linesy = 0,x = M, x = N and
y = R, wherez = x + iy. We define a contour C, as the perimeter of
R,, ‘traversed in a counterclockwise direction, with circular
identation of radius r (as shown in Fig. 1) to avoid the poles of F_ on
the real axis. Similarly, R_ is the mirror image of R, reflected
through the real axis, and the contour C_ is the perimeter of R_, also
traversed in a counterclockwise direction, and also indented to avoid
the poles of F_ on the real axis. We assume for simplicity that F(z)
has no singularities except polesin R, and E_.

Let us integrate F,(2) around the closed contour C,. This
integral is given by

fF+(z) dz=2mi Y,
¢

res

+
N n+l-1 n/2
=Y [ R,dx—i [re®F (M + rel% d8
n=M n+r 0
N-17/2 n
~ % [re®F (n+re®db-i [i
n=M+n0 ’ n/2

R
~e®F, (N+rei® dd +i [ F, (N+iy) dy
r

R N
—i [F,M+iy dy—A{F+(x+iR)a’x )

In Eq. (5), the first sum is over the residues arising from
poles of F(z) in the region R,. On the right-hand side of Eq. (5),
referring to Fig. 1, the first term is the sum of integrals over the
segments between poles on the real axis; the next three terms are
the integrals over the circular segments around these poles; the next
two terms are the integrals along paths parallel to the y axis; and the
final term is the integral along the line y = R. Integrating F_(z)
around the closed contour C_, we arrive at a similar expression:

fF_(z) dz =2mi Y F_(2)
c_

_res
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N-1n+l-r 0
f F (x)dx—1i freie F (M + ret®) d6

n=M n+r n/2
N-1 O
- 3 f re®® F_(n + ret9) de
n=M+1-%

— f rei® F_(N+re®) 40 +sz (N +iy) dy

-x/2
R N,
—i [F.M=iy)dy+ [ F.x+iR)dx  (6)
r M

where the first sum is over the residues arising from of F(z) in the
region K_and where the terms on the right-hand side of Eq. (6) are
interpreted similarly to those of Eq. (5).

We are interested in adding Egs. (5) and (6) and taking the

limits r = 0, R — . Note that the former limit cannot be taken in
Eq. (5) or Eq. (6) alone, since they both contain divergent integrals.
By virtue of Eq. (4), we have

N n+l-r
in 5, Jro-rasjer
| N n+l-r N . .
=lim ¥ [ Fdx= f F(x) dx, ™
n M n+r

since, when we subtract F_(x) from F, (x), the singularities at integer
values of x are removed. Furthemore, Eq. (3) can be used to obtaifi

the integrals around the circular segments in the limit as r — 0:
n/2
f refd F, (M + re*®) dB
0

f. ret® F_(M + re'®) do = -1-.f(M), (8a)
-n/2 4 .
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%/2
f rel® F, (M + rei®) df
0

0
= f rel® F_(n + rei®) do = i.f(n), (8b)
e 21

f re® F, (N + rei® d0
n/2 :
-x/2 1
= [ re®F (N + re!®) d = - faV), (8c)

The terms corresponding to integrals along paths parallel to
the y axis combine as follows. The sum of the two integrals in Eqs.
(5) and (6) withx = N is

r

. . . dy .
{F(N + iy) — F(N — iy) 9
{ '1{‘ iy iy)} oy 1

The integrand of Eq (9) has a well-defined limit asy — 0:

lim {F(N + iy) = FON — iy)} = LF’(N), (10)
y—0 T

dy
g2 —1
. according to 1’'Hospital’s rule; therefore the limit r — 0 in Eq. (9)

‘causes no difficulty. If F(NV % iy) e=2% — 0 faster than 1/y as y — =,

we may let R — o0 in Eq. (9). Similar considerations apply to the two
integrals with x = M, Finally, if .

lim e2% F(X +iy) = 0 - (1D

yoe
for M < x < N, the two integrals along y = R vanish in the limit
R — oo, When Egs. (6) and (6) are added, the results of Eqs. (7)
through (11) lead us to the identity

N |
S= [ FOOdX + 4 (f) + fOD)
M ;

—eni {X F,2)+ 3 F.(2)}
gi res

R-
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0
i [ dy (FIN + iy) - FIN = iy)

-FM + iy) + FiM = iy)} (12)

e?™ —1
which is the desired result. To our knowledge, this result has not
been published previously. }

3. APPLICATION OF THE SUM FORMULA

In many practical cases it is convenient to treat potential or
fields problems by using a new method proposed in our paper. In the
examples that follows, the analyticity properties of F(z) will
determine the manner in which Eq. (12) is carried further to obtain
a useable result. For example, if F(2) is analytic everywhere, a special
case of the Euler-Maclaurin series is obtained in which the
remainder term vanishes. In our other examples, we are interested
in the case where the number of terms in the sum is large, and we
wish to obtain expansions of Eq. (12) in which few terms need be
taken.

3.1 An alternative derivation of the Euler-Maclaurin series }

The Euler-Maclaurin series may be written in the following
form [4],

N N
S A0 = [ F@ de o+ = (f0) + [0D)
M

n=M

+ Z (2k)' {F%-1(N) - F-1(\) }

N
1
TEK+ )g Bogs1 (& =[] Fop .y () dx) (13)

where B,, = B, (0) and where the B,, (x) are Bernoulli polynomials,
defined by the generating function [4]:

z —mﬁx—)tm (14)
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In Eq. (13), [x] denotes the integer in the interval (x — 1, x], and
F2k-1 s the (2k — 1)th derivative of F(2). In numerical computation,
Eq. (13) is implemented by choosing the number of terms, K, in the
expansion such that the remainder [the last term in Eq. (13) is small
and can be neglected. Equation (13) is, in general, an asymptotic
expansion which is easily derived by the method of real analysis [8],
(31, [5].

We may use our sum formula, Eq. (12), to formulate an
alternative derivation of the Euler-Maclaurin series for the case
when F(z) is entire. If the latter is true, then F(z) has F(z) possesses
a Taylor series about any point in the complex plane. In particular,
we have

. o 1 .
Fxtiy) = ) —Fx &iyP, (15)

p=0F’
Since F(z) is entire, these expansions converge uniformly for all
x and y. We may therefore substitute Eq. (15) with x = M and N into
the last term of Eq. (12) to obtain

@0

i [ dy{F(N + iy) = FN — iy)} = FM + iy)
0 .
+ FQM - iy)}/(e2"y—1)

+ Z ( 1) { 2k I(N) F2k‘1(ﬁl)}

= k1))
X 2k-1 (16)
{ Y @ ‘ |

Note that the even-derivative terms in Eq. (5) cancel. The uniform
convergence of Eq. (15) allows us to interchange the sum and the
integral in Eq. (16). Now the integral representation for Bernoulli
numbers [6],

-1
y dy an

B, = 4k (-1)k1
2k =D )

can be used in Eq. (16) to obtain the desired result from Eq.(12):
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N N
S i) = [ R dr 4 4 (FD + f0D)
n=M M

(o o]
Z (zk), — 2 { p2k-1(N) — F26-1(M) } (18)

This result is an important special case of the general Euler-
maclaurin series, Eq. (13), in which the remainder term vanishes
and the number of terms, X, is infinite.

It is useful to repeat here the conditions under whlch
Eq. (18) holds:

(a) F(z)is entire;

) lime™Fkxtiy)=0,M<x<N;

lin
y
{rore) -

We also point out that Eq. (18) may not converge in the limit N — o
or M —» oo, although it is clear from our derivation that Eq.(18)
converges for finite M and N.

(¢) lim e~2my
Yorx

3.2 'Functons with simple poles in R, or R_

To illustrate the use of Eq. (12) for a function with simple
poles, we consider an elementary problem in two dimensions. Let
2N+1 infinite line charges of density A per unit length be positioned
parallel to the z axis at positions (x, ¥). = (n, 0), for =N < n < N. We

wish to compute the electric field at the point (0, @) in the x — y plane
- due to this charge distribution. The electric field is :

N
E=2ka 3 (n?2+a?®!

n=-N
N
=2A Y (n—ia)! (19)
n=-N

_ The application of Eq. (12) (with M=~N) to this example is
straightforward. The only pole of F(z) = (z — ia)~! is located at z=ia;

the residue of F_(2) at this point is —(¢2"*~1)~1. The last term in Eq.
(12) is evaluated by expanding
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(e?2m-1)"1 = Z g2nmy - (20)

m=1

which is valid for all y > 0, and using the relation

iy

fdy e (z + iy)l = iemi? Fi(ioz) 21
0

which follows from the definition [1] of the exponential integral,
Eix):

o

—t .
Eitx) = - [S-dt 22)

-x
We obtain the following result from Eq. (12):
E = 4 htan! (V/a) + 2ha (N2 + a2)~1 — 47 (e27@ — 1)-1

—2Xi Y {e"?"ma Ei[2ntm(a + IN)]

m=1

—~e2mma Ei [21tm (—a + iN)] - c.c} (23)

where c.c = complex conjugate. For large N, the last sum in Eq. (23)
converges rapidly.

An interesting result is obtained from Eg. (23) by letting

N — o0, In this limit, the second and fourth terms drop out, and the
first and third terms combine to give the result [2]:

E = 2mA — 47\ (2@ — 1)71

ena —_ e—na + 26—7!(1}

eﬂ:a — e—na

= 27TA {

= 2TA cot k& (Ta) : (24)

3.3  Functions with branch points

Our third example arises from the treatment of this sum
relations, i.e.

Z

-1

{1 — p coS (27m/N)}1/2

w

ZIO Ele

n

0
N 1/2
{E [1 —p cos @rnn/M]7 -1 - p)lﬂ} (25)
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where C is a constant and p is an arbitrary variable.

We may apply Eq. (12) (with M=0) to the sum in Eq. (25).
The function F(2) = [1 —p cos (27tz/N)1%/2 has branch points for p<1
atz = tiy and z = N * iy, (see Fig. 2), where y, = -?:AL cos h~! s

n N

These branch points lie on the boundaries of B, and R_, and we
deform C_ and C_ slightly so that the branch points lie exterior to
R, and R_. The integral along the real axis in Eq. (12) is given by

N

f {1-p cos (2rz/N)}Y2 dz

0 .

x/2
- f {1 +p—2psin?0}1/240
T %
_2N 1/2 22 _y1/2
= 1+p E{(“p) } (26)
) D _yi/2
where E{(1 +p) }

is the complete elliptic integral of the second kind [1]. The term -é—

[FAN) + f(0)] in Eq. (12) cancels the term (1 — p)¥/2 in Eq. (25).
Furthermore, F(z) has no poles in R or R_; thus the residue terms
in Eq. (12) do not contribute. Finally, we consider the integrals along
paths parallel to the imaginary axis in Fig. 2. Taking care to ensure
that the integrands in Eq. (12) have the proper phases above and
below the branch points, we have

F(N + iy) = F(N — iy) = F(iy) + F(-iy)
- {O' Y=o @7)
—4i [p cos h (2Ty/N) — 111/2,y > y,

Therefore, substituting Eqs. (26) and (27) into Eq. (12), we obtain
the singular part from Eq. (25):

w--c{—<1+p>1/w[< ~)1/2]

’ . 1/2
4 % [p cos b (2my/N) — 1] }
N f dy e2ny -1 (28)
Yo
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The first term in Eq. (28) is the singular part of this equation
and gives rise to the well-known logarithmic singularity. Then, we
expand the square root about y = y:

[p cos h (2Ty/N) — 1]1/2

~ [p cosh (2myo/N) + (27L/N) p(y—yg) X sin h (2Ty/N) — 111/2

= (2Tt/N)1/2 Qa _p2)1/4 &y _yo)1/2 29)

In addition, we approximate (e2®~1)~! by e~2% in the denominator.
(Both these app10x1mat10ns depend on the fact that y, 1 for large N).

We thus obtain
[p cos h (2my/N) — 1]1/2

-r e -1

Yo

1/2 ©
-~ (-2_15_) Qa _p2)1/4 f 0, _y0)1/2 e~ 2ny dy

Yo

_Q _P2)1/4 -2ny
= _——.4(7tN)1/2 e “o : 30

Thus Eq. (28) becomes, for large N,

W"‘C{—<l+p>vzz[< 2 _yy/2]

1+p
_ (1 —p2) /4 _Ncos h-(1/p)
(713)1/2 N3/2 } G2

4. CONCLUSION

Based upon the complex integration, a new method for
evaluating or approximating sums have been proposed. We consider
examples that illustrate the power of the method: our first example
is an alternative derivation of the Euler-Maclaurin sum formula for
the case which the remainder term vanishes, and other two examples
show how our method can be applied when the Euler-Maclaurin
formula is not useful. The method proposed here have a more
convenient for applications in applied mathematics and theoretical

electromagnetics.
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Ce Cs
C. Y C.
3 z
11 "
x x
b a o 6 0 8 & & &

(a)

X=M
x=N

Fig.1. Complex plane with z = = + iy, showing the regions R,
and R_ and their boundaries € and C_, as discusscd in the text.

(a) The uppchalf-plane, showing R, bounded by C .
(b) The lower half-plane, showing R_ bounded by C_.

The contous are indented near poles of F, and F_ on the real
axis (at integer values of 2).
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Fig.1. Branch points and branch cuts of F(z)= [1-p cos (2rz/N)].
The integration contours are indented so that the branch points
are avoided.
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ABSTRACT

In this paper we introduced a new type of isometric folding we
called it "Convex Isometric Folding”, then we have proved that the infimum

of the ratio Vol. N/Vol ¢( N), over all convex isoemtric foldings ¢ : N —> N,

where N is a compact 2-manifold (orientable or not), is -i—

1. INTRODUCTION

A map ¢ : M — N, where M and N are C* Riemannian
manifolds of dimensions m and n respectively, is said to be an
isometric folding of M into N if and only if for any piecewise geodesic

path v : J — M, the induced path ¢oy : J — N is a piecewise geodesic
and of the same length [4]. The set of all isometric foldings ¢ : M—>N
is denoted by J(M, N).

Letp : M — N be a regular locally isometric covering, and let
G be the group of convering transformations of p. An isometric
folding ¢ € J(M) is said to be p-invariant iff for all g € G, and all
x € M, p(¢(x)) = p(¢(g.x)) [5]. The set of p-invariant isometric
foldings is denoted by 3 ;(M, p).

1.1 Definition

‘Let ¢ € 3(M, N), where M and N are C* Riemannian
manifolds of dimensions m and n respectively. We say that ¢ is a
convex isometric folding if and only if (M) can be embedded as a
convex set in R*. - -

We will denote the set of all convex isometric foldings of M
into N by C(M, N), and if C(M, N) # ¢, then it forms a subsemigroup-
of IWM, N). '
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1.2 Definition

We say that ¢ € 3;(M, p) is a p-invariant convex isometric
folding if and only if ¢(M) can be embedded as a convex set in R™.

We denote the set of p-invariant convex isometric foldings of
M by C;(M, p). If C;(M, p) # §, then for any convering map, p : M —
N, C;(M, p) is a subsemigroup of C(M). '
To solve our main problem we need the following results:

1.3 If Nis an n-smooth Riemannian manifold, p : M — N is its
universal convering and G is the group of convering
transformations of p. Then JI(V) is isomorphic as a
semigroup to 3;(M, p)/G [5].

"1.4 If N is an n-smooth Riemannian manifold, p : M — N is its
universal covering and ¢ € I(N) such that ¢ : T;(N) —
T1(N) is trivial, then the éorresponding folding v € 3;M, p)
maps each fiber of p to a single point [1].
1.5  Under the same conditions of (1-4), if N is a compact 2-

manifold, then Vol N/Vol ¢(N) = Vol F/Vol y(F), where F is
a fundamental region of G in M[3].

2. CONVEXISOMETRIC FOLDING AND
COVERING SPACES

The next theorem establishes the relation between the set of
convex isometric folding of a manifold, C(V), and the set of p-
invariant convex isometric folding of its universal covering space,

2.1 Theorem

Let N be a manifold and p : M — N its universal covering.

Let G be the group of covering transformations of p. If C(N) # ¢,
then C(V) is isomorphic as a semigroup to C;(M, p)/G.

Proof

Let C(N) # ¢ then by using (1.3), there exists an
isomorphism f from 3;(M, p)/G into 3(WN). Since C;(M, p) is a
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subsemigroup of 3J ;(M, p), then C;(M, p)/G is a subsemigroup of
3,M, p)/G.

Let h = f | (C;(M, p)/G, since C;(M, p)/G is a semigroup,
thus 2 is a homomorphism and also is one-one. To show that A is
onto we suppose that ¢ € C(N), hence ¢ € J(N) and consequently
there will exists y € 3;(M, p)/G. Since ¢ € CWV), then ¢ « is trivial
and hence for all xe M, Y(G.x) = y(x), and therefore yeC;(M, p)/G.

2.2 Theorem

Let N be a compact orientable 2-manifold and consider the
universal covering space (R2, p) of N. Let ¢ € C(N) and yeC;(R?p).

Then forallx, y € RZ, d(y(x), y(¥)) £ A, where A is the radius of a
fundamental region for the convering space.

Proof

The theorem is true for N = S2, [1], so we have to prove it for
the connected sum of n-tori. First le¢e N = T be a torus
homeomorphic to the quotient space obtained by identifying opposite
sides of a square of length "a" as show in Fig, (1-a).

8y:%

=1
|

7o

o
o
' “6__ =
+ t
- ]
|
'
1
S N '
]

g, %

(a) (b}
(Figure-1)

Suppose ¢ : T — T is a convex isometric folding, then
$w(m1(T)) is trivial. By theorem (2.1), there exists a convex isometric
folding \ : R2 — R2 such that for allx, y € R2and all g € G, p(y(x))
= p(y(g.x)). Equivalently, for all (P, @) € R2and allg € Z x Z,
there exists a unique 2 € Z x Z such that hoy(P, @) = Y(g.(P, @)),
ie, P, @) + (\/5 Am’, \/5 An') = Y(P + \/5 Am, @ + \/5 An),

wherem,n,m’,n’ € Z.
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Consider now any fundamental region F of the covering space
(R% p) of T, i.e., a closed square of length a with sides identified as

shown in Fig (1-b). Since ¢. is trivial then by (1.4) for all x € R?2,
Y(G.x) = Y(x). Now let x, y be distinet points of R% such that x # gy
forall g € G and let d(x, y) = o;. Then there is a point x* = g.x such
that d(y, x*) = min o;, o; = d(y, g;%), i = 1, ..., 4. Thus there are
always four equivalent points g;.x, i = 1, ..., 4 which form the vertices
of a square of length a and such that d(g;.x, y) £ 2A. From Fig. (1-b)
it is clear that max d(x”, y) < A, and since \ is an isometric folding
then d(y(x), y(y) £ d(x, y) [4], i.e., d(yx), W) = dy(g;x), y¥)) <
d(g;x,y) = dx", y) £ A, and this proves the theorem of N = T.

Now consider the connected sum of two tori, N = T # T,
obtained as a quotient space of an octagon with sides identified as
shown in Fig. (2.a)

@ (Fig. 2) (b

The group of convering transofrmations G will be isometric

to Z x Z x Z ¥ Z. Using the same previous technique we can obtain
four equivalent points as the vertices of a square of dimeter 2A, such

that max d(y, x*) £ A, and we have the result. This theorem, by using
the above method, is true for the connected sum of n-tori.

2.3 Theorem )

Let N be a compact non-orientable 2-manifold and consider
the universal covering space (M, p) of N, let ¢ € C(N) and y €
C;(M, p). Then for all x, y € M, d(y), y()) £ A, where A is the
radius of a fundamental region for the covering space.

