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ABSTRACT: In this article the notion of convergence of series is extended
and statistically convergent series is introduced. Some properties are studied and
interesting results are established. The deviations are established providing
suitable examples.
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1. INTRODUCTION

The main object of this article is to introduce statistically convergent
series and some definitions. The idea is similar to statistical convergence of
sequences. The idea of statistical convergence was introduced by Fast [3], Buck
[1] and Schoenberg [9] independently. Later on it was studied and linked with
summability by Fridy ([4], [5]), Salit [8], Rath and Tripathy [7], Tripathy [10],
Conner [2], Maddox [6] and many others.

Definition
A series E x, - is said to be statistically convergent, if it’s sequence of
k
partial sums (s,), where s, = x; + x, + x; + .... + x, is statistically convergent.
Throughout sums without limit means it is from k = 1 to o.

A series E x, is said to be bounded if it’s sequence of partial sums is
=~ k.

bounded.
The idea depends on the density of a certain subset A of the set N of
natural numbers. A subset A of N is said to have density &(4) if
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limM=6(A) , where A(n) = {k < n:k ¢ A} and |A| denotes the

n-os n

cardinality of A. Clearly finite sets have zero density, (49 = 6(N-4) = 1-6(4),
whenever both sides exist. Throughout 4° is the complement of the set A in N.
A sequence (x,) is said to be statistically convergent to «, written as stat-lim
x, = o, if for every ¢ > 0,

6[{k€N:|xk-alze}] =0
A subset K = {kj;j € N} of N is said to be thin if 3’([() = 0, it is

nonthin if either 6(K) # 0 or K fails tb have natural density. A series Z b, is

said to be a rearrangement of Y a, if each b, = a, for some k ¢ N.

Definition

A series is said to be statistically conditionally convergent if it is
statistically convergent but not absolutely convergent.

Definition

A series Y a, is said to be statistically non-negative term series

if 8[{keN:a,<0}] = 0.

A sequence (x,) is said to be statistically Cauchy if for every e > 0,
there exists m = m(e) such that 6[{k € N : |x, - x,| = €}] = 0. A sequence

(x,) is said to be statistically bounded, if there exists a A > 0, such that 6[{k € .

N: |x, | > A}] = 0, see Tripathy [10]. Clearly a statistically convergent series
is statistically bounded, but not conversely.

2. PROPERTIES

The following lemmas will help us in establishing the results.

TS
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Lemma 1