Proof

First let N = P2 and M = S2, then the theorem is true [2].
Now, consider the connected sum of two projective planes, the Klein
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bottle K, homeomorphic to the quotient space obtained by identifying
the opposite sides of a square as shown in fig (3-a).

B, x

[l [\jﬂs,,
T

By X

(a) (b)
(Fig. 3) _

» Suppose ¢ : K — K is a convex isometric folding, then their
exists a convex isometric folding y : R2 — R? such that for all
x € R?2andg € G, p(y(x)) = p(y(g.x). Equivalently, for all (P, @) €
R? and all g € Z x Z,, there exists a unique & € Z x Z, such that
hoy(P, @ = y@.(P, @), ie, WP, @ + (2 Am’, \[2 An) =
\|/(P+\/§ Am, \/5 An + (=)™Q), wherem,n,m’,n' € Z.

Any fundamental region F of the covering space (R2, p) of K
is a closed square of diameter 2A with boundary identified as shown
in Fig. (3-b). Since ¢ is trivial, then for all x € R?2, y(Gx) = yx).
Now, let x, y be distinct points of B2 such thaty # g.x for all g € G,
and let d(x, y) = ;. Thus there exist a point x* = g.x such that
d{y,x") = min (), &; = d(y, g;.x), i = 1, ..., 4. Thus there are always
four equivalent points g;.x which form the vertices of a parallelogram
such that the shortest diameter is of length less than 2A.

Now, the point y is either inside or an the boundary of a
triangle of vertices g;.x = x, go.x, g5.x. Let y' be a point equidistance
from the verticies of this triangle. i.e., d(y', x) = d@', gox) =
d(®', gg.x). From Fig. (38-b) it is clear that d(y, x) < A, and hence
max d(x*, y) < A. Therefore

d(y@), yu)) = d(y(gx), y) £d@x;y = dix"y) < A

Now, let N be the connected sum of three projective planes
obtained as the quotient space of a hexagon with the sides identified
in pairs as indicated in Fig. (4-a). In this case (R2, P) is the universal
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4

(a)
(Fig. 4)

cover of N and G = Z x Z x Z,. Using the same method as that used
above, we can have always equivalent points g;x, i = 1, ..., 4 which
form the vertices of a parrellelogram its shortest diameter is of -

length less than 2A. From figure (4-b), we can see use that max

d(y,x*) < A and the theorem is proved. In general and by using the
same technique the theorem is also true for the connected sum of n-

projective planes.
3. VOLUME AND CONVEX FOLDING
The following theorem succeeded in estimating the

maximum volume we may have if we convexly folded a compact 2-
manifold into itself.

3.1 Theorem

The infimum of the ratio e , = Vol N/Vol ¢(N), where N is a
compact 2-Amanif01d“‘ over all convex isometric foldings ¢ € C(N) of
degree zero is 4.

Proof

Consider a compact 2-manifold N, and let $ : N > N be a
convex isometric folding, and since a convex isometric folding is an

isometric folding, then the deg ¢ is £ 1 or 0, [4]. We will consider

only the case for which deg ¢ is zero otherwise ¢(NV) can not be
embeded as a convex subset of R? unless N is. In this cae the set of

singularities of ¢ will decompose N into an even number of strata,
say k, each of these stratum is homeomorphic to ¢(V) and hence

Vol N = k Vol (W), i.e., e, should be an even number. To calculate
the exact value of e, consider first an orientable 2-compact manifold
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N. By using (1-5), e, = Vol F/Vol $(F) and this means that e, can be
calculated by calculating volume of F and of its image ¢(F), but Fis a
closed square of diameter 2A and G(F) is a closed subset of F such
that the distance d(x, x") between any two points x, x’ € ¢(F) is at
most A. The supremum of 2-dimensional volume of such set is 7 %52,

and hence 2 < ¢, but e, is an even number, thene, = 4.

Now, let N be a non-orientable 2-compact manifold, i.e., a
connected sum of n-projective planes, the theorem is true forn = 1,
[2]. The fundamental region in this case is a square or a rectangle of
dimeter 2A according to n is even or odd. If n is an even number,
then Vol F = 2A? and we have the result.

Now, let n be an odd number, then F will be a rectangle of

n-1 n-1

5 a5 and hence Vol F = 4AZsin B cos O =

lengths

n?+1 n—1

2_
nl2

2 ¢ T2 oA
n2+1 [n2+1 ni+1l
2 2
Therefore 3 > e, > 2, for all n > 1. Since e, is an even number then
ey = 4.

= 4A?
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ABSTRACT
The theory of bifuzzy topological spaces has recently introduced

see (1]. If T, and T, are fuzzy topologies on X, then the tripel (X, T;, To) is
called a bifuzry topological space. In this paper we introduce the concepts
of connectedness and fixed point property in bifuzzy topological spaces. We
show that these concepts are preserved unde: P-continuty and prove some
related results in this arca.

1. INTRODUCTION

Kelly [6] called the triple (X, T}, T) where X is a non-empty
set and T, Ty are topologies on X a bitopological space. He initiated
tue systematic study of such spaces. Since then several other authors
have contributed to the subsequent developent of various
bitopological properties. In particular connectedness in bitopological
spaces was discussed by many authors see [3, 7, 8]. The purpose of
this paper is to show that images and inverse images of different
types of connectedness in bifuzzy topological spaces are preserved
under P-continuity. We shall use P- to denote pairwise e.g. P-
connected stands for pairwise connected. The T ;-closure, T;-interior
of a set A will be denoted by cl;A, int;A (or simply clA, intA in the
case we have only one (fuzzy) topology on X), R denotes the real line

with its usual order and ¥, is the characteristic function of v.
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If (X, T) is any topological space then there are two fuzzy
topologies corresponding to T, namely: 4
X/t ={y),:vet} = thesetofall characteristic functions of
open sets in X :

and ®(T) = the set of all lower semicontinuous functions from X
into the colsed unit interval [0, 1].

It is clear that X/T C ©(7).

In this paper we shall follow (9) for the definitions of : fuzzy point,
fuzzy topology, the direct and the inverse images of a fuzzy set and
fuzzy continuous mapping. A set X on which are defined two fuzzy

topologies T, T4 is called a bifuzzy topological space (bfts for short).

2. BIFUZZY CONNECTEDNESS

Fatteh and Bassan [4] defined connectedness only for a crisp
fuzzy set of a fuzzy topological space while Ajmal and Kohli [2]
extended the notion of connectedness to an arbitrary fuzzy set. In [5)

a fuzzy topological space (X, 1) is connected iff (X, T) has no clopen
fuzzy sets except 0 and 1.

We begin this section with the following definitions.

Definition 2.1

A bfts (X, T, T9) is S-disconnected iff there exist non zero
fuzzy sets A, € T; U Tosuchthat A + 1 = 1and A N = 0. A bfts
(X, 11, T9) is called S-connected if it is not S-disconnected.

Definition 2.2

A Dbfts (X, T4, To) is S, -disconnected iff there exist non zero

fuzzy sets A, [l € T; U T, such that A + U = 1. A bfts (X, T, Tp) is
called S, -connected if it is not S,,-disconnected.

Definition 2.3

A bfts (X, T,, T,) is P-disconnected iff there exist non zero
fuzzy sets A € T;and [l € Tosuchthat A + p=land AN p =0 A
bfts (X, T, Ty) is called P-connected if it is not P-disconnected.
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Definition 2.4

A bfts (X, 1y, T5) is P, -disconnected iff there exist non zero

fuzzy sets A € T, and |l € Ty such that A + [ = 1. A bfts (X, 1, Tp)
is called P, -connected if it is not P,,-disconnected.

The implications of the above types of bifuzzy
disconnectedness can be described by the following diagram.

P=> P,
y U

S= 8,

To show that all implications are not reversible we present the
following examples.

Example 2.5

LetX = [0, 1}, t; = {0, 1, A} and 15 = {0, 1, u}; where A and
U are defined as follows:

, < . <
Mx)={2/§1f1/2_x<1 u(x)z{1/§1f1/2_x<1
11if0<x<1/2 0if0<x<1/2

It is clear that A + 1 = 1 and A N [ # 0. Hence (X, Ty, Ty) is P,-
disconnected and S, -disconnected but it is neither P-disconnected
nor S-disconnected.

Example 2.6
LetX =[0,1],7; = {0, 1, A, 1} and T4 = {0, 1}; where A and
H are defined as follows: A = ¥ [0.5, 1], i = [0, 0.5), i.e.,

if 1/2 < i <
M) = {lffl/ x<1 1ee) = {0ff1/2 x<1
0if0<x<1/2 1if0<x<1/2

It is clear that A + L = 1 and A N p = 0. Hence (X, T, Ty) is
S-disconnected and S -disconnected but it is neither P-disconnected
nor P, -disconnected.

Example 2.7

A fuzzy set © in a bfts (X, T,, T9) is S-C;-disconnected (P-C;-
disconnected) iff G has S-C;(P-C;) disconnection (i = 1, 2, 3, 4). That
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is, there exist proper fuzzy sets A, 1 € T; U T9 (A € T}, { € Ty) such
thatc C AW M and

Cy: OoNAnNnp=0Agl-ougl-o.

Cy: Anpunl-ocAgl-ougl-o.

Cg: CNANpu=0cNnAz0,cNu=z0.

Cy Anpcl-oc,cNnA#0,cnp=0.
A fuzzy set © in a bfts (X, T, T9) is said to be S-C;(P-Ci) connected if
there does not exist an §-C;(P-C;) disconnected of ¢ in X (i=1,2,3,4).

3 Connectedness and P-continuity
We start with the following definition.
Definition 3.1
Consider a function f: (X, T, T,) = (Y, G}, G,), then fis said to be:
1) continuous if £:(X,1))—>(Y,0,) & [:(X,T9)—>(Y,0y) are continuous.
2) P-continuous iff for any j1 € 6, U Gy, L) € T U Ty,

3) P-open iff for any [l € T, U Ty, f-H}) € 0, U Oy

Clearly if f is continuous then it is P-continuous but the converse is
not true in general.

Example 3.2

LetX =Tandf: X X/1,,,X/1,.,) > XX/T,.,., X/T,) be
defined by f(x) = x, then fis P-continuous but not continuous.
Theorem 3.3

If f: X, 1y, 19 = (, v, Y9) is a P-continuous surjection
function and A is an S-C,-connected fuzzy set in X, then f(A) i5s an S-
C,-connected fuzzy setin Y.

Proof

Suppose that f(A) is not S-C,-connected, then there exist non
zero proper fuzzy Bets |1, V € ¥; U Y, such that f(A) C p U v, (LAV)
M fIA) & Q€ and f(A) & v¢. Using theorem 4.1() of Chang (1968)
page 185, since A C /! (fAA)) and FIFANY c Flpw v) = Fiu) U
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fiv), then A C i) W Fl(v) € T, U Ty Also £ ATV A A
= f-1(0) = 0. Since f(A) & V¢, so there exist y; and y, such that

Hoyp > 1-fA G o)
and V@) >1-f(My (2)
As f is onto f-}({y,;}) and f1({yy}) are non-empty subsets of X. By
inverse and direct image of f we have f-1()1) (x) = p(y;) for every
x € f-1({y;}) and f) (yp = sup {A&) :x € iy, D}. We claim
that f-1()) @ A€ and f-1(v) & AC. Suppose f-1(|) < AS, then f-1(Y)
(x) €1 — A for every x € f-1({y,}); i.e. f(x) € {y,} and so we have
U x)) < 1-A(x) which implies A(x) < 1 — {1(y;); i.e. sup {A(x) 1 x €
1y HY £1 - pyyp and so f(A) (yy) <1~ p(yp which contradicts
(1). Similarly f~1(v) <€ A° contradicts (2). Hence f~1() @ A€ and
f-1v) & A€ and so A is S-C,-disconnected which is a contradiction.
Therefore f(A) is S-C,-connected.

Theorem 3.4

If f:&X, 1, 1)) = (Y, ¥, Yo) is a P-continuous surjection
function and A is an S-C,-connected fuzzy set in X, then f(A) is S-Cyp-
connected.

Proof
Similar to the proof of Theorem 3.3.

Theorem 3.5

If f:&, 1, 19 = (¥, ¥y, Yo) is a bifuzzy P-continuous
function and A is an S-C3-connected fuzzy set in X, then f(A) is S-Cj-
connected.

Proof

Suppose that f(A) is S-Cg-disconnected, then there exist
fuzzy sets [, v C ¥; W ¥y such that AA) S p U v, (LN VINAA=0,
F) N # 0 and f(A) N v # 0. Since A C f1(AA) and [-1FA) <
frlipov) = g O vy then A € AW U vy € 1, U T,
Alsof- () N -2 v) N A = f1(0) = 0. Since f(A) N W # 0, so there
exists yy € Y such that () (yg) M (yg) # 0 which implies that f(3)
(g > 0 where f(X) (yg) = sup {Ax): x € F1({y,})} and gives that
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1y} # . So there exists x, € X such that x, € f~1({yy}); i.e,
flxg) = yo. Since f(A) (yy) > O, then there exists x; € X such that
x1 € 1{yy)}) and so 0 < Alx)) £ fA) (yg). Now fl(p) (xp =
H({fx)) = H(yy) # 0 and Alx,) # 0. Hence f-1(1) N A # 0. Similarly
we can show that f}(v) m A # 0. This shows that A is S-Cs-

disconnected which is a contradiction. Hence f(A) is an S-Cj-
connected fuzzy setin Y.

Theorem 3.6

If f:(X, 1y, T9) = (Y, Y}, Yo) is a P-continuous function and
A is an S-C -connected fuzzy set in X, then f(A) is an S-C,-
connected.

Proof
Similar to the proof of Theorem 3.5.

Theorem 3.7

A fuzzy P-continuous-image of a fuzzy S-connected space is
fuzzy S-connected.

Proof

Let f: (X, 1y, T9) > X, 0}, Oy) be a P-continuous function
and suppose on the contrary that Y is not S-connected. Then there
exist non-zero fuzzy sets A, |l € 0, U O, such that A + g = 1 and
A Ny = 0. Since f is P-continuous then f~1(X), f-1(1) € 7, U 15. We
claim that f~}(A) + f~l(u) = 1. To prove our claim, suppose not.
Then there exists x € X such that f~1(A) (®) + f~1()) () # 1 which
implies that A(f(x)) + p(f(x)) # 1 which contradicts A + p = 1.
Hence f-1(A) + 1) = 1. We claim that f"1(X) n f~I(w) = 0. To
prove our claim, suppose not. Then there exists x € X such that
1) &)y~ FYW) (x) > 0 which implies that A(fix)) N pu(fx)> 0
which contradicts A » p = 0. Hence (X, T, T9) is S-disconnected
which is again a contradiction. Hence (Y, 1}, T9) is S-connected.

Theorem 3.8

A fuzzy P-continuous image of a fuzzy P-connected space is
fuzzy P-connected.
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Proof
Similar to the proof of theorem 3.7.

Definition 3.9
A function f: X — X has a fixed point if there exist ¢t € X
such that f(¢) = ¢. The point ¢ is called a fixed point of .

Definition 3.10

A fts (X, 1) has the fixed point property (f.p.p) if every
continuous function from X into itself has a fixed point.

Definition 3.11
Consider a bfts (X, Ty, 1),

(i)  if every continuous function from (X, T, T9) into itself has a
fixed point we say that X has f.p.p.

(ii)  if every P-continuous function from (X, T,, To) into itself has
a fixed point we say that X has P-f.p.p.
Proposition 3.12
If f is a P-continuous function from (X, T;, Tp) into (¥, Gy,
Oy), then f is continuous as a function from (X, <T;, T,>) into
¥, <1y, T9>).
Proof

Let |t be a subbasic open fuzzy set in (¥, <G, O5>) then
L EGC; UG,and so f-1(1) € T, U Ty but T; U T3 © <Ty, Tg>,
therefore [ is a,c‘ontinuous function from (X, <T;, T,>) into
(Y, <Gy, Gy>). '
Theorem 3.13

If (X, T{, T9) is a bfts such that X, <T;, T9>) uas the f.p.p,
then (X, 7;, To) has the P-f.p.p.
Proof

Let f: (X, T, T9) = (X, Ty, To) be a P-continuous function,
then from proposition 2.14 f : (X, <7T;, 19>) = X, <7y, Tp>) is
continuous and so f has a fixed point. Hence (X, T;, To) has the P-
f.p.p.
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Proposition 3.14

Let f: X — X be a function. Then the following are
equivalent:

() f:&X, T, Ty — X, T, Ty is P-continuous.
(i) f: &, o(T), o(Ty) > X, o(T,), ©(Ty)) is P-continuous.
gy X X/T,X/Ty) > (X, X/T,, X/T,) is P-continuous.
Proof

(i) = (i) Let 4 € o(T;) U &(Ty). We are going to show that
i € o(Ty) U o(Ty). Now p : X, T) — (I, T,,) is continuous
and so u=X0, 1] € T; U T, and so we have by (i) f-1(u~1(0, 1) €
T, v Ty but /=10, 1) = (W11 (0, 1)) € T, U T, Hence
i : X, T) - d, T,,) is continuous and so f-1(u) e (T))wa(Ty)
which completes the proof.

(ii) = (ii) Let ¥, € X/T; U X/T,. Then ¥, € o(T) v
©(T,) and so by (ii) f~1(x,) € ©(T;) U &(Ty). Thatis f-1(x,) : X, T;)
— (I, T,,) is continuous. Therefore [f-1(3,)1"1 (0, 1] € T; U T, but
(1)1t (0, 1 = [xf-1@w)])™! (0,1] € T; U Ty which implies that
Xl : X, T) — d, T, ) is continuous. Hence Xf~1(u) € X/T; v
X/Ty. Thatisf-1(x,) € X/T, U X/T,.

(iii) > () Letu € T; U Ty. Then , € X/T; W X/T, and so
i) € X/Ty OX/Tybut f1(x,) = xf 1w € X/T, U X/T, which
implies that f~1(u) € T, U T. Hence f is P-continuous.

Theorem 3.15
Let (X, Ty, Ty) be a bts. Then
(1) X, Ty, Ty) has P-f.p.p iff (X, ®(T;), ®(T,)) has the P-f.p.p.
(2) X, Ty, Ty has P-f.p.piff (X, ®(T;), ®(T,)) has the P-f.p.p.
Proof _

(1) Let f: X, o), oTy) - X, o(T), &(Ty) be P-
continuous. We are going to prove that f has a fixed point.

Using proposition 8.14, f : X, T}, Ty) —> X, Ty, Ty) is
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P-continuous and hence f has a fixed point. Similarly we
treat the other implication.

(2) The proof is similar to (1).

4 More results on connectedness

We start this section by extending some of the results
obtained by Ajmal and Kohle [2] to bifuzzy topological spaces.

Definition 4.1

Let (X, T, T,) be a bfts and A, A, be two fuzzy sets in X. Then
1) A, and A, are said to be disjoint iff A; " A, = 0.
2) A, and A, are said to be interesting iff A; M Ay = 0.

3) A, and A, are said to be overlapping if there exists x € X
such that A(x) > 1 = A,(x). In this case A; and A, are said to
be overlap at x.

Theorem 4.2

If A, and A, are intersecting S-Cy-connected fuzzy sets in a
bfts (X, Tl’ 12) then )\1 o )\2 is S-C3-C0nnected.

Proof

Suppose that A, U A, is S-Cs-disconnected, then there exist
K, VET UTgsuchthat A, WA, C UV, (LN V)N (A UR) = 0,
HAAUA) £0and v (A UAg) #0.8ince Ay UA, ST ULV,
then it is clear that A\; S p U vand A, C U U V. Since (U N V) N
(AU Ay =0, then we have (LA VI A AJUILAVI A A) =0
which implies that (W " v) M A; = 0 and (L N V) N Ay = 0. Since
A, and A, are S-C3-connected, then (W M A; = 0or v A; = 0) and
(LA Xy =00rv Ay = 0). Suppose 4 N A; = 0. Since A; and A,
are intersecting, then there exists x € X such that (A; N Ay) (x) #0
which implies that A,(x) # 0 and Ay(x) # 0. We claim that vA,#2,
To prove claim, suppose, the contrary v N A, = 0. Then (v M Ag) (x)
gives that v(x) = 0 and so (L U V) (x) = 0 which contradicts that
AU AY () C (MU V) (x) because (A, U Ay) (x) # 0. Therefore
VA Ay # 0and soft M A, = 0. Hence 4 M (A; U Ay) = 0 which
contradicts that i ™ (A U Ay) # 0. Similarly if v N A; = 0 we can
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show that [L N A, = 0 is not possible. Hence v N A, = 0. Therefore
v N (A U Xy = 0 which contradicts v N (A; U Ay) # 0. Hence
Ay U A, is S-Ca-connected.
Theorem 4.3

If X; and A, are intersecting S-C,-connected fuzzy sets in a
bfts (X, T, Ty) then A, U A, is S-C,-connected.
Proof .
Since A; W Ay € p U V implies that A € 1 U Vv and
cpuvand (N V) S A Ury® = Af N A impliesthat p N v
C A,S. Then the proof follows the same steps as in Theorem 4.2.

The following example illustrates that the above theorems
are not valid for disjoint (non-intersecting) fuzzy sets.
Example 4.4

Let X = [0, 1] and define fuzzy sets }t and Vv as follows:

i < . i <x<
(x)={01f.‘:2/3_x<1 ’ v(x)={2/,31f2/.3-x_1
2/3if0<x<2/3 0if 0 <x <2/3
Then 7, = {0, 1, 1t} and 7, = {0, 1, v} are fuzzy topologies on X.
Define fuzzy sets A; and A, as follows:
i <x< i <
ll(x)={1/.31f2/3"x'1 ’ lz(x)={-01f?/3<x_.l
0if0<x<2/3 1/3if0<x<2/3

It is clear that A} M A, = 0, A; and A, are S-Cy-connected (S-C,-
connected) because A, "L = 0and Ay ML = 0but Ay U A, = 1/8 s
an S-Cy-disconnected because (A; N Ay) © PV, (A UAy) N (UMW)
=(1/3"0=0,(A0"A)Ap#0and A, " AH V=0

Theorem 4.5

Let {A; : i € A} be a family of S-Cg-connected fuzzy sets in
(X, Ty, Ty such that i, j € A, i # j, the fuzzy sets A; and A; are
intersecting. Then U {A;:i € A}
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Proof

Let {A; : i € A}, where A, is as stated in the above theorem
(i € A). To prove A is S-Cg-connected, suppose not. Then there exists
B,VET UTgsuchthat ACHUV,(UNAVINA=0uNAz0
and v N A # 0. Now fix k € A. Since A, is S-Cy-connected and we
have clearly A, S p U v, (WM A) N A, = 0, therefore L N A, = 0 or
p M A, = 0. We shall deal with deal with the first case only because
the second case can be treated similarly., So we may assume that

UM A, =0.Weclaimthat v A; % 0foralli € A — {k}. To prove
our claim, suppose note, i.e., v\ A; = 0 for some i € A — {k}. Let
LetA;={ie A—{k}:vNA; =0}, then A; 2. Nowleti € A,.
Then A, N A; # 0. So there exists x € X such that (A, N A;) (x) # 0.
This implies that Ay (x) # 0 and A;(x) # 0. Since 4 N A; = 0, therefore
H(x) = 0. Since V N Ai = 0 and A;(x) # 0, therefore v(x) = 0.
Consequently (1 W V) (x) = 0. The fact that A C 1 U v implies that
A(x) = 0 and this implies that A;(x) = 0 for all i € A which is a
contradiction. This completes the proof of our claim that v A\ A; # 0
forallie A—-{k}.Forie A-{k}wehave L, C puUV, (N V)N
A; = 0 and A; is S-Cg-connected. This implies that u N X; = 0 or
v N A; = 0. Combing this result with above claim we conclude that
UM A; =0foralli € A- {k}). But we know that u N A, = 0. This
impliesp N A; = 0 foralli € A. Consequently @ M A = 0 and this is
absurb. Hence A = U {};:i € A} is S-Cg-connected.

Theorem 4.6

Let {A;:i € A} be a family of S-C,-connected fuzzy sets in
(X, Ty, T9) such that for i, j € A, i #j, the fuzzy set A; and A; are
intersecting. Then U {A; : i € A} is S-C-connected.

Proof
The proof follows the same steps as Theorem 4.5.
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Corollary 4.7

If {A;:i € A} is a family of S-C5-connected (S-C,-connected)
fuzzy sets in (X, Ty, Tp) and M {A; : i € A} # 0 where i € A, then
A is an S-Cg-connected (S-C -connected).
Proof

Since N {A;:i € A} 20, then A, M A; = 0 foralli #, i.e. A,
and 7& are intersecting for i #j.

The following example shows that Theorem (3.4.12) fails for
S-C,-connectedness S-Cy-connectedness).

Theorem 4.8
Let X = [0, 1] and define fuzzy sets [t and v as follows:
. < . ’ <
u(x)={6/7%f2/3<x_1 , V(x)={2/7ff2/3<x_1
2/7if0<x<2/3 6/71f0<x<2/3
Then 7, = {0, 1, [t} and T, = {0, 1, v} are fuzzy topologies on X,
Define fuzzy sets A; and A, as follows:
. < . <
7L1(.7c)={1/7.1f2/3<x_1 , 7&2(x)={2/7ff2/3<x—1
2/71f0<x<2/3 1/7if0£x<2/3

It is clear that A; M Ay # 0, A; and A, are S-Cy-connected because
MC Afand v € Ay° but A U Ay is an S-Cy-connected because
2/7= (A ukZ)c(uuv)-6/7 2/T=@NAV)C R udry =
5/T, L& (A U Ag)and v & (A; U Ay)e.
Theorem 4.9

If A, and A, are overlapping S-C;-connected fuzzy sets in a
bfts (X, T}, T9) then A; U A, is S-C;-connected.
Proof

Suppose that A; U A, is S-C-disconnected, then there exist
non zero fuzzy sets [I, V € T; U Ty such that; (A} U A9) C (L U V),
HUVINA UA) =0, LT (k;UA)Nand i € A UA)S. (1)

101



Since (A; U Ay) © (L U V), then itis clear that A, C pH U v
“and Ay C LU V. Since (L U V) N (A; U Ay) = 0, then we have
[(HAV) N A U [(LNV) N Al = 0 which implies that
(MUVINA;=0 and (ULUV)NA,=0. Since A; and A, are S-C;-
connected then (A; < H€ or A; < pf) and (A C Y€ or Ay C LU°). Since
A, and A, are overlapping, then there exists y € X such that '

M@ > 1A (@)
Now consider the following:

Case I. Suppose A; C ¢, then by (2) we have

A®) S1=2A,0) < Ay 3)
We claim that Ay & V°. Suppose, if possible Ay € V¢ which gives
V) S1-2,0) < A (4)

- Now by (3) and (4), (L U V) () < (A; U Ay) () which implies that
(A W Ag) @ (U U V), this contradicts (1). Hence Ay @ v, and so
Ay C HC. Therefore 4 S A £ M A = (A U AY°.

Case II. Suppose A;CVv°. Here we can show as in case I that pzi-A,.
Therefore v < 1 — A,. Hence v < A N Ay¢ = (A} U Ay). Therefore
HS Ay UA)tand v < (A U AgF. This contradicts (1). Hence
A, U A, is S-C,-connected.

Theorem 4.10

If A, and A, are overlapping S-C,-connected fuzzy sets in a
bfts (X, T, Ty) then A; U A, is S-C,-connected.

Proof

Since A;UA,cHUV implies that A; C 1L U Vv and A,CHUV
and (L N V) C (A UA)° = A€ M Ay implies that g NV < A€ and
L N Vv C AL Then the proof follows the same steps as in Theorem
4.9.
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Theorem 4.11

Let {A;:i € A} be a family of S-C,-connected fuzzy sets in X
such that for i, j € A, i #j, the fuzzy sets A; and kj are overlapping.
Then U {A;:i € A} is an S-C-connected.

Proof

Let A = U {A; : i € A} and A, be any fuzzy set of the given
family and so A, is an S-C;-connected. Suppose that A is an S-C;-

disconnected. Then there exist non zero fuzzy sets 1, v € T; U Ty
such that '

ACAUV,(UNVINA=0{(ULNV)CA), L ZAand vV ZAS. (1)

SinceAc puU v, (LN V)N A =0, then A, & HUV, (UNV)NA, = 0.
Since Aj is S-C,-connected, then p C A Since A; and A, are
overlapping, then there exists y € X such that

Now consider the following:

Case I. Suppose Aj, C U¢, then by (2) we have

HO) 1 - A < MO, 3
We claim that A; & V°. Suppose, if possible A; < v¢ which gives

Now by (3) and (4), (LU V) (y) < (A, U X)) () which implies
that (A, U ;) @ (1t U V), this contradicts (1). Hence A; & v¢ and so
A; C uC. Therefore p © XS = A°.

Case II. Suppose A,CV¢. Here we can show as in case I that pz1-2,;.

Hence v & N Af = Ac. This contradicts (1). Hence A is S-C;-
connected.

Theorem 4.12

Let {kiv: i € A} be a family of S-C,-connected fuzzy sets in X
such that fori,j € A, i #J, the fuzzy sets A; and lj are overlapping.
Then U {A;:i € A} is an S-Cy-connected.
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Proof
The proof follows the same steps as Theorem 4.11.

Corollary 4.13

Let {A; : i € A} is a family of an S-C;-connected (S-Cy-
connected) fuzzy sets in (X, T, Ty) and p be a fuzzy point with
support x and value 1/2 such that p(x) € N {A; : i € A}, then
U {A;:i € A} is an S-C;-connected (S-Cy-connected) fuzzy sets in X.

Proof

Since p(x) € M {A;:i € A}, then X; and A, are overlaping for
alli,j € A. -
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ABSTRACT

The local truncation error and its global propagation associated
with the application of the Implicit Trapezoidal rule to the solution of
constant cocfficient differential-algebraic systems of index |l are studied.

1. INTRODUCTION

We are interested in initial value problems for the
differential-algebraic systems in Kronecker canonical form

Ey'(t) = y(t) + g®)
¥t) =y, ye R¥ 1.1

where E has the property that there exists an integer {1 such that
E® = 0 and E*! # 0. The parameter U is the nilpotency index of E.
Our purpose in this paper is to examine, the properties of these
problems which cause the implicit Tapezoidal method to fail, and the
relationship between the order of the error of the implicit
Trapezoidal method and the index of the system. The idea of using
ODE methods for solving differential-algebraic systems directly was
introduced in [2]. A good general discussion of the systems may be
found in [1], [2], [3]. In Section 2, we give the application and error
analysis with the orders of the implicit Trapezoidal rule for the
system (1.1). The numerical results for the index 4 test problem are
presented in Section 3.

2, FORMULATION OF THE IMPLICIT TRAPEZOIDAL
RULE AND ERROR ANALYSIS

If we apply the implicit Trapezoidal rule to (1.1),
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h h
EQpi1—yn) =§0'n+1 +y,) + §(g"+1 +g,)
We get

h )1 h h 1h :
yn+1=(E—§I) (F'+El)yn+(E—§I) E(gn+1+gn)(2.1)

where E =] . , Eb = 0,

. Hxp
00010

_ ) -1
Let us define K=(E—§ ) 1(E+%I)andM=(E—g-)

and write
. h
Ins1=K yp, + EM(ngl + gp)

Since E is nilpotent matrix, noting that,

E-3) -2 6"

K and M can be expanded as

- 4p 8 59 16,5 2% p.-}
{I+hE+h2E +h3E ot g E

8

B3

The local truncation error of the method is defined by

__ 2,4 2.1_6_3 2
M=—{ 71+ 3E + 3B+ 3B + .+ o Bwt ]

h
Thy1=Yn)) —Kyt) -5 M (gt,, +8@))

and after some calculations, we get;

h®
The1= z( pe ey k! (ﬁ—l)MEy(k) (tre1)
k=a
The exact solution satlsﬁes equation (2.1) with the local

truncation error
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Ytne)) = Kyt) + SM (g ) + 50) ~ T

: From the definition of the error €nil = Yne1 — Ylni1)
en,1 = Ke, + T, is obtained. For consistent initial conditions, i.e.
e, = 0, and after the back substitution process, we have

n-1 n-1 o b b
=2 KT, ;=3 2(- l)kK-’ME(——l)k,y ) (tp )
©Jj=0 Jj=0k=a
If we substitute the Taylor expansion of y® (£,_) at the point
t, and KME = (-1Y A; with

Aj= {2E+(1+2_;) E2+(1+2_;+2_;2)—E3+

....... +(d, + d2)2 c+dy g P >hp 1E”' }

then the error will be

w © n-1 .
z Z aklhk+l { Z (—l)ljl Aj} y(k+l) (tn)
=_ = .]=0
kel (® 1 -
where ap; = (-1) 2" 1 Y — and d,, .., d“_2 are some constants

which are found from the binomial expansion terms of K. For the
Standard ODE the order of the error of implicit Trapezoidal rule is
o(h2), but in our system (2.1) the term KME in error formula
changes the order by decreasing with respect to the index pt. Now we
will discuss how this term effects the order of the error.

For odd n;

2n n n-1

YA = T @)Y Ay - T @+ D Ag,,

Jj=0 J=0 Jj=0
n~1 n-1 1-1

= @) Ay, +' X QN (Agj—Agi ) + 2 X (U Ag;,1(2.2)
j=0 j=0p=1 :

Since the degree of the matrix polynomial Ag—Ay;,, is U-3, the
maximum degree of j in the first summation term of (2.2) will be
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I + 1 — 3 and in the second summation term, j has maximum degree
ofl + u-—3.

. I, — 1,
Since n = T we definen = O(h~1) and

M=

Ji=bint e L+ b n =00 + O +...+ O™ (2.3)
j=0

where b, .., b;,; are some summation constants which are
independent of n. Using the above results (2.3), we rewrite the
summation term (2.2) as follows;

2n .
Y 1Y i A = {0 + O + .. + OD}E
j=0 :
+ {03 + Oh-2) + ... + O~} E2
+ {OG15) + OGR4 + ...+ O~ L)} E3

...........................................

+ {03y L Q-2+ 4y 4 - YR~ Y} Er-L

By similar consideration, we get the same res: . for even n.
So the error will be

m m

lenI< Y 3 {cons. hk+1-1 4+ _ + cons. kE-1} [|Eyk+D ¢ )|
=31=0

kR
m m
+ 3 ¥ {cons. hk+l-1 4 4 cons. hk-3} [|[EZyR+D ¢ )|
k=31=0

F eteeeie ittt sttt eb s naetes
m m
+ 3 Y {cons.hk+l-14 . . +cons.hk-21+3} | En-
k=3l=0

Lyk+D M+ IR, 4l

where [|R,,, |l <cons. 3
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For the sufficiently differentiable function y(t) and g(¢), written in
the components of index [ system with y(t,) = (y; (), ..., ¥,,(t;) )7,
and using

0

Eiy = Y1

uxl
yp.-i

we he_fve;
”e;x,n“ < cons. o2 ,

where the subscript |t denotes the L1*h component of the vector e,,.
Here "cons" denotes a constant which is independent of A. For the
first component we found an error. 118D—14 because it was solved
exactly by the Trapezoidal rule.

3. NUMERICAL RESULTS

We consider the following linear constant coefficient index 4
differential algebraic system as a test example

0=y, +t3+ e +sin(@)

yl =XYe
y2_y3
y3")’4

with the consistent initial conditions

¥1€0) = =1 y,(0) = =2 y5(0) = -1 y,0) =-6
The numerical results using constant stepsize and observed orders
for each component are listed in the following tables at ¢ = 1.2, The
observed orders are computed using p = log (e, /e, , 1)/log (h,/h, . 1)
where e, and e, ,; are the global errors when the problem is solved
with step sizes k, and &, , ; respectively.
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Table 1: Global error and observed orders for y,.

h ITR Orders
0.2 .984D—-02 -
01 | .246D-02 2.

0.05 .616D-03 | 1.9976
0.025 .154D-03 2.

Table 2: Global error and observed orders y3.

h ITR Orders
0.2 .238D+01 -
0.1 .239D +01 —0.0060
0.05 .240D+01 -0.0060
0.025 .240D+01 | 0.0

Table 3: Global error and observed orders y,.

h ITR ~ Orders
0.2 ..145D+03 -
0.1 .577D+03 —-1.9925
0.‘05 .230D+04 —1.9949
0.025 | .922D+04 - —2.0031

(ITR : Implicit Trapezoidal Rule)

It is seen that the predicted orders from the error formula as
eg = O(h?), eg = O(h°) and e, = O(h~2) agree with the results in the
tables.
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ABSTRACT

A few fixed point theorems for Kannan maps in complete and
compact metric spaces are established which improve and extend
corresponding results of Kannan, Khan and Kalinde.
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1. INTRODUCTION

Let f be a self map of a metric space (X, d). f is said to be a
Kannan map if ‘

d(f, () < 51, f) + A, /)] M

for all x, y € X. In a compact metric space, Kannan [1, 2] obtained
the existence of fixed point for Kannan maps; In a complete metric
space, Kalinda [3] gave a necessary and sufficient condition for
Kannan maps to posses a fixed point.

The purpose of this paper is to establish a _few fixed point
theorems for Kannan maps in complete and compact metric spaces.
Our results improve and extend results of Kannan [1, 2], Khan [4]
and Kalinde [3]. An illustrative example is given in support of our
result.

For S < X, § and 8(S) denote the closure and diameter of S
respectively. N and ® denote the sets of positive integers and
nonnegative integers respectively. For x € X and & € N, define
O(x, ) = {f"x | n € ®}and o(x, k) = {f'x | O <n <k}.

In order to obtain our main results, we need the following.
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Lemma
Let f be a Kannan map on a metric space (X, d). Then
d(f'x, fx) <d(x, fx) forn,m € Nandx € X.

Proof
Letx € Xand n, m € N. It follows from (1) that

d(fix, i+ 1x) < % A1z, fix) + d(fx, 2+ 0]

which implies
d(fix, i+ lx) <d (1, fix) < ... < d(x, fx)

By (1) and the above inequalities we have
d(fix, frx) < % [d¢mx,mx) + d(Ix, fx)] < dix, fx)
This completes the proof.
Remark1
Every Kannan map has at most one fixed point.
Our main results are as follows:

Theorem 1

Let fbe a Kannan map on a comlete metric space (X, d).
Then the following conditions are equivalent:

(a) [ hasa fixed point;

(b) inf{8(O(x, #)) |x € X} = 0forallk € N;

(¢) inf{8(O(x, k)) | x € X} = 0 for some k& € N;
(@ inf {8(0@, ) | x € X} = 0.
Proof

The following implications are trivial (a) = (b) — (c) and
(a) — (d). We now show that (c) implies (a). Define M; = {x | x € X

and 6 (O(x, &) < %'} fori € N. Clearly M;, , C M; for i € N. By (¢)

we obtain that M; # ® for i € N. For any x € M;, we have by the
Lemma l
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8(0(fx,k)) = max {d(* Lx,fm* 1x) | 0<n,m<k} <d(x,fx) < 5(OCx,k) < li

ie, fx € M;. Hence fM; C M;. For any x, y € M;, by the triangle
inequality and (1) we get

dx,y) <d(x, fx) +d({fx, fy) + d, fy) Sg[d(x, fx) + dy, )]

<250, b)) + 5(0(, k)] s%

Do

which implies

|co

d(M,;) = sup {d(x,y) | x,y € M;} < ;

Note that 5(A7i) = O(M;). By the completeness of X and the above
inequality we obtain m :en_ﬂﬁt ®. Takew € mieNl\—l—i and a; € M; for
I € N. Then

dw, fw) <dw,a;) + d(a;, fa) + dfa;, fw)
<dw,a;) + %d(ai,fai) + %d(w, fw)

which implies
dw, fw) < 2dw, a;) + 3d(a; fa;)
Note that fM; € M; and w, ¢; € M. Then

d(w, fu) < B80T + BB <=2
As [ — oo, we conclude that d(w, fw) = 0. Hence w is a fixed point of
f;i.e., (a) holds.

We next show that (d) implies (b). Note that 6(O(x, k)) <
8(O(x, ©)) for k € N and x € X. Then

inf {8(O(x, k) | x € X} <inf {8(0O(x,®)) | x € X} = 0
i.e., inf {8(O(x, k) |x € X} =0
for all & € N. Hence (b) holds. This completes the proof.
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Remark 2
Our Theorem 1 improves and extends Theorem of Kalinde

[3l.
Since 8(O(x, 1)) = d(x, fx), we have by Theorem 1.
Corollary 1

Let f be a Kannan map on a complete metric space (X, d).
Then f has a fixed point if and only if inf {d(x, fx) | x € X} =

Theorem 2

Let f be a Kannan map on a compact metrlc space (X, d).
Suppose that for any closed subset K of X with fK < K and 8(K) > 0,

(2) inf{d(x, fx) | x € K} < 8(K)
Then f has a unique fixed point.
Proof

Let r = inf {d(x, fx) | x € X}. Then there exists a sequence

{x,},en € X such that Jlim d(x, fx,) = r. By the compactness of X,
there exists a convergent subsequence {f* x, },MN of {f*x,}, .\ Put

'P_r& M Xy, =UE X. Then by (1) and the Lemrna we get
d(u,fu) = Iim d{™, Xp, , fu) £ limsup d(f"x,, fu)

5— lim sup [d(/*~ Ix, fix,) + d(u, fu)l
% hrn sup [d(x,, fx,) + d(u, fu)l

< 5 [r + d(u, fu)l

which implies d(u, fu) £ r. Consequently r = d(u, fu) by the
definition of r.

LetK = {x | x € Xand d(x, fx) = r}. Thenu € K# ®. By the
Lemma and the definition of r we conclude easily that fK < K. Thus
d(fu, f2u) = r. For any x, y € K, we have by (1)

d(fx, fy) <1 5 [, fx) + d@y, )] = r
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Consequently
r =d(fu, ffu) <8(¢K) = sup {d(fx, fy) | x,y € K} <r
i.e., 8¢K) = r.Set E = fK. Clearly 8(E) = 6(fK) = rand fu € E.

We now prove that E C K. For any x € E, there is a sequence
{¥p}.cn € K such that Jim fy, = x. Using (1) we obtain

4, f) S, fy,) + Ay ) S A, ) + 3140, fr) + dlx, f0)

= d(x, fy,) + -;—[r + d(x, fx)]

It is easy to show that d(x,fx)=r; i.e., x€K and hence ECK. This
implies fECfKCfK=E. Hence E is a nonempty closed and f-invariant
subset of X, ‘ '

We next prove that u = fu. Otherwise u # fu. Then
O(E) = r = d(u, fu) > 0. Using (2) we have

r =d(fu, f2u) = inf {d(x,fx) | x € E} < 0(E) =r

which is impossible. Hence u = fu and it follows from Remark 1 that
u is the only fixed point of f. This completes the proof.
Corollary 2

Let f be a Kannan map on a compact metric space (X, d).
Suppose that for any closed subset K of X with fK € K and 8(X) > 0
there exists y € K such that

3) d(y, fy) < sup {d(x, fx) | x € K}
Then f has a unique fixed point.

Proof
Clearly (3) implies (2). Corollary 2 follows from Theorem 2.

Remark 3

The following example verifies that our Corollary 2 does
indeed generalize Theorem A of Kannan (2] and Theorem 4 of Khan

(41.
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Example
Let X = [0,1],d(x,y) = |[x —y|. Define f: X = X by

1
— x € [0, ] -
fx={10

1
Exe( 1D

It is a simple matter to show that [ satisfies (1). For any closed
subsetKowaithﬂ{CKand SK) > 0, we have O ¢fKC)‘X =

1 .
{-ﬁ, 2—10-} We now assert that eﬂ( Suppose E }‘K Then —OEK-

This implies = 1 e /K. Hence 0 € 7K. Note that 0 € fKCK.

0
Consequently (3) holds; Thus the condltlons of Coxollary 2 are
satisfied but Theorem A of Kannan [2] and Theorem 4 of Khan [4]

are not applicable since f is not continuous at x = %and f does not
satisfy
d(fx, fy) < [d(x, fx) d(y, f]1/2

forx=mandy=1.
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ABSTRACT

In this paper, we show that Cellerier's nowhere differentiable
function is everywhere continuous in the Holdel; sense. The result is used
to construct a Lyapunov surface which is non-regular in the Kellogg sense
at any of its points.
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1. INTRODUCTION

Holder continuity has now replaced the strong condition of
differentiability in many theorems of the theory of partial differential
equations. This paper aims to demonstrate the advantage of such a
repalcement by presenting a counterexample.

Let us turn our attention to the potential theory. It is seen
that the surface S, over which the single-layer and double-layer
potentials are defined, must hold certain properties. According to
Kellogg [1], S must be twice differentiable. Weaker conditions have
also been proposed in the literature, for example, S being smooth in
the Lyapunov sense [2, 3].

It has been shown that z = f(x, y) represents a Lyapunov
surface if, and only if, £, and fy exist and are continuous in the -
ider sense [4]. It is not difficult to find a Holder continuous function
which is non differentiable at a finite number of points. But note
that, when integrating the boundary conditions on the suiface S, we
can easily remove such exceptional points under integration. The
problem of interest is therefore to find an everywhere Holder
continuous function which has no derivatives at any point. In this
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way, we will be able to construct a Lyapunov surface which is
everywhere non-regular in the Kellogg sense.

In [5), it has been shown that van der Waerden’s classical
non-differentiable function defined by f(x) = }:::0 2-"y(2"x), where
Y(x) is the distance from x to the nearest integer, is l‘l@ie_r
continuous of class s, at any point, for every s between 0 and 1.

In this paper, we consider Cellerier’s nowhere differentiable
function and discuss its continuity in the Holder sense. Then we use
the result to construct a non-regular Lyapunov surface.

2. CELLERIER’S NON-DIFFERENTIABLE FUNCTION

L]

Cellerier’s function is defined {6] by f(x) = Zn=1 2117 sin a™x,

where a is a sufficiently large even integer. By Weierstrass’ M-test,
this infinite series is absolutely convergent and hence f(x) is
continuous at any point. However, it has been shown that Cellerier’s
function has no finite differential coefficients anywhere [6].

In the following, we prove the Holder continuity function at

any point. For 0 < s £ 1, recall that a function f is Holder continuous
is Holder continuous of class s at x if there is a positive constant M,
such that

Ifix + 1) — f@)| <M, [t]5, &)
for any real t.

By substituting Cellerier’s function, we obtain

Ifx + t) — fx)]

2| Zal—n cos a® (x+1t/2) sin a™t/2] (2)
n=1 )

2 Za—ln- |sin a"t/2]
n=1

since |cosa(x + t/2)| < 1.

It can easily be shown that, for 0 < s £ 1 and for any real u,

[sinu] 3)

|u]®
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The validity of (3) for |u| = 1 is evident. For |u| < 1, we have ju|* 2
Lsm u[ |sin u] ‘
S u

<1

Ju| and

Now, (3) ylelds _
. . n .
lsina2) @
la™t/2]|3 :
Recalling that a > 1, for 0 < s < 1, we have a~(1"%) < 1. The series l
X, a9 is clearly convergent, and hence by (4), there exists a

positive constant M,

d 21—s . .
M Z an(l—s) )
such that '
2 ¥ |sina/2] < M, 1]* ©

n=1

From (2) and (6), we can conclude the validity of Holder’s
condition (1) for any real numbers x and ?. This implies that
Cellerier’s function is Holder continuous of class s, at any point, for
0<s<l.

3. A NON-REGULAR LYAPUNOYV SURFACE

Now, we are able to construct a surface which is everywhere
smooth in the Lyapunov sense, but nowhere regular in the Kellogg
sense,

Let us consider the surface z = f(x,y) = X~ _; a™2" (cos atx +

cos ay), where a is again a sufficiently large even integer.
Weierstrass’ M-test ensures the absolute convergence of this infinite
series and hence the validity of differentiation term by term. Note
that both f, and f, are equal to Cellerier’s function which is
everywhere Holder contmuous, as was shown above, but non-
differentiable at any point. According to [4], this implies that
z=f(x,y) is a Lyapunov surface which is non-regular in the Kellogg
sense at any of its opoints.
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In our first theorem a mapping T of a metric space (X, d) into
itself is said to be orbitally continuous (Ciric [3]) if u € X is such that
u =lim,_,_ T"x for some x € X, then Tu = lim,_,,, TT"x.
Theorem 1

Let (X, d) be a complete metric space and let S, T be two
orbitally continuous mappings of X into itself. Suppose that there
exist functions {®; : 1 <j < N} of X into [0, %) such that

d(Sx, Ty) + ¢ max {d(x, Sx), d(y, Ty)} < pd(x,y) + ¢ max {d(x, Ty),
: N
AW, S0} + X [a; (Dyx) ~ (S0 + (D) — D (Tyn] (D)
Jj=1
forall x, y € X, some fixedp, g € [0, 1) with 0<p + q < 1 and some
fixed a;, b; 2 0. Then S, T have a unique common fixed point e X.

Further, if x € X then lim,,_,, S"x = lim,_, T = x".
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Proof

The technique of our proof relies on the method of Bhakta
and Basu [1]. Let xg, ¥, be arbitrary points in X. We consider the two
sequences {x,}, {¥,} in X obtained recursively by

X, = S"g, y, =T"yy (n=1,2,..)
From (1) we have
d(x;, y;) + g max {d(x;_1, xp), d (v;_1, ¥))}
=d (Sx;_q, Ty; 1) + ¢ max {d(x;_y, Sx;_), d(y;_y, Ty;_ 1)}

Spd(x;_y,¥;-1) + g max {d(x;_1, y;), dO;_1, X))}

N
+ Z [aj (cDj(xi-l) - (Dj(xi)) + bj(q)j(}’j_l) - (Dj )]

Jj=1

Spd(x;_y,y;-p) + g max {dG;_1,y; 1) + dOop ¥, @iy Xi27)

N
+dx;_,x)) + z [aj (q)j(xi—l) - cDj(xi))
j=1

In either of the cases dle;_1, ;) 2 dWy_, yp) or dy;_p, ¥p) 2 dx;_q, X3,
equation (2) yields

N
dxy) € @+@) dlx;_1.y;-1) + 2 (g (D) — Dylxy) ) +

j=1
bj (CDj i) — CDj(yi))J. (3)
Adding inequalities (3) for i = 1, ..., n + 1, we obtain
n+l n+l
2dE, ) <@ +q) Yd g,y F
i=1 i=1

N n+1 n+1
+ 2 e 2D (o — Q] + by X [P0y, — Q)1
Jj=1 =1 i=1

and so
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(1 "'p_'— Q) Z d(xiy yl) + d(x]7,+1ayn+1) S (p + q) d(x07y0) +
i=1
N
j=1 .

from which it follows that

n + : 1 N
Z d(xi,yi)Sl—}i——iI— d(xo, Yo + 1_;___—" Z [aJQJ(xo)+bj®j@0)] (4)
i=1 pP—q D—=aq;-

We denote the right hand side of (4) by A. It is obvious that A is a
fixed number in [0, o0).
Next; we consider _
dlx;, 1, y;) + gmax {d (x;, x;, 1), d¥;_1, ¥}
=d (le-, Ty;_1) + g max {d (x;, Sx;), d(y;_1, Ty;_1)

< pd(xi, y;_)) + g max {d;, y.), Ay %, )} +

N
+ Z [aj(q)j(xi)-q)j(xi+ 1))+bj(®j(yi_1)—®j@i))]
Jj=1
By -an argument analogous to the one used in obtaining
inequality (4), we obtain

n N .
2 dx, lyi)s—£+—q—— d(xl,yo)+——l—— 2 [a;®@;(x 1) +b,Q;(y)] (5)
i=1 1-p-gq 1-p—q : _

We denote the right hand side of (5) by B, which is a fixed
number in [, o). .
By the triangle inequality, we have
d(xy, x4 1) Sdx;, y) +d@;,x, )
and it follows from inequalities {4) and (5) that

n .
S dxi,x;, ) <A+ B (6)
i=1

Inequality (6) shwos that the series Z;il d(x;, x;,1) is convergnet.

Now let m, n be any positive integers with m > n. Then
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m-1
dx,, x,) < 2 dx;, %, —> 0 as myn —> o
i=n

and so the sequence {x,} is a Cauchy sequence in X.

Similarly, we can show that the sequence {y,} is also a
Cauchy sequence in X. By the completeness of X, the sequences {x,}
and {y,} converge to some points x* and y" respectively in X Since S
and T are orbitally continuous, lim,_, Sx, = Sx* & lim, , Ty, =Ty".
Hence, we have Sx* = x* and Ty" = y".

Now, we consider

dix*,¥") =d(Sx*, Ty") + g max {d(x*, Sx"), d(y*, Ty™)

<pd (%, y") + ¢ max {d ", Ty"), diy*, Sx™)}

N
+ Z [aj(q)j(x*) - q)j(sx*) ) + bj(q)_](}'*) - q)j(Ty*))]
Jj=1

or 1-p-gdi*,y"H<o0.
Since p + g < 1, it follows that x* = y* and so x* is a common fixed
point of S and T.

The uniqueness of x* follows easﬂy using (1). This completes
the proof of the theorem.
Remark 1

If S=T,a; = bj =0(¢ =1,..,N)and g = 0in Theorem 1,
we obtain the celibrated Banach Contraction Theorem for a metric
space.
Remark 2

If a¢j=0;=1¢ =1,..,N)and ¢ = 0 in Theorem 1, we
obtain Dien’s Theorem 1.2, [5].

Remark 3

For S = I, the identity mappingand b; = 1,b; = 0§ = 2; 3
» N), Theorem 1 reduces to Caristi’s Theorem [2] under the
continuity of T instead of the lower semiconinuity of ©.

Under suitable conditions on the parameters p, g, a;, bj, we
have the following corollaries:
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Corollary 1 [1]

Let (X, d) be a complete metric space and let S, T be two
orbitally continuous mappings of X into itself. Suppose that there

exist two functions O and ¢ of X into [0, %) such that
d(Sx, Ty) < Dx) — D(Sx) + ¢(y) — d(Ty)

. forallx,y € X. Then S, T have a unique common fixed point x* € X.
Further, if x € X then lim,,_,, S™ = lim,,_,, T" = x".

Corollary 2 [4]

Let (X, d) be a complete metric space and let S, T be two
orbitally continuous mappings of X into itself. Suppose that there
exists a function ® of X into [0, ) such that

d (Sx, Ty) <pd(x,y) + ®x) — O(Sx) + Dy) — O(Ty)

for all x, y € X and some p € [0, 1). Then S, T have a unique
common fixed point x* € X. Further, if x € X then lim,__ S,x =
lim,_,_ T'x = x*

Remark 4

The following example shows that there is a mapping which
satisfies neither the condition of the Banach Contraction Theorem
nor the conditions of Corollary 1. However, it satisfies all the
conditions of Theorem 1 for S = T, ¢ = 0 and hence has a fixefd
point.

‘Let X = {1, 2, 3} and let d be the metric defined by
d(1,2) =5, d2,3) =4, d3,1) = 8.
Define T: X —>XbyT1=1,T2=3, T3 =1 Thenwithx =1,y = 2

we have d(T1, T2) > d(1, 2) and so it is seen that the conditions of
Banach’s contraction theorem do not hold.

Now consider @ : X — [0, o©) defined by ®(1) = 0, D(2) = 1,
@(3) = 2. Then Corollary 1 does not hold. However, by putting q=%,
a = 9,b = 1, the condition of Theorem 1 is satisfied for allx, y € X.

In our next theorem two mappings S and I of a metric space
(X, d) into itself are said to be compatible (Jungck [6]) if

lim d(Slx,, ISx,) = 0
n—owx
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whenever {x,} is a sequence in X such that lim, _ Sx, = lim,_,
Ix, = z for some z € X.

Theorem 2

Let (X, d) be a complete metric space and let S, T, I, J be four
continuous mappings of X into itself. Suppose that

(199 SX)cIX) and TX) CJX),
(29) the pairs (S, I) and (T, J) are compatible,
(39) there exist functions {CDjzl <Jj <N} of Xinto [0, oc) such that
d(Sx, Ty) + g max {d (Ix, Sx), d(Jy, Ty)}
<pdlx, Jy) + ¢ max {dUx, Ty), d(Jy, Sx)} +

N
+ > [a; ((Dj(Ix)—CDj(Sx)) +b; ((Dj(Jy) - (Dj(Ty))] (7)
j=1

forall x, y € X, some fixed p, g € [0, 1) with 0 <p + g < 1 and some
fixed aj, b 2 0. Then S, T, I, J have a unique common fixed point
e X
Proof

Let x5, yy be arbitrary points in X. In view of (1°) we can
define two sequences {/x,}, {Jy,} recursively as follows:

IxO, le = SxO, IXQ = le, veey Ixn = an_l, caes
Iyo Jy1 = Tyg Jyg = Tyq, oo, Iy, = Ty,yqy oo

By an argument analogous to that used in the proof of
Theorem 1, we see that the sequences {Ix,} and {Jy,} are
convergent with limits x* and y* respectively. Moreover, the
definitions of Ix, and Jy, imply that im, , Sx, = x* and lim,_,,
Ty, =y~ '

Now consider

d(Sx;, Tv,) + g max {d(x;, Sx;), d(Jy;, Ty,)}

<pd Ux;, Jy;) + g max {d(x;, Ty;), d(Jy;, Sx;)} +

N
Jj=1
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from which it follows as above that

n
> dUx;Jy;)<

p+gq 1
i=1 1-

dIxg,Jys) +
g 7% T 1pg

N

The series 2. _. d(Ix,, Jy,) is therefore convergent and so
n=1 n n

lim ddx,,Jy,) = d@x",y") =0

n—wx
on using the continuity of I and J. Thus x* = y*. Using the
compatability of S and I we have lim,,_, , d(ISx,, SIx,) = 0 and since
S and I are continuous, we have

lim SIx, = Sx* = lim ISx, = Ix"
v n—eo e
giving Sx™ = Ix".
Similarly, we can show that Tx* = Jx".
Using (7) again, we have
d(Sx", Tx") + q¢ max {d(x", Sx¥), d(Jx*, Tx™)} <
<pd Ix*Jx*) + q max {dUx", Tx"), d(Jx",Sx™)} +
+ § [a; (@; (Ix")—D;(Sx") +b(D;x")~D,(Tx™] -
j=1
which gives
(1-p - q) d(Sx", Tx*) < 0.
Since p + g < 1, it follows that
Sx* = Tx* = Ix" = Jx".
Finally, we consider

d(Sx™, Ty,) + q max {d(x", Sx*), d(Jy,, Ty,) } <
< pd (Ix",Jy,) +q max {dUx",Ty,), d(Jy,, Sk} +

N
+ 2 [aj(@;Ux")-D;(Sx™)) +b(D;(]y,)~D;(Ty,))]

J=1
which yields
n N
* b+q " , 1
2. d(Sx",Ty,) < ————d(Sx",Jy,) + ——— ijq)j(JyO)
i=1 1-p—gq 1_p—Qj=1
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The series 2~ _, d(Sx", Ty,) is therefore convergent and so

lim d(Sx*, Ty,) = d(Sx*, x") = 0,

n—o ,
providing that Sx* = x*. This completes the proof of the theorem.

Remarks 5
If g=0, a; = bj =1(¢ =1, ..., N), we obtain Theorem 2.1 of
Dien {5] as a corollary to our Theorem 2.

Corollary 2

Let (X, d) be a complete metric space and let S, T, I, J be four
continuous mappings of X into itself. Suppose that

(19)  SX)cCIX) and TX) C JX),
(29) the pairs (S, I) and (T, J) are compatible,
(3%)  there exists a function ® of X into [0, ) such that
d(Sx,Ty) < pgUx,Jy) + al®UIx)—P(Sx)] + b[DTy) — D(Ty)]

forall x, y € X, some fixed q € [0, 1) and some a, b > 0. Then S, T, I,
J have a unique common fixed point.

Remarks 6

If g=20a=0>b=1,weobtain Corollary 2.1 of Dien [5] as a
particular case of our Corollary 2.
Theorem 3

Let (X, d) be a metric space, let S, I be compatible continous
mappings of X into itself such that S(X) C I(X) and let © be a
functioon of X into [0, o). Suppose there exists z € X such that

d(Sx,z) + qd(x, Sx) < pd(Ix, z) + g max {d(x, 2), d(z,Sx)} +

+ a [DUx) — P(Sx)] (8)

for all x € X, some fixed p, g € (0, 1) withp + g < 1 and some fixed
» 20. Then z is the unique common fixed point of S and 1.
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Proof

Let x, be an arbitrary point in X. Since S(X) C I(X) we can
define a sequence {x,} recursively by Ix, = Sx,_; forn = 1, 2, ...
Using (8) we have

dx;,z) + gdUx;_1,Ix;) <pdUx;_q,2) + g max {dUx;_q,2),d(z, Ix)} +
+al® dx;,_) - DPdx) ]
<pdUx;_1,2) + q [d(z, Ix;_y) + dIx;_q, Ix))] +
+a [P Ux; ) —DPUxp ]
and also
dx;, 2) < (p + q) dUx;_y, 2) + a[DUx;_;) — DUx)]
for i =1, 2, .... It follows that

n
S d(lx;, 2) < 2T I (g, 2) + ———— [DUxg) — Dx,)
i=1 1-p—gq 1-p-gq
<s2L2L y1xg, 2) + ——— DUxy).
1-p—-q 1-p—gq

The series Z;: , dUx,, 2) is therefore convergent and so

n’

lim d(x,,z) =0,

n—*x
providing that the sequence {Ir,} converges to z. Using the
compatibility and continuity of S and I it follows easily that Iz = Sz.

Using (8) again with x = z,*we see that

d(Sz, z) <pd (Sz, z)
and so Sz = Tz = z. The uniqueness of z follows easily using (8)
again. This completes the proof of the theorem.

Remark 7

If g =0anda =1, we obtain Theorem 2.2 of Dien [5] as a
corollary of our Theorem 3.

Open Question

To what extent can we weaken the continuity requirements
of the mappings in Theorem 1 and 2?
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ABSTRACT

Let fand g be distributions in D' and let
fn @) = flx) 1,0, g, &) = flx) 1,(),

where 1,(x) is a certain function which converges to the identity function as

n tends to infinity. Then the neutrix convolution product fEI g is defined as .

the neutrix limit of the sequence {f,, * g,}, provided the limit h exists in the
sense that

N-lim (f,, * g, §) = (k. §)

n—oo

for all ¢ in D. The neutrix convolution product In x_ El In x| is evaluated,

from which other neutrix convolution products are deduced.
AMS Mathematics Subject Classification (1991): 46F10.
Key words and phrases: Distribution, neutrix, neutrix limit,
neutrix convolution product.

In the following we let D be the space of infinitely
differentiable functions with compact support and let D’ be the space

of distributions defined on D. The convolution product f # g of two

distributions f and g in D' is then usually defined as in the following
definition, see Gel’fand and Shilov [5].
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Definition 1
Let f and g be distributions in D'. Then the convolution
product f * g is defined by the equation
((f %) @), &) = (fO), (g, d&x + )

for orbitrary ¢ in D pfovided [ and g satisfy either of the conditions
and all functions which converge to zero in the usual sense as n tends
to infinity.

Note that in this definition the convolution product [ * &, is
defined as in Definition 1, the distribution f,, and g, having bounded

support. It follows easily that iffE] g exists then g EI f exists and the
two are equal. However, (ng)' is not necessarily equal to ng' or

I

The following theorem was provded in [2] showing that the.
neutrix convolution product is a generalization of the convolution
product.

Theorem 1

Let f and g be distributions in D' sdtisfying either condition
(a) or condition (b) of Definition 1. Then the neutrix convolution

product ng exists and

fE]g=f*g-

A number of neutrix convolution products were considered in
[2], [3] and [4]. In the following we will consider the neutrix

convolution product In x_ [ In x, . First of all we have

Theorem 2

The neutric convolution product In x_ 4 In x, exists and
lnx_Blnx+ =—(n2/6 + 1) |x|+|x| In|x| —% [x] In2|x]| (3)

Proof
Putting
(Inx)), =lnx-1,), dnx.), = Inx+ T,(x),
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we have

(Anx), * Anx ), &) = (Any),, (Anx,),, d&x+y)))

0 b
= f R CORMY fln(x -9+ T, x—y ¢ dxdy
-n-n""
a

b 0
= [06) fInCpInG=y) + 1, &=y dyds +
a

-n

~-n

\ _
+ fdb(x) f ) 15,0 Inc =y T, -y dydz (4)
-h-n
a

for n > —a and arbitrary ¢ in D with support contained in the
interval [a, b].
When x < 0and —n <y <0, T,(x —y) = 1 on the support of ¢
and so in this case we have '
0 x
fln(—y) In(x —y) + 1,(x=y)dy= f In(=y) In(x — y) dy
-n

-h

n
flntln(x+t)dt

=X

n

flri t{In t+1In (1+x/1)] dt, (5)

-X

on making the substituti 1 y = —¢.

Now

n
fln2 tdt =nli n—2nlnn+2n+x In2(-x) — 2x ln (—x) + 2x

-x

and it follows that
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B L

N-lim fan tdt = —2x_ + 2x_Inx_—x_In2x_ (6)
N—>C
Further
n -] _x)l X
flntln(1+x/t) dt=- 3 f ttintdt
—-x i=1 -

© N[ g 1-i 1-i
%x[ln2n~ln2(—x)] -Z( .x) = ln‘n_ L -
P S S AN K

S xIn (—x) x
-3 _
i‘j‘Q Q-0 i(1-)?

and it follows that

N-lim fln tIn (1+x/t) dt = —x In2x_ + Z [x In () _ x~.
o joo 1(1=1D) -2

= (1-72/6)x_ —x_lnx_ + %x_ In2x_ (7)

since

1
i(1-i)2

i = i =n2/6-1.

i(1- z)
It now follows from equations (5), (6) and (7) that whenx < 0.

0
N-lim (In (=) In (x—y) + T,(x—y) dy = =(n?/6+ 1)x_

n—»w
-n

+ x_lnx_ + —-%x_ In? x_ (8)

When n > 2x > 0and —n <y £ 0, we have

0 0
f In (=) In (x=y) + T,(x—y) dy = fln(—y) In (x + t) xy
-n X-n
x-n
+ f In(-)InG&x-y71,&-y)dy (9
-n

X-n-n
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Making the substitution y = —f we have

0 n-x
f 1n(—y)1n(x—y)dy=f Intln(x + t)dt
x-n . 0
x n—-x
= fln t{lnx+In (1+t/x)] dt+f Int(nz+In(1+x/t)1 dt (10)
’ x
0 ,

' x
Now Inx flntdt=x1n2x—x1nx

0

l
zx‘ f ttintdt

x w0
and fln tIn'(1 + t/x)dt Z

[( Dixlnx (=D ]
1(1A+ 1) G+ 1)2

(2In2-1)xInx + (2-21n 2-72/12)x,

since Z%:l—m E (( :);)2~2'1n2—2+7c2/12
.t “

x
Thus f Intln (x+8) dt = (2-21n 2-72/12)x + (2 In 2-2)xInx. (11)
A .

Next we have

n-x _
f In2tdt=m—-x)In2(n~-x)-2n—-x)In(n —x)

X
+2(n—x)+—x1n2x+2x1nx—2x.

Since

Inn+x)=lnrn+In{d +x/n)=Inn-

when n > x, it is easily seen that

N-lim(n—x)In2(n—x) =0, N-lim(n —x)In(n —x) = —x
n-ew ) n—s

~and so
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n-x

N-lim Intdt=-2x + 2xInx—x1In?x 12)
now < :
Further
n-x @ ( x)‘ n-x
f Intln (1 + x/t) dt = Z f t~i1n tdt
x = x

=1 2(r—)—In2 (x)‘ (-0 In(h—x) (n-x)l
Zx[ln (il -z [ 1-1i (1-10)2

[( -1)ix lnx (-1)ix
2 (1= i1-i?

i=

and it follows that

n—-x 1M 1 1\

N-lim IntIn(Q+x/t)dt = —-xln2x+ Z [( Dixlnx -1)."2
now Jy i=g L(1-0) 1(1—1)
= (2 In 2— 7r2/12)x +(1-2In2)x1lnx +
- Ex In?x, (13)

since '

2 (=1} 2 (=1t

=1-21n2, =-21n2 + w2/12.

; i —1)2 2 Hi(1—§)?
Finally, it is easily seen that

lf 1n (N InE-y1, &y dy| =o@™In2n) (14)

x-n-n-

and it now follows from equations (9), (10), (11), (12) and (13) that
when x > 0,

0

N-lim In(-y) In (x—y) + T, (x—y)dy = —(n2/6+ 1) x, +x, Inx, +

now Jpp
—5x, Inx, (15)
Equation (3) now follows from equations (8) and (15).
Corollary
The neutrix convolution products In |x| E] Inx,,In |x| [ In x_ and
In |x) = In |x| exist and
| 137



In |x| [ lnx, = ~(n%/3-1)x -2 —xIn|x|+7xIn? x|, (16)

In |x| [ Inx = ~(n%/3-1)x -2 7%, +xInfx| —2x1n? x|, (17)
In |x| (] In x| = -3 72 |x|. (18)
Proof

The convolution product In x, * In x, exists by Definition 1
and it is easily proved that

Inx, *Inx, = (2-n2/6)x, —2x, Inx, +x, In?x, (19)

=lnx, [ Inx, .
Since the neutrix convolutionl product is clearly distributive with
respect to addition, it follows that
lnx_E]Inx+ +Inx, E]Inx+ = In x| E]Inx+ .

Equation (16) now follows frm equations (3) and (19). Equation (17)
follows from equation (16) on replacing x by —x. Equation (18)
follows from equations (16) and (17) on noting that

In [x| E]Inx'+ + In |x| E]Inx_ =1n |x| E]lll x| .
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The non-commutative neutrix product of the distributions x and

x:s is evaluated forr, s = 1, 2, ... Further non-commutative neutrix products
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In the following, we let N be the neutrix, see van der Corput
[1], having domain N’ = {1, 2 .., n, ...} and range the real numbers,
with negligible functions finite linear sums of the functions.

n“n"™n, In"n: A>0, r=12, ..

and all functions which converage to zero in the normal sense as n
tends to infinity. '

We now let p(x) be any infinitely differentiable function
having the following properties:

) px) =0 for |x|2>1.
(i) plx) 2 0,
(i)  p) = p(-x),

1
(iv) f px) dx = 1.
-1
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Putting §,(x) = np(nx) forn = 1, 2, ..., it follows that {5,x)} is a
regular sequence of infinitely differentiable functins converging to

the Dirac delta-function &(x).

Now let D be the space of infinitely differentiable functions
with compact support and let D' be the space of distributions defined
on D. Then if f is an arbitrary distribution in D', we define

fol@) = (F*8,) x) = <f@), 8,(x —1)>

for n =1, 2, ... It follows that {f,(x)} is a regular sequence of
infinitely differentiable functions convering to the distribution f(x).

A first extension of the product of a distribution and an
infinitely differentiable function is the following, see for example (2]
or [3])." ‘

Definition 1

Let f and g be distributions in D' for which on the interval
(a, b), [ is the k-th derivative of a locally summable function F in
LP(a, b) and g® is a locally summable function in Li(a, b) with 1/p +
1/q = 1. Then the product fg = gf of [ and g is defined on the interval
(a, b) by

k
fe=2 (k) (-1)f [Fg@) k=D,
i=o™ ’
The following definition for the neutrix product of two
distributions was given in [4] and generalizes Definition 1.
Definition 2.

Let f and g be distributions in D" and let g,(x) = (g * J,) (x).
We say that the neutrix product fog of f and g exists and is equal to
the distribution h on the interval (a, b) if

N-lim  <f(x) g, (), dx)> = <hx), ox) >
for all functions ¢ in D with support contained in the interval (a, b).
Note that if

’{1_1’130 <fx) g,(x), dx)> = <hx), dx) >,

we simply say that the product f.g exists and equals A, see [3].
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It is obvious that if the product f.g exists then the neutrix
product fog exists and the two are equal.

The following theorem holds, see [7].

Théorem 1

Let f and g be distributions in D' and suppose that the neutrix
products fog® (or fV o g) exist on the interval (a, b) fori =0, 1, 2...,r.
Then the neutrix products f*og (or fog®)) exists on the interval (a, b)
fork =1,2 .. rand

k
fHog= X @ (=1)" [fog P1*=D &)
i=0
or
ko o .
fog(k) = Z (1) (-1)¢ [f(l)og](k—l')
. i=0

on the interval (a,b) fork =1,2, ..., 1.
In the following two theorems, which were proved in [5] and

[6] respectively, the distributions x_+r and x:r are defined by

r_ (1t

=D

(nz,)0,x7" =~ ' (Inx ),

-

for r =1, 2, ... and is distinct from the definition given by Gel’fand
and Shilv {8].

Theorem 2

. ~-r — -§ ¢ =r .
The neutrix products X ox S and x° ox = exist and

s ox S = T E gees-D (x),
- r+s—1)!

—_1y-1
xSox = (=1)"" ¢, §r+s-1) (x),
- o (r+s—-1

for r,s =1, 2,
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Theorem 3

. -5 -$ -r
The neutrix products Inx, ox”, x " olnx, and x ox

exist for r,s = 1, 2, ... In particular,

Inx, ox11=x:11nx+, - (2)

Inx, o:»c;2 = xf Inx, + (¢; - 1) 8'(x),

-1

:,c:rloln:»c\t=x+ Inx,, (3)

x:2 olnx, = x:2 Inx, + (c; -1 &),

x}l oln le = x:2 +(c; -1,

where
1
ey = fo p®) Int dt.

It was in fact proved in [6] that

-8

Inx, ox° = xzs Inx, —-/}LL%S'S———I)‘(—I)S 86-D (x), (4)

* (s = D!
where

Ag=—c,yis—-1) +%[X (s—1)~y2(s~-1)]

for s =1,2, ...and
I(s) = Q,,S=Q«/()_ > °=9
vis) = ¥ is21, Vsl = Tl v/ s 21,

Q) { T
S) = s .0
X, Y% s 20,

However, although the existence of x:fr o x:rs was proved for

r,s = 1, 2, ..., no general formula was obtained for it. In the

following, we are going to prove that
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xToxS = x5 4 M §U+s-Dix), (5)
+ + + rs

where

_ -1 r—1 cq 1 (_1)r+s+i
MI‘S = Z ( [ (S + i)2] (r—_

i) s D! (s ~ 1!

but first of all we will prove that

—10 -S= ¢ (=1)* (s)
X, 0x’ =x [ S](s—l)'6 @ (6

Differentiating equation (4) we get

_ s<1  —5-1 —s- A+ ys—1)
x 1ox ~slnx, ox Lex 5l sx 5 ne, —2 k4l (=1)$6G)(x),
M + (s = 1)!

from which it follows that
_ e e A A W)Y 1)
x+1 ox S___x S-1 + s+1 s \Vl \ 1 (_1)5 6(5)(x)
M * (s — D!

It is easily seen that
Yi(8) — (s — 1) = yi(s)/s,

c; Y —1)
As+1_‘As = _;L__—T_

and equation (6) follows.

Putting r = 1 in equation (5) gives equation (6) and so
equation (5) holds in the case r = 1 and s = 1, 2, ... Assume that
equation (5) holds for some rand s = 1, 2, .... Then on differentiating
equation (5) we get ‘

-r-1_ - -r_-s-1 -r-s-1 .
—rx T ox T s T ox S 2 ~r w ) x5 4 ML B0 +(x)
+ + + + +

and from our assumption it follows that

-r-1__~s _ _-r-s-1 _ _ r+s)
rxox ] —rx, ==(sM, 1+ M. )3 (x)

r-1 }
_ r-1 o _ 1 (—1)r+s+i es)
i=20[ 1 )[S+i+1 (S+i+1)2](r._1)!(s_1)!6 (x)+
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r-1 i
r—1 cr 1 (=1y*st (r+s)
_ ( ) [s +i s+ DT (-1 (s =1 8T

) » . Cl _ 1 (_1)r+s+i+l r+s)
_Z()[s+i (s+i)2](r—1)!(s—1)!6 e

[79-022)-0
]+ =[.].
1 i-1/ .\

Equation (5) now follows by induction.

Replacing x by —x in equation (5) we get

x—r ox—s = x-_—l‘—S — (=1)y+s Mrss(r+s-l)(x)’

We now consider the product x:r olnx,. It was proved in [6]

that this product was of the form
x:r olnx, = x‘f Inx, + M,30-D(x), (7

for r = 1, 2, ..., but no expression was found for M, except for the
casesr = 1, 2. : '
Using equation (1), we have

r-1 )
-1)-1r-1)! x:\ro Inx, = Y (r _z— 1) (=1) [x';l o (In x ,)D]r-i=1)

i=0
-1 ; r-1 S
=(x olnx+)(""1)~2( : )(i—l)![x ox )b
* ' i=on ! o

Using equations (3) and (6) and picking out the coefficient of
8U=D(x), we see that

kY ccyp 1
o= = T e [ ]

i=0
for r=2,3, ...
" Replacing x by —x in equation (7) we get

xTolnx_ = x:r Inx_ - (=1 M5 V(x),
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for r=1,2,..

We finally note that since the neutrix product is clearly
distributive with respect to addition then

xTox =[x + (=12 Jox®

= (— 1)’ -r-s [i_l_)_c]_ (— l)sM ]5(’+3‘1)(x)
(r+s-1)!

x oxS = x:r o [x:s + (=17 x:s]

= (-1)sx TS - [ﬂ__c_l. -1)’M, ]6(r+s-—1)(x)
- (r+s—1)!

Replacing x by ~x in these equations we get

_ . r+s o
s Tox T =TS (__)____1 rs] S +s-D(y),
+ + (r+s=1)

T oxs =TS [ﬁZlZiifl ‘M, ]5v+&4nx)
+ (r+s=1)! _

and it now follows that
xToxS=xTo [x;s + (-1)8 x:s] = x5,

for r,s=1,2, ...

REFERENCES

1.  J.G.van der Corput, "Introduction to the neutrix calculus" J.
Analyse Math., 7(1959-60), 291-398.

2. B. Fisher, "The product of distributions”, Quart. J. Math.
Oxford (2), 22(1971), 291-298.

3. B. Fisher, "On defining the product of distributions”, Math.
Nachr., 99(1980), 239-249.

4. B. Fisher, "A non-cmmutative neutrix product of
distributions”, Math. Nachr., 108(1982), 117-127.

145



9.

S|

B. Fisher and A. Kilicman, "The non-commutative neutrix
product of the distributions x:r and x:s", Math. Balkanica,
8(1994), 251-258.

B. Fisher, A. Kilicman, B. Damyanov and C.J. Ault, "On the
non-commutative neutrix product In x, o x:rs", Comment,
Math. Univ Carolinae, to appear.

B. Fisher, E. Savas, S. Pehlivan and E. ézcag,_r, ‘Results on

the non-commutative neutrix product of distributions”, Math.
Balkanica, 7(1993), 347-356.

ILM. Gel’fand and G.E. Shilov, "Generalized Functions",
Vol. I, Academic Press, 1964,

146




Punjab University
Journal of Mathematics
Vol. XXVIII, (1995), pp 147 - 153

ON COMMON FIXED POINTS IN UNIFORM SPACES

Zeqing Liu

Department of Mathematics
Liaoning Normal University,
Dalian, Liaoning,
116022, P.R. China.

ABSTRACT

In this paper we introduce the concept of compatible mappings in
uniform spaces and establish common fixed point theorems by using the
concept. Our results extend the results of Acharya [1}, Mishra [2] and
Jungek [3].

KEY WORDS AND PHRASES. Compatible mappings, uniform spaces,
common fixed point.

- AMS (1991) Subject Classification. 54H235.

1. INTRODUCTION

Acharya [1] and Mishra (2] established fixed point theorems
in uniform spaces. Jungck [3] gave a necessary and sufficient
condition of the existence of fixed point for a self mapping on metric
spaces. Jungck [4] introduced the concept of compatible mappings in
metric spaces.

In this paper we extend the concept of compatible mappings
in metric spaces to the setting of uniform spaces and prove common
fixed point theorems for compatible mapping in uniform spaces. Our
results generalize some theorems of Acharya [1], Mishra [2] and

Jungck [3].
Let (X, U), be a uniform space. For any pseudometric p on X

and r > 0, we write V(p,,.) = {(x,y):x,y € Xand p(x,y) <r}.Let P

be a family of pseudometrics on X generating the uniformity U.

Denote by V the family of all sets of the form r\?_l V(p,,._), where
- AR

p;€ Pandr; > 0,1 = 1,2 .., n (the integer n is not fixed).
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Obviously, V is a base for the uniformity U. For V = m?_l V(p. r
- A
let

n V .
"V = {mizl V(Pi'"i” ifr > 0;
A(the diagonal), if r = 0.
Acharya [1] proved the following results.

Lemma 1
If VeV anda, b > 0, then
(6)) aVobVc(a+b)V.
() aVCbV for a<b.

Lemma 2

Let V € V. Then there is a pseudometric p on X such that
V = V1) This p is called a Minkowsiki’s pseudometric of V.-

2. COMMON FIXED POINTS

In this section we assume that (X, U) is a sequentially
complete Hausdorff uniform space. Further we suppose that P is a
. fixed family of pseudometrics on X which generates the uniformity

U. We denote by V the family of all sets of the form mlfl:l V(Pi"i)’
p; € P, r; > 0and the integer » is not fixed. N and ® denote the sets
of positive integers and nonnegative integers respectively.
Definiton 1

Let S and T be éelf mappings of X. S and T are said to be
compatible if for every V € 'V there exists & € N such that
(T'Sx,, STx,) € V for n > k, whenever {x,} is a sequence in X such
that ,11_1;20 Sx, = lim Tx, = tforsomet € X.
Theorem 1 _

Let A, B, S and T be self mappings of X satisfying.

(1) . oneofA, B, S and T is continuous,

(2) the pairs A, S and B, T are compatible,

(3 AXCTX and BXC SX, |
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(4) there exists functions a; :X.x X—->[01,i=1,..5,
such that for ahy x,y € X, any v; eVis= 1, .., %),
(Ax, By) € a;V 0a5Vy0a3V30a,V, 0a5V;
if (Sx, Ax) € V,, (Ty, By) € Vy, (Sx, By) € V,, (Ty, Ax) € V, and
(Sx, Ty) € Vg5, wherea; = q; (x,¥),i =1, .., 5,a = sup { %ai(x, ¥
. i=1
x,y € X} < 1andajx,y) = ayx, y).

Then A, B, S and T have a unique common fixed point in X.

Proof

Let V € V be arbitrary. Denote by p a Minkowski’s
pseudometric of V. For any x, y € X, set p(Sx, Ax) = ry, p(Ty, By) =
ro, p(Sx, By) = rs, p(Ty, Ax) = r, and p(Sx, Ty) = r5. Take € > 0.
Then, (Sx, Ax) € (r; + €)V, (Ty, By) € (ry + €)V, (Sx, By) €
(rg + &)V, (Ty, Ax) € (Sx, Ty) € (ry + €)V, (Sx, Ty) € (r5 + €)V.
From (4) and Lemma 1 (i) we have

(Ax,By) € ay(ry + £)V o ay(ry + )V 0 ag(rg + £)V 0 ayry+£)V

5
0a5(r5 + 8) VC [Zal(rl + 8)] V.
i=1
5

It follows that p(Ax, By) < > a;(r; + €). Letting g — 0, we have
i=1

(5)  p(Ax,By)<ap(Sx,Ax)+ayp(Ty,By) +agp(Sx,By)
+ ap(Ty,Ax)+azp(Sx,Ty

Let x5 € X. By (3) we can easily choose a sequence {y,} in X such
that yg, = Txg,,1 = AXop, Yone1 = SXgnig = Bxgpip, 2 € @. Put
Py =DPWpn Yps1)- Takingx = x5, and y = x,,,, ; in (5) we have
" Pop -<'alp2n—1 t QgPon * a3p0'2n—1’ y2n+1) + a4p0'2n’ y2n) = aglon-1
which implies
+a,+a a—a,—a
4y taz+as < 27”4y

p2n < Pop-1=

Don_1SaPgp 1
1—a2—a3 1-ay—a4
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where a; = a;(xg,, X9,,1), i = 1, ..., 5. Similarly pg,_; < apg,_o. It
follows thatp,, < ap,_; < ... < a"py forn € N. Now, form, n € N and
m > n, we have

m-1 m-1 ) a
p(})n’ym)s Z}’],S Z alp0'<" pO
i=n i=n l-a

Since a < 1, there exists 2 € N satisfying a”py < 1 —a forn > k. By

Lemma 1 (ii) and Lemma 2 we have (y,, y,,) € Vform > n > k.
Hence {y,} is a Cauchy sequence. Since X is sequentially complete,

¥y, —> u for some u € X. Consequently, {Ax,,}, {Bxg,, 1}, {Sx9,} and
{Txy, 1} also converge to u.

Now, suppose that T is continuous. Then
(6) Ty2n+1 = TBx2n+1 - Tu’ Ty2n = TTx2n+l - Tuf

Since B and T are compatible and {Bx,, , 1}, {Txq,, 1} converge to u,
then by (6) for any W € "V, there exist £ € N such that (BTx9p, 41,

TBxg, 1), (TBxg, .1, Tu) € -;—W for n > k. By Lemma 1 (i) it follows

that (BTx,, , 1, Tu) € —;—W 0 -;- W < Wfor n > k. This implies that

(7 BTxq, .1 = Byg, > Tu
Take V and p as above. Using (5) we get

P(Ax2m By2n)S alp(3x2n7 Ax2n) + aZP(Tan’ By2n) + a3p(3x271’ By?n)
+ ap(Tyq,, Axy,) + azp(Sxy,, Tys),)

< a[p(Sx,,, Axy,) + p(Ty,,, Byy,)] = a. max
{p(Sx2n’ By2n)’p(Ty2m Ax2n)’p(sx2n’ Ty2n)}

where a; = a; (x5, ¥9,,), I = 1, ..., 5. Letting n — 0, by (6) and (7) we
obtain '

pu, Tu) < ap(u, Tu)

which implies p (u, Tu) = 0 and hence (u, Tu) € V. Since V is
arbitrary and X is a Hausdorff space, u = Tu. Again, using (5) we
obtain

D(Ax,y,, Bu) <ap(Sxy,, Axy,) + aop(Tu, Bu) + azp(Sx,,, Bu) +
ap(Tu, Axs,) + azp(Sxq,, Tu)
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< a [p(Sx,,, Axy,) + p(u, Axy,) + p(Sxy,, u)] + a . max
{p(u) Bu), p(szn’ Bu)}

where a; = a; (x9,, w), i = 1, ..., 5. As n — o in the above inequality
we have
p(u, Bu) £al3p(u, u) + plu, Bw)] = ap(u, Bu)

. Similarly we deduce that u = Bu. Note that BX < SX. Then
there is a point w € X satisfying Bu = Sw = u. By using (5) again we
get

p(Aw, Bu) <ap(Sw, Aw) + agp(Tu, Bu) + agp(Sw, Bu)
+ ap(Tu, Aw) + azp(Sw, Tu)
= (a; + ay) pu, Aw) < ap(u, Aw)
where a; = a; (w, u), i = 1, ..., 5. It is easy to show that Aw = u. Put
z, = wfor n € N. Note that Aw = Sw = u. Then Az,, Sz, — u. By
the compatibility of A and S, for every V € V, there exists k € N

such that (SAz,, ASz,) = (SAw, ASw) € V for n > k. This implies
that SAw = ASw and hence Au = AAw = ASw = SAw = SSw = Su.
From (5) we get

p(Au,Bu) < a\p(Su,Au) + agp(Tu,Bu) + agp(Su,B;) + ap(Tu,Au)
+ agp(Su,Tu)
= (ag + a4 + ag) p(Au, u) <ap(Au, u)

where a; = a; (u, w), i = 1, ..., 5. It follows that u = Au. Hence u is a
common fixed point of A, B, S and T.

To show that u is the unique common fixed point of A, B, S
and T, let us suppose that w is a second common fixed point of A, B,
S and T. From (5) we have

pu, w) = p(Au, Bw) < (az + a4 + ag) p(u, v) <ap(u, v)

where a; = a;(u, w), 1 = 1, ..., 5. It follows that u = w, providing the
uniqueness of u.

Similarly, we can also complete the proof when A or B or S is
continuous. This completes the proof.

Corollary 1
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‘ Let A and B be self mappings of X. Assume there exist
functionsaq; : X x X — [0, 1), i = 1, ..., 5, such that for any x, y € X,
any v; € Vi=1,..,5). '
(Ax,vBy) € a;Vi0ayVy0a3Vi0a,V 0a5V5
if (x, Ax) € Vy, (y, By) € V,, (x, By) € V3, (v, Ax) € V, and (x,y) € Vj,
5
where a = sup {Zai(x, y)ix,y € X} < 1 and azlx, y) = a,(x, y).
i=1
Then A and B have a unique common fixed point.
Proof

Let S and T be the identity mapping on X. Corollary 1 follows
from Theorem 1.

Remark

Theorems 3.1, 3.2 and 3.4 of Acharya [1] are special cases of
the above Corollary 1. In case a;(x, y) is a constant, | = 1, ...; §, our
Corollary 1 is due to Mishra [2].

Theorem 2

Let S and T be self mappings of X such that either S or T is
continuous. Then S and T have a common fixed point in X if and
only if there exist self mappings A and B of X satisfying (2), (3) and
(4. :

Proof

By Theorem 1 it is sufficient to prove the necessity of the
condition, Suppose that S and T have a common fixed point u. Define

self mappings A and B of X by putting Ax = Bx = u forall x € X. Let
a;(x,y)=1/6forallx,y € X,i = 1, ..., 5. It is easy to see that (2) and
(3) hold. Foranyx,y € X, any V; € V(G =1,..,5) we have

(Ax, By) = (u, u) (S A C alVl 0o a2V2 0o a3V3 0o a4V4 0 05V5
if (Sx, Ax) € V, (Ty, By) € V,, (Sx,_By) € Vg, (Ty, Ax) € V, and
(Sx, Ty) € V5; i.e., (4) holds also. This completes the proof.

As a particular case of Theorem 2, we get the following result
which extends the Theorem of Jungck [3].

. Corollary 2
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Let S be a continuous self mapping of X. Then S has a fixed
point in X if and only if there exists r € [0, 1) and a self mapping A of
X such that AX < SX, A and S are compatible and for any x, y € X,
anyVe V.

(Ax, Ay) e rV
if (Sx, Sy) € V.
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INTRODUCTION

Let G be a group, and T = {f, ty, ..., t ,} be a subset of G. For
i=1,238,..,nletT; = <t;>,and T = {Ty, Ty, Ty,..., T,,}. We define

Ai;e., N is the normalizer in G of the cyclic subgroups T. Following
Curtis [2, 3] we refer to N as the control subgroup and define T to be
symmetric generating set for G if, and only if, G = <7> and N
permutes T transitively by conjugation.

A presentation of G given explicitly or implicitly in terms of T
is called a symmetric presentation.

STANDARD PROCEDURE
We first choose a group N together with a permutation action
of N on n letters. Take a free group F,, on n generators T={f,,5,...,,}
. and extend this by a group of automorphisms isomorphic to N which
acts on T by conjugation, permuting the free generators (possibly
normalizing the cyclic subgroups they generate). Moreover we shall
take a monomial p-modular representation of N. This leads to a well-

defined group

F,: N
Let free generators be of order m, then we obtain
P=m":N

where m™ denote the free product of n copies of cyclic groups of order
m. So

P=(Ty*Ty*Ty*..*T,):N
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where T,=<t;>=C, fori=1,23,..,n.

The group P will be called the progenitor for the family of finite
homomorphic images of itself. We are interested in the finite images
of these progenitors which are generated by the images of symmetric
generators, so we add one or two relations and do cosets
enumeration over N. If coset enumeration does not work we do coset
enumeration gver larger groups.

e.g. <t,i=1,238,..> or <N, (ti—1 tj)k>

Now we give two symmetric representations of group Us(5)
by taking distinct control subgroups.

Control Subgroup N=2.A4;

If we take the double cover 2 . A as a control subgroup we
must seek a faithful, monomial p-modular representation of 2 . A5. In
particular the central element will be repiesented by minus the
identity matrix. i.e. it will invert all the symmetric generators. What
is the lowest dimension we can consider? Five symmetric generators

are not possible: (2.A,)' = Qg andso2.A has [(2.4,)) : Qg| = 3
linear representations each of which has the central element in its
kernel. Thus there does not exist a faithful monomial 5-dimensional
representation of 2. A5 .

However a subgroup of index 6 in 2. A; has shape
H= <uy,v|ud=0vt=1=uy’u>=(2x5):2 where the derived
group H' = <u> = Cj. Thus there are four linear representations,
two of which map the central element to —1. We induce one of these
up to 2. A5 to obtain the required representation. Since H/H' = C .
we must choose a finite field with fourth roots of unity, i.e. 4 {(p-1)|;
the smallest example is thus GF5. This leads to the representation.

/4
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2

2
: -1 2
Le.  x:(t) (o by tontgty), ¥ (g o, 1)) g 1y 1)

which satisfy the presentation.
<x,ylxd=y3=(xy)!=1=[(xy?, x]>

. -1 ,-1 -1 -1
and give xy: (g, to, ty i, Yty Ly t oty )

2 -1 ,-2 2 -1 .2

Note: Bold face letters ¢; represent symmetric generators and Italic
t; show the action of the control subgroup on the symmetric
generators. The progenitor

5%6:(2:45)
thus has presentation
<x,y,t |28 =33 = (xp)4 =1 = [(x0)2x] = t5 = [x,t] = %Y (73>

- (xy
where the last relation says that t, = tg .

We note that

-1 -1 -1 : -1 -2 -1 2 .
[t By 10 £ 210, 1) Uy By 155, By 1) 115 = 1.

Coset enumeration over control subgroup gives index 1050, which
shows '

5*6 : (2 :A5)

‘ = Uy(5)

_ _ _ - -2

(A 1y 875 b 1) o, 8] 1

-1 2 -
’ t2 ’ t47 t3) tw]a

e
<x,y,t]x® =y3=(yt=1=[n%x]l=15=x1)
= 7% 153 = (y(xy)2)3>

is isomorphic to
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AL AR

Uy (5).

In this case the six symmetric generators form ten pairs of
triplets such that in each pair one triple generates A, and the other

generate Us(5).

Control Subgroup N=2. S,

We can also produce symmetric presentation of Usg(5) by
taking control subgroup as 2 . S5 with progenitor

’ 5*(6+6) . (2, 35)
where the 5-modular monomial representation of 2 . Sy is defined by
x ~ (tg) (ty, by, B3, Ly t5)
(sg) (51, S9, S3, 84, Sp)

_ -1 -1 -1 -1
Yy~ (oSt 898,58 58 , Sg)

2 2 2 -1 -2 -2
(ty, S5, L S A )
-2 -1 -1 -4 2
(t3,34,t4,So,t3,34,t4,30)

2 -2 -1 -2 2 -1
(5, Sgls » Sats 5 Sg 515 Sg )

Note: Bold face letters t; represent symmetric generators and Italic
t; show the action of the control subgroup on the symmetric

generators. .
A presentation for the control subgroup is given by:
<x,y [ %0 =38 = (x3)?2 = [x,y4] = [x,xy]3 = 1>
Then a presentation for the progenitor is
<x,y,t | x%=y8 = ()% = [x,y4] = [x,xy13 = 1 = £5 = [t, x]
= t—2t(yx‘2yx2yz)>
We noted that
<ty §g> NN = 22

2 2
(yxp’x = tys1 8,

btdi=1
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Coset enumeration over control subgroup gives an index 525, which
shows

5(6+6): (2 S,)
o)

. =Uz(5)

3 2 2
YxP*=1t,8¢,

i.e.

1 =1t x]
242>

<x,y,t | x5 =y8= ()2 =[x, y4] = [x, 213
= =202 2t oy 4, (gaps

is isomorphic to
Uz(5).

It is remarked that without Ehg 1;elator (y ©)* we get the group
3 : U4(5) and also the relator 72 #*7*” can be replaced by ¢ #4

For the interested reader we give here some maximal
subgroups of GG.
A; = <ty ty, ty>, has index 50 in G and is the largest maximal
subgroup of G, it also contains sy, s, $5.
51+2 : 8 = «y, t5;>, is a maximal subgroup and also contains the
symmetric generator s3. ,
M,y = <y, ty>, has index 175 in G and contains symmetric
generators ty, s;, S
2.85 = <x,y>, is maximal and is control subgroup.
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1. Cannon J., Bosma W., Gayley quick reference guide (1991).
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Conway group Co; and related topics, Ph.D. Thesis
Birmingham Univ. (1992).
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ABSTRACT
Sarfraz [10] has described and analysed a C! interpolatory rational

cubic function. This rational cubic function involve two frée parameters
and does not preserve the shape of the positive data. This paper develop
necessary and sufficient conditions under which the positive interpolation
is successfully achieved. Moreover, user has a freedom to play further with
the curve untill a desired shape is achieved. A simple case of constraint
interpolation where the curve is forced to lie on the same side of a given
straight line is also discussed.

1. INTRODUCTION

The problem of shape preserving curve is considered by
various authors. For brevity user is refered to [1-6]. A particular
shape problem is positivity problem which is introduced by Schmidt
and Hess[7]. They discuss both quadratic and rational quadratic
spline and develop necessary and sufficient conditions under which
positive interpolation is of success. These conditiios may fail for
quadratic spline while for rational quadratic spline they can always
be satisfied. Schmid and Hess[8] use cubic Hermite spline and give
necessary and sufficient conditions for a cubic polynomial to be
positive in a given interval. Their algorithm works by estimating the
slopes at given data points and therefore is not applicable when
slopes are given. This problem occur in plotting the computed
solution of an ordinary differential equation. Butt and Brodlie[9]
show how it is possible to preserve positivity by inserting one, or
possibly two, intermediate knots. Their algorithm produces positive
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curve through positive data but does not allow user to refine the
curve interactively to desired shape.

In this paper we use a rational cubic Hermite spline of
Sarfraz[10] which has cubic denominator and produces a positive
curve through positive data and allows user to fine tune tue curve to
desired shape. The refinement is necessary, as a curve drawn by a
skillful draftsman usually looks more pleasing than the one
generated by an automated algorithm: To prdouce a curve which
would possibly look like the one produced by a draftsman we need
some interaction. Rational cubic functions have been used to produce
pelasing curves through given data, Sarfraz[11], Butt et al[12). This
paper is an addition to the methods given in these papers. In Section
2, we establish the necessary and sufficient conditions under which
the rational cubic Hermite spline produces a positive curve through
data. However, simpler sufficient conditions are used to visualize
positive data in Section 4. This section includes various examples of
curves produced by the method described 'in Section 2 & 3. The
figures produced clearly describe the usefullness and power of
interaction in curve drawing and designing. In Section 3, we consider
a particular case of a constraint interpolation where the curve is
required to lie on the same side of a given straight line. We have
developed sufficient conditions which produce curves above a
straight line. A particular example is also include in Section 4.

2. PRESERVING POSITIVITY IN INTERPOLATION

The problem of positive interpolation can be described as

follows: For given points (g, f), (t1, f1), - (E s [p), With tg < 27 < ..

<t,andfy320,f;20,..,f, 20, construct an interpolant S which is
positive on the whole interval [#y, ¢,], that is S(¢) 2 0. Let

(o =l
;@) @ | _ 2.1)
where ;@) =f(1-6)3 + (wf; + hid;) 81 - 6)?

+ Wifis _hidi+1)62 (1-6) + fi+193’
g = 1-0)3 + 01 + 9)2 + wH2 (1-0) + 63,
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f; and d; are, respectively, the data values and the first derivative

. t—t;
values at the knots #;, ¢ = 0, 1, ..., n with h; = t;,, - ¢, 0 = T
i

A; = i—+;l—i—]ji~and v;, w; > 0 are free parameters.
The function S(¢) has the Hermite interpolation properties, that is,
S(Zi) = fi’ and S(l)(ti) = di’ I = 0,1,..,n (2.2)

The v;’s and w;’s will be used as shape parameters to control
and fine tune the shape of the curve. The case v; = w; = 3,1 = 0, 1,
.. & — 1, is that of cubic Hermite interpolation. The restriction
v;, w; > 0 ensures a positive denominator g,(¢) and so first condition
on u;, w; is

v; >0, w; > 0. (2.3)

Since g;(¢) > 0 for all v;, w; > 0, so we just need to talk about
the positivity of p;(z). But first we express p,(¢) into the form used in
Schmidt and Hess[8] to develop the positivity conditions. We have
after simplification:

pit) = 0% + 1,02 + 4,0 + vy, @4
where Ki=Q=w) i1~ A-v)f; +(d;p1 + d) ARy
T =wifisr + B -20)f;— (g + 2d) by
=, —3)f; +d;h;
Vi =1
Now according to Schmidt and Hess[8], p,(?) 2 0 if and only if

2
'

(pi (0),p;(1) e R, UR, (2.5)

> _3fi b £—3fi+1}’
h; h;

i

where R,= {(a, b):a

Ry = {(a,b) : 36ff;, (a2 + b2 + ab — 34, (a + b) + 347
+ 3(f; 10 = ;D) Chyab — 3, a + 3fp) + 4h; (f;, 1 a3~ f;b?)
~ hlagby 2 0.
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. W=
We have p;(0) = iz 3

hi + di’
, B-w)f;
p;i(1) = — hl fie1 +d, .

i

Now (2.5) is true when

(510, p;(D) € Ry

7~ and pj(1) S—-=.

i i

pi(0) 2
| ' ~hd, | hyd,
This gives v; > Max {0, =1}, w; > Max {0, il }. 2.6
hi f}+ 1

Fuither @i, p;(1)) € R,y

If 36fifis1 [¢>?(vi) + dﬁ(w,—) + Ov;) Gow;) — 34,01y + dowy))
+ 3A%] + 3 (1, 6109 — Fidawp] 2Ry ) Do) ‘
~ 8110109 + 3ibytw] + 4hyTfs, 1650 i)
— k9] wp b3y 20, .7

where §,;) = p/(0), $ow;) = pj(1).
This leads to the following:

Theorem 2.1 ‘

The rational cubic polynomial (2.1) preserves positivity if and
only if either (2.6) or (2.7) is satisfied.
Remark 1 '

‘The conditions (2.7) are quite combersome so for
implemention, (2.6) are used in Section 4.
Remark 2

This method can be used in both cases when either d;’s are
particularly specified or estimated by some method.
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3. CONSTRAINED INTERPOLATION

The problem of constrained interpolation may be described
as follows; Given data points in a plane lying on one side of one or
more given lines, how a curve interpolating the given data points and
lying on same side of the given lines as data points can be determied?
In this section, we consider the data lying above a straight line and
develop a scheme to generate a curve whlch is also lying above the
given line.

Let (t;, 1), 1 = 0, 1, ..., n be given data points which lies above
any straight line f = mt + c provided given data also lies above this
straight line, i.e. '

f;zmt; +c forall i =0,1,..,n.

p;t)
We require  S(t) = Tt)z mt +c Vtelt,t; 1]

We assume that m > 0. The case m < 0 can be handeled in a
similar way. In each interval, mt + ¢ can be expressed as

where aq; =mt; + ¢
b;

We thus require

=mt, q,tcC

p;(®) o
S =—2a(1-6) +b6;, i=1,23 ..,n-1

q;(t
As g;(t) > Ofor all v;, w; > 0, so we require:
Ui @).= p;(t) ~{a; 1 -6) + 5,0} q;),

where U;(¢) is a polynomial of degree 4.

It can be expreséed as: _

U = M-0)* + 18(1-6)+7,621-0)2+8,0%(1-0) + 5,64
where '

hi =1 —a

Hi = v (fi—a) + (f; — by + hd;

Yi = wifip1—ap) + v(f; b)) + hy(d; —dpy )
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8; = (fro1—ap) +w; (fi, ~b) —hd; g

G; = (fiy1— by

As X;20,0; 20, so U;(t) 2 0 if and only if [t; 2 0, ¥; 2 0 and

8; 2 0. We so obtain:
by —f; — hid; }

i T 4q

v; > Max {0,

b

= Fie1 * Ridiyy Bidi = d) — v _bi)}

al
w; > Max {0, ,
fis1—b; fir1—q

The above discussion leads to the following theorem. '

Theorem 3.1

(3.1)

, (3.2)

The rational cubic (2.1) lies above the given straight line if

and only if v; and w; satisfy (3.1) or (3.2) respectively.

4, NUMERICAL EXAMPLES

We begin this section by considering the data in Table 1.

Table 1
x 1 2 3 8 10 11 12 14
y 14 8 3 0.8 0.5 0.45 | 0.40 | 0.37

The curve in Figure 1, produced by cubic Bassel method,
does not preserve positivity as it goes below the x-axis. We now apply
piecewise rational cubic of Section 2 to the same data. The Figure 2
is produced by applying the global tensions given below:

Ui = 1.005 LU,i, wi = 1.005 Lw,i,

where L, ;
which v; and w; can take.

and L, ; respectively represent the smallest value of

The Figure 3 is produced by changing some parameters, locally:
vy =12 Lu,3, wy = 1.5 Lw,3, vy =10 Lv,4, wy = 5Lw,4.

Next we consider the data given in Table 2.

Table 2
x 0 2 4 | 10 28 30 32
y 20.8 8.8 4.2 0.5 3.9 6.2 9.6

164

G e



Once again we note that Figure 4 generated by cubic Bessel
method looses positivity. To recover the positivity loss we apply cubie
rational function of Section 2. Figure 5 is produced by applying the
global tension:

Ui = 1.005 Lv,i! 'wi = 1.005 Lw,i s

However, the Figure 6 is produced by making the following
change locally:

Vg = 1.1 Lv,2’ Wy = 1.3 Lw'2, Ug = 1.1 LU,3 y Wy = 1.0 Lw’3 ,

We note that the Figures 2,3 and 5,6 produced by the
piecewise cubic rational functions of Section 2 not only preserve
positivity but also provide interaction to made the positive curve to
desired shape.

Finally we consider data given in Table 3.
‘ Table 3
X 0. 2 4 10 28 30 32
y 22.8 12.8 10.2 12.5 33.9 38.9 43.6

This data always lie above the straight line f =t + 2. The
curve shown in Figure 7 is generated by cubic Bessel method and it
does not inherit the shape of data, that is, the curve lies below the
straight line f = ¢t + 2. However, the curve generated by the
piecewise rational cubic function of Section 2 remains above the
straight line and thus preserve the inherit shape of the data. This
curve is shown in Figure 8.

5. CONCLUSIONS AND SUGGESTIONS

This paper has shown how positivity can be preserved using
piecewise rational cubic Hermit spline. We have derived data
dependent shape constraints on two shape parameters to assure the
positivity of the positive data. The choice of the derivative
parameters is left at the wish of the user.

A simple case of the problem of constraint interpolation
where a curve is required to the same side of a given line is also
solved. The general case requires the extension of the method for the
planer curve which will be presented in a subseqiient paper.

For the rational cubic of this -paper monotonicity and
convexity is discussed in Sarfraz[11]. This paper has added another
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feature of positivity to the same rational cubic. Future work will look
at interpolation in two dimension where volume rendering
techniques incloude interpolation as a key process with positivity as
a typical requirement.
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Figure 1: Cubic Osculatary Method
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Figure 2: v, = 1.005L, , w, = 1.005L. |
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Figure3: v, =12L,,, w, =13L 5, v, = 10L, ,, w, =5L,,

T

Figure 4: Cubic Osculatary Method
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Figure §: v, =1005L,,, w, = 1.005L_

Figure 6: v, =LIL,,,w,=13L_,,v,=11L ,,w,=L_,
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Figure 7: Cubic Osculatary Method -

o)
=4

Figure 8: Rational Cubic Curve
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CROSSING TIME AND RENEWAL NUMBEIRS
RELATED WITH 2-STAGES ERLANG PROCESS
AND POISSON PROCESS

‘Mir G.H. Talpur

Department of Statistics
University of the Sindh,
Jamshoro

ABSTRACT

In this paper, it is considered how to find some joint distrinbutions
and their margianl distributions of crossing time and renewal numbers
related with 2-stages Erlang proocess and Poisson process by constructing
and absorbing Markov proocess. The obtained results show that one-
dimension marginal distributions are 2(N. + 1) order PH-distributions.

KEYWORDS: Erlang process, Absorbing Markov process, Poisson process
and PH-distribution.
1. INTRODUCTION

ASSUMPTION: Let N be a constant, {X;} and {Y;} be two
sequences of random variables. Suppose that {X;}, i = 1, 2, ...; are
independently and identically distributed (i.i.d) F(¢) with finite mean

and {Y;},j = 12,3 ..; are i.i.d.G(t) with mean p~!
N,(t) = a Erlang process associated with {X;} in which the
distribution of X; is a 2-stage Erlang distribution.

N,(t) = sup {n | T, <t} is the counting process associated with {Y;}
where Ty = 0 and T, = ZIYJ
J:

We assume that X, YJ are mutually independent. Consider the same
problem in Ref. [1, 2].

En = inf {n | T, 2 Sy} its taking values arej = 1,2 ...
&
T€~ = i Y}, its taking values are 20
' i=1
and My = Nl(TE_N)’ its taking valuesare i = N,N + 1 ...
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We are interested in finding the joint and marginal

distributions of TEN’ £ v and 1. In Ref. {1, 2] we have obtained
explicit expression for the case of two Poisson process and first one is
Poisson processs and other one 2-stage Erlang process. In this paper
we consider first one is 2-stage Erlang process and other one is
Poisson process.

2. JOINT DISTRIBUTION OF Ta , Exy AND 1y

2.1 Absorbing Markov Process and Absorbing
Time Distribution

We considerf a Markov process {X(¢), ¢ = 0} on the state
space E. If E ; and E; are two non null sub-sets of E and they satisfy:

1) Ey, VE, = E, Eo M E; = ¢ in this case E, E, are called a
partition of E; v

2) E is the absorbing state set and E is the transient state set;
3) For given initial condition ag 1 the absorption of Markov
process is certain, then {X(¢), t 2> 0} is called an absorbing Markov
process (AMP).

We denote the distribution function of the absorbing time of
the AMP (X(#),t 2 0} by H(®).
Theorem 2.1

Let  P;(t) = P{X(?) = i}, then

H'® = 3 P gy
lEEl
JGEO
Proof
See Ref. {3]
2.2 Construct an Absorbing Markov Process to Analyze
the Problem

Now we construct an absorbing Markov process (AMP) to
analyze our problem.
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Consider the AMP { N ;(#), N,(t), I(t) in which N,(¢) and N2(t)
see section one, but I{) represent the phase of X; at time ¢
respectively. Its state space

E={G,j, k), G",j) [ 1,j=0,1..k=1,2i'"=N",N' + 1,..;j' = 1,2',..;}

where (i', j') are absorbing states. Their transition of states are
shown in fig. 1.

Tpg Frgpg !t '
L Leaeales g
i i SR il
B [ s }
lo‘z o,_[ﬂ* 12 ol[igl[gl :T)‘IEQ'N : o,[i :]«
(Fig. 1. Transition-Rate Diagrarﬁ) IJT__, N 1 l
Let Pk, 1) = PIN@), = L, N@)y = j, 1) = kY

Then

Py®) = {P;(1,1,0), P;; (2,1,)} and suppose that P_y,j(t) = P;_;(t) = 0.
By the transition-rate diagram we can get the following system of
differential equations.

’ A —A H 0 0 0

+ HPI.J—I(t) :
i=0 . N-1,j=01..; 2.1)
' A —A g0 0 0
i=N, . N+Lj=01..; (2.2)

The initial conditions are Pyy(0) = [1, 0] and all others are equal to
zero. We use the Z and L transforms to solve above system of

equations.
Let
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Pit,u) = ) Py W, lul <1, then we have
j=0

' A+ -A 0 0
Pl(t’ u) = Pi(t, u) ( Ou }\'+u) + Pi—l(t’u) (x 0) + ’uuPi(t, u)

i=0,1..N-1; (2.3)
I >\,+ —>\, 0 0 .
P, (t,u)=P;(t,u) ( OL.L 7~+H) + P;_;@t,u) (k ;0), i=N,N+1,...;(2.4)

Here initial conditions become Py(0, u) = {1, 0] and all others are
equal to zero.

Let  P(tu,zz) = ) Pt u)z, |z| <1,
i=1
We get

l=

_ N-1 :
P'(tu,2)=P(t,u,2) (;‘ i ;‘)+P(z,u,z)z G 0)+ LUP;(t,0)2;,(2.5)
0 A+p o [T .

The initial condition is P(0,u,2) = [1, 0]
Finally, let

P*(su,2) = f exp(—st) P(t,u,z) dt, Re(s) > 0,
0

Then
. . A+ —7») . (0 0)
P(,$)_1,O=P(’> +P(t”
sP(s,u,z)—[1,01 | suz)(o ;H'Ll, .uz)z}LO
N-1 * . '
+ 3 HuPi(s,u)zt
i=1
It implies

N-1 . ) _ -1
P*su2) = ([1, 0]+ 3 puP; <s,u>zi} (sj: ”s”i‘w) 2.6)

i=1 ) .

N-1 :
The remaining problem is to determine the value of [ZP{ (s,u)zi).'
i=1

Using L-transform in eq. (2.3), we easily obtain.
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-1
PG, w = 11, 01(”;“”'”“ '-7‘) .

S+ A+p—upl
and ’ _
-1
S+ A+ pH-up -l) : _
= = ey N1,
P (s, u) l 1(3) u) (}. 0)( 0 s+l+p——up i=1, 2) 1
Therefore '
N-1
ZP (s,u)zt
Jj=0 : .
sehep—up A 0 0\(s+A+p~up —A -
- [1,0] [ 1
_ 0 s+A+p-ujL kA o ONs+7L+u—uu

\ -1
(e T
- WA 0/\ 0 s+A+p-up
=, (1.0] (s+7L+u—uu —k)_l[H(O 0)(s+l+u—uu —7&)_1
’ 0 s+A+p—ufl z?\}? 0 s+A+p—up
, ’ N /
({(0 0)(s+7\.-:u—uu —7\.} 1} ]
zZh 0/\ 0 s+A+-up

- [L0] [(s+k+u—uu —k)_
' 0 s+A+p—up,

(0 O)]-I(I_{(O 0)(s+7\.+u'—uu —l)-l}NJ(z 7
zh 0 zZh 0/ 0 s+A+p—up '
Theorem 2.2 ;

The joint transform function and the joint distribution
function of random variables T ¥ ¢ N» and My are .

frs,u,z) = upl N A w [(s+A+)+A] (2.8)
: (S+A+1)2-A2z  \s+A+p~up, -
and o
: 2N+J—2) A ]””1 2 (A4 o)
P{T, <tEn=jiMn= B (At )07
Ty Stly=imy=i} = ( (lﬂl (kﬂl r?éﬂ. r!
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2_] +1 r
( j z (OH- p.)x) ——exp(-(~+n)x)
}\-+H r=2i+j+1 ro

exp (-(h+p) x)r(2N+‘] 2) _H
A+

Proof
By using Theorem (2.1) and eqs. (2.6), (2.7) we have

) _ ® X« . i
FGuz) =Y Y Pij(s)u]*lz‘ (Uj

i=Nj=0
w w i N-1 o N o k
[Z PWNOREED) ZPij<s)wzl)®
i=0j=0 i=0j=0 L
N-1
=u (P*(S,u,z) 2 P (s, u) z‘j &3
i=0
N-1 _ -1 N-1 . .
—u[[[fl 0l+up Y, PG, u)zz])(s””“ A ) S Pl we] u)
i=0 -Xz s+A+p) [
N-1 N-1 B
=u [10]+uLLZP(su)z‘ ZP(su)z‘) (s+7»+p. A )
i=0 i=0 —7\-2 s+k+p
(s+k+u‘ -A )—ICLJ
-Az s+A+| L
N-1 -1
s+A+p—up —k)(s+k+p. -A ) &)
=u (1,0 P t
“ (01 2 Brlou) 2 ( —Az  s+A+pN-Az s+A+p—pu

i=0
-1
s+A+—upl —A )
= 1,0]-[1
u{[ 01 ’O]( ~Az s+A+p-up
+AE Ul —A )}

[I_{Z(O Oj (s+k+u—uu —k)j—l}N(s
A0/U 0 s+A+p-up ~Az  s+A+p-up

(s+k+u - )QL)
~Az s+ A+p—up) \l

_u[lo]{(s+k+p—up, -A )_1{2(0 O)_l(sﬁwu—uu -A )_N}
Y -Az s+ A+p-upl () ~Az  s+A+p-upl

(S+7»+H—MH - )(s+k+u - )_1(;:)
Az s+A+p—up/\ 0 s+A+[L
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_ s+A+p—up  -A ) (0 0 ~l(s+7L+u—-uu —k)—l}
-u[l,O][{( 0 s+7L+p.—uu)z(7t 0) 0 s+A+p—up }
2(0 0)(s+7s,+u—uu —}»)‘12(0 0)”‘1

A0\ 0 s+A+p-upl A0 :
(I_(s+7»+u—up. -A )(0 OD‘l(sﬁwu -\ )@j

0 s+A+u—up/\A 0 Az s+A+p

~ (s+A+p—up -A ! (0 OD-I
= ulL,0l (I ( 0 S+A+l-u ) 2 A0
((s+k+u—uu —k)—lz(o OD (I_(s+)\.+u—uu ~A )_12(0 OD

0 s+A+pu—up) \A 0O 0 s+A+p-upl A0
(s+k+u—uu ~A )Gl)

—Az  s+A+p-up/\U

StA+p-ul —A )’1 (o 0))‘1
= u[1,0]{I-
u O]( (0 . SHA+ UL A0 .
((s-rkﬂx—uu -A )_12(0’ ODN_((sﬁwu—uu -\ j‘ Z(O ODN“
0 s+A+p-up A0 0 s+A+p-up) \A O
_ ; 1
= u[1,0] (I—(“M“_”“ - )
u .
it AT AT 0
0 s+A+p-up A0 0  s+A+p—up A0J)
(S+7»+H—UH A )—IG) '
-Az  s+A+-upl L

(s+?\+u—uu —K)—](ﬁ)
0 s+A+p-up
GO
0 s+A+p—u VI
=u[1’0]((s+k+u—uu -2 )—12(0 ODN(H?LﬂL—uu A Yl(ﬁ)
0 s+A+p—up/ \A O Az s+ A+pl-upy

1 A N
—u )2 0
- u[L,0] S+A+p—upt  (s+A+p-up) Z(O )
0 1 A0
s+ A+ H—upl
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(s+A+L) A
(s+A+W2-A%  (s+A+W2-A%z |y
Az (s+A+) j
(s+A+0)2-A%  (+A+p)2-A2%

2
( A ) 0 (s+A+L0) A \
s+A+Lt-ult (s+A+02-A22  (s+A+)2-A% Ll)
=u(1,0)
A Az (s+A+L)
\S+ A+ H—upt 0 (s+A+10)2-A2z  (s+A+)2-A%z)/
2N
( A j 0 (s+A+1) A
_ 292 272
o S+A+H—upl - (s+A+0%2-A2z (s+A+)2-A%z (f)
!

A Az S+ A+
S+A+ -l AT LD2-A%z (s+A+ u)2—7»2zj

r' Zlv
. S+A+p—up) \(s+A+p)2-A22

2N -
. A 2 ]
S+A+pU—uUl (s+A+1)2-7.22
. \ 2N
Luz
= [(s+ A+ 1)+ Al
(s+ A+ 1W)2- A% (s+7»+u——uu) ° H

By the definitions of the z and L transforms one can write

fuz =3 3 f exp(~st) dP {T; <t, &N =i, Ny =i} dd
i=Nj=1T
We have proved that
N \ 2N
, , (luz!
(s,u2) = (s+ A+ )+ Al
r s+ A+ 2-2% (s+k+p1fupl) [ F

>y fexp(~sz‘)dP{T <t, éN =j, Ny =i} 3!
i=Nj=11%

2N

LuzN A
= [s+ A+ )+ Al
s+ A+ W2~ A2 (S+7»+L1—UU) s g
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( Lu A%z )_1( A LHu )_1 )
= 1— 1— [(s+r+pn)+7]
(s+A+W)2  (s+A+p)? (s+A+1)2% (s+A+1)

2 k N & (2N +1-1 l
ez N uu .
(s+/ +u)2 E((s-9—7+,,1) (S+K+p) El( ! )(sﬂ.ﬂx) ((s+2s)+2]
i=

AT TN I G S (2N+1 1)
(S+?.+p)k§0(s+7.+p) 2 (34.7”_“ :z
(s+}+ )(

_ ®© o 2N+l 1 p. l+1 2(k+N)
=2 Z( )(S+7\.+p) (s+k+ )

k=0l=0

(s+X1 +u))

2(k+Ny+1

( A ) }ul+lzN+k
S+A+p

Let i=N+ kandj =1 + 1then we have

>y fexp(—st)dP {TéNSt,§N=j, Ny = i} d&t
i=Nj=1T7
i§(2N+i—2) n J{ A '~"'+ 3 Zm}ujz,.
oyt J-1 s+h+p) Us+r+p S+h+p

Comparing the coefficient of wz! and taking the inverse of L-
transform we obtain the joint density function of T& , En and Ny
random variables ,

. . IN+i-2 )\'Qi“j t2i+j—1 }'21'+ luj t2i+j
dP{TéNSt’&N=J’nN=l} = ( )( X

J-1 (2i+j-1)! (2i+))!
exp (~(A + ) 1) at.

The distribution function can be obtained by integration, thus we
complete the proof of theorem 3.2.2.

3. TWO DIMENSION MARGINAL DISTRIBUTIONS
Theorem 3.1

The joint probability generating and distribution functions of
&y and 1y random variables are;
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N - \2N
a) fiz,u) = Huz ( L ) [(A+ 1)+ A] (3.1)
A2z i

A+ 02— s+2—u
and ~ ,
. ] 2i
. s _ =[2N+z—2) _E__l o
Py=imy =) \ j-1 rp) \h+p
_ ] 2i+1
(2N+1 2)(_;1_ ( A ) (3.2)
J-1 AtPI\A+U
b) The joint transform and joint distribution functions of TE-N
and &y random variables are; ;
- 2N
% L A
(s, u) = (s+A+U)+A](3.3)
fyfs (s + A+ W2-A2 (s+7.+p—up) [ _ H ;
and _ .
. 2 aN+i-2\( p ¥ i [(7»+u)x]’
. < =i} =
P{T <t &y =j} ‘Z( i )(7 w) {(“J Z
. i=N Jj=
ROV 2 [
(, ) > === texp (-(A+)x) (3.4
/‘..+P. L. r.
r=2i+j+1
c) The joint transform and joint distribution functios of Té/v and
Ny random variables are
Lz 5 \2N " N
(s,2) = ~ (s+A+0+ (3.5)
f3 (s + A+ W2-2A% (S“J [_S W+
and
N2i[2N-1 = . kel 4 oy
pir, =[5 5 con{tiod) )
K k=0r=k+1 2(-N) )\ h
2(-N) k+1
ON+k-1 [(A+1Dx]"
- —1)2N] L LASAIN oS I
exp(-Ax)+ Em:‘?fl = ( IN-1 )(/) !

2N\2i+1 [N o kel on o
exp (—(A+px) + G) { DS (_1)1{2(‘ _N)"'k) Gi) Ay x
L y

1
k=0r=k+1 2(-N) r
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2(Z—N) -] _ k+1 r
expcAD+ T z<—1>2N(2N+k 1)(%) [—(’%‘i’iexm—(kw)x)}

k=0 r=k+I 2N-1
(3.6)
Proof
(a) Letting.s close to 0* in Theorem (3.2.2) we can get
. LluN A N
(zu) = : [(A+ W)+ A)]
h (A + )2 - A2z (7\.+LL—ULJ H

Making it in the series form and compare the coefficient of wzi we
conclude the desired result.

b) Similarly letting z close to 1~ in Theorem 3.2.2 we obtain
’ 2N
* Ll A
(s,u) = [s+A+W+A)]
E (s+k+p()2—k2(s+k+u~uu) H

By the same calculation procedure as theorem 3.2.2, compari'ng the
coefficient of w we get the density function
L& (aN+j-2) [ W A% w1
dP{Ty <t,En=j}= % ( s ) B
Mj AZi+1 p204)
20+ j)H!
Probability distribution function can be obtain by the integration,
hence we complete the proof of theorem 3.1(b).

exp (—-(X+ L) +

exp (—(A+108) ]

(c) Again letting u close to 1~ in Theorem 3.2(a) we can get
% leN 7_.' 2N ) .

(5,2) = [(s+A+1) + A)]
fs (s + A+ Ll,)2—7»2z(s+ 7») F

Using same calculation procedure as in theorem 2.2, comparing the
coefficient of z* and taking inverse of L-transform we get the density
function through integration we complete the proof of theorem
3.1(c). :

4. ONE DIMENSION MARGINAL DISTRIBUTIONS
AS PH-DISTRIBUTIONS

Theorem 4.1
Probability generating function and distribution functions of
T, € and Ny random variables are
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x u n O\
a) o, (s) = 12( k) [(s+A+)+A] (4.1)

(s + A+ W)2— s +
2N-1 o . kE+1 r
PT, <1 = O {z Y (-1 (2“ .N’*kj() Q) eephays
U Lezor=k+1 2(-N) J\A

2(i-N) <« _ k+1 r
k=0 r=k+1

~N\N2i+1 [ 2N o . B+l ,
@ {Z Z(-l)k(ﬂ‘ » +k+1)( ) 0"‘) exp(—Ax) +
L k=Or=k+l 2(i-N)+1 A

2(-N)+1 o= k+1
ON+k [(A+)x)”
DD <—1)2N( )() BT exp (—(At H0X). (4.2)

k=0 r=k+l 2N J\M r!

b) G. (u) = Kz ( . )2N [A+W)+A)] (4.8)
N A+ W2 - A2 A+p—up
and
L2 2N+j—-2) w Y { A\ ( A )zj *1}
PiE =} = 4.4)
{éN 7} 15\7( Jj-1 (k + LJI (k + u) ¥ A+l
pzN ‘
c) G, ()= [(A+W)+M\)] (4.5)

WA+ )2 - A%

2(i-N) 2(-N) +1
P{n =i} = [—& { % s [ }(4.6)
N A+p) LA+ A+

Proof
a) Letting z and u close to 17 in theorem 3.2.2 we get
R 2N
* J,l I
(s) = A+1)+A]
¢)TE.N ) (s + A+ p2-—AZ (s + k) [Gs+A+d
N
3l 1 A )2 ‘
= [(s+A+[)+A]
(s+?\.+u)21_ A 2(s+7») F
(s+A+p))
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X © s Nk, 5 \N ) v
e erem M sy G e
S+A+L) poo\s+A+ 1 s+ A S+A+1

o s \2k ) 2k+1} 2 NN,
,E:O{(s+k+u) ¥ (s+k+p) (s + k) (s+l+p.)

Let i = £ + N, and taking inverse of L-transform we have

2N 2(i-N)+j 2N-,
dP{Ti,NSI}'—‘{ S (-1y- (2(1 -N)+j- 1) (u) P-(M) - exp(=t)
j=1

2G-N) @N—)!
. 2(i—§f:)+1( 12N (2N+j 2)(; 2(i-N) +1-j y
j=1 2N 1 }\.+,J.
[(A+we2e-N+1g wWr (2(i—1\7)+j)
MG 11 SR A El( D ea-m+1
~N2(-N)+1-j (7\.I)2N_j+1 2(i-N)+2 2N+j—1 . 21
/ I
Lo | — (—}\.l‘ + (_1)2N+1( )(:.)
(p) F @2N-)! exp ) j§1 2N 1

( )‘2(2'-N)+2—j l [(}\,+Ll)t]2(i_N)+2—j
At it @G- N) +2—))!

Through integration we complete the proof.

exp (—(A+ Ll)t)}

b) Similarly letting s close to 0% and z close to 1~ in theorem 2.2
we obtain the probability generating function

Gy () = —+= 2 Yo e n
N A+ )2 — A2 (?w p.—uu)

1 A 1 o

Hu ,

= A A

O“Lp)zl—( 2 )2{7"““1_ “u} [(A+1)+A)]
(A+ )2 A+p '

T 1
; §( k )(mj (w) "hen

Let i =1+ Nandj = £ + 1, comparing the coefficient of 1/ we prove
theorem 4.1 (h).

[v]s

X
0k
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c) Again letting s close to 0* and u close 1~ in theorem 2.2 we
get the probability generating function of 1), random variable

) N
G. (2) Hu

=t A
Ny O+ 02— A% [(A+ )+ ]'\

= —H 1
A+ p.)zl_( A2z )2
(A+)2

BT b
A+, }\.+p) A+ U

Let i = & + N and comparing the coefficient of z we get

26-N) 2-N)+ 1}
[ AT { A w }
=1} ()\.+p) ()\.+p) ¥ ()\.+p

Theorem 4.2
a) ITE\, is a 20N + 1) order continuous PH-distribution with

2N [(A+ Ll) +\)]

representation (o, T) where a = [[1, 0], 0, ..., 0], Oon+1y+1 = 0 and

6 3

T = , TO = )
(—Owu) r ) 0
A=A+ (J
b) Ny is a 2(N + 1) order discrete PH-distributioon with
representation (8,L) where 8 = [[1, 0], 0, ..., 0], BZ(N+1)+1 = 0 and
0 A
04 0
L= ,L0 = ,
A B ACC
B

s 4[5 1 (0 0)



: -1 | -1,
B (O.w) —k) (0 OD and C = ((Mu) —k) Cl)
o v+p) A0 0 +p)/) \y
c) Exy is a 2(N+1) order discrete PH-distribution with

representation (v, R) where y = [[1; 03,0, ..., 0], Yows1)+1 = Oand

0 A BA B2A B3A ... BN-14
0 A BA B2A B3A ., ., . BN-14

R=| 00 A BA B2A ... BN-24

BN[I-BI-1C
BN[1-BJ-IC -
RO = | BNUI-BI-iC

B[I-Bl-1C o

A +10) —X)_l(u O) ' ((k-fu) -x)"l(o O)
here A = , B =
where (0 A+ 0 p 0 (A+p)) \A 0 ,

. } y

and C 2 (l-r n —X) C,l)

0 A+L L
Proof ' .

a) For definition and property of PH-distribution see Ref. [4].
For continuous PH-distribution its L-transform is

*

. (DT;—_ (S) = az(N+1)+1 + a[SI" T]—l TO
SN .
+A -—7&) (0 0)' (s+l+u —l)
,B= L C= 71, then
0 s+A A0 —A S+A+| ¢
A-1 A-1BA-1 (A71B)24-1 |, |, (4~1B)NC-!

0 Al (-a1B)2a-l. .. (—A"1BWN-1C-)
0 0 0

Let K=[sI-T], A=(S

0 0 0 0.. c-1
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Thus
¢y (9={[1,0],0, .., 0] K1 TO
CEN )

= [1, 0] [-A-1BIN C-! &) _
Substituting the values of A, B and C we have
-1 N an-1
_ 00 . AR
sl (52,00
Ey 0 s+A/ A 0 ~A s+U+A
' (ij 0 (s+A+L) (s+A+LL)
(s+A+1W2-A2 (s+A+)2-A2 (ﬁ)

- L0l S+A
S ( A )m—l 0‘ : A (s+A+1)
(+A+W)2-A2 (s+A+)2—-A2

s+

0 ‘ A 9N
= 4.7
(s+7\.+u)2—7\.2(s+7\.) [e+A+rw+d @D

Obviously, phis is the same as (4.1).
b) For discrete PH-dsitribution, its probability generating
function is GnN(z) = Bons et 2Bl —2L]-110.

On a similar plan, let P = [I —zL], then we have

I zA (24)2 ... AN-1  @ANB(I-zB)! 0

10 I 24...@AN? @AN-1B(I-2B)!
Pl - c e . | omemres| |
. . e o o o . i " O
o . e e I 2AB(I-zB)-! | AC
0 0 .0... . (I—zB)-1 :

Gp@ =Bawin+1+ PzP 1RO
=[[1,0}0,0,.. 01 P1LO

= [1, 0)z {zA)¥-1A + (zA)N BU-B)1} C

= [1, 0] AN [I-2B)1 C
By putting the values of A, B and C we can get
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o, G (o) G S
(“;;“’ o)
((x e LTE

-A N l+u —)\.) u)
= [1,
(1, 012" 7\.) — (7»+u)
7\,+u
(1, 0]z N l+u)2—7\,22 (7»+u)2 A%z (ﬁ)
- A+
(A.+j,l)2 -2z (X+u)2 A2z
A+l
- N
Kz (X+u)2 —A2z * (l+u)2 122
N _
=—H e (4.8)

A +1)2-A2z
This is also same as (4.5).
c) For a discrete PH- distribution, its probability genexatmg
function is Gy W) = Yaovy 141 + UY [I —uR)1 RO

Let @ = [I —uR]), then

T uAU-uA)"l  (I-uAd)"1BuA(I-uA)~! [(I—uA)‘lB]2uA(I—uA)"1
0 I-uAI-uA)"1] (I-uA) 1BuA(U-uA)~! [I-uA)~1B12uAd-uA)~1

Q-l—lo 0 U-uA(-uA)Y] (I -ud)) BuA(l - ua)-1
[(I—uA)'lB]SuA(I—uA)"l [I-uA) 131N-1u.A(1—u.A)—i\ Bza-?‘}g
A A C1BIN=1y A (T )~ [ BNa-By
[-uA)"1BBuAd-ua) L [(A-uA) BN LuAT-uA)"! | BN-1qgy-1¢

[(I-24)"1B)2 uAl-uA)™? [d-uAY I BIN-2uAl-ua) Y | oo
. N . I
-udd-ud)™ ) a-8ylc

Hence

187



G (ux [[1,0],0,0,..0] uQ 1RO

=11, 0]« [BNU-B)C + uAd-ua)y! (BNI-B)-1C] +
(I-uA)~! BuA(I-uA)~! (BN-1(I-B)-1C] + [I~uA)-1B]? uA(I-uA)-1
[BN-2(I-B)-1C] + [I-uA)"1B]3 uA (I-uA)-! [BN-3(J-B)-1C] + ... +

[(I-uA)-1BIN-1yA(I-uA)-1{B(UI-B)-1C] ]

= 11, 0] u [ -uA)"1BN + (I-uA)-'BuA(-uA)1BN-1+
(I-uA)"1B)? uA(I-uA)-1 BN-2 + [(I-uA)~'B13 uA(J-uA)-1BN-3
#..t [~uA)-1BIN-1 yA(I-uA)1B] 4-B)-1C

= 1, 0] u [ [T=uA)1B12 T-uA)1BN-1 + [(I-uA)-1B]2 uA(I-
uA)-1BN-2 4+ [(I-uA)-1B13 uA(I-uA)~1BN-3 + .. + [(I-uA)"1B]N-1
wA(-uA)B] (-B)y-1c

= 11, 0] u [ [I—uA)1B12 (I-uA)-1BN-2 + [(T-uA)1B}®
UA(T-uAY-1BN-3 4+ . + [(I-uA)y"BIN-luA(-uA)-1B] (I-B)-1C

Gy, =1[0,1]uld-uA)y!BNUI-B)lC
Substituting the values of A, B and C into the last expression, we
obtain

A (A+1L) —X)_l cl OD_I ((7»+Ll) —X)'l(o OJN
G, ={1,0 -
=t ]u(l u( 0 (A+p) ) 0 A+ \A 0
Sl R ]
0 (A+p)) \A O 0 A+p '
- u[L 0] (Kﬂl—du —7»)_1 C) ODN (7»+H —7»)—,1 Gl)
0 A+p-up L 0 A A+ L

( A )QN 0 ) A
A+ p—upl (A+10)2-A2  (A+p)2-A2 Gl)
= 1, _
u (1, 0] ( A )2N 1 . 3 Ot 1) .
A+ p—upl (A+02-A2  (A+p)2-A2
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(=2 jm A+ +( A ')2” (xw))
: A+p—up) A+w2-A2  A+p—up) (A+p)2-22

" A 2N :
U
= A A 4.
(k+u)2—k2(7»+u—uu) {A+w) + A} (4.9)

This is also same as eq. (4.3), and hence we compelte the proof of the
theorem 4.2.
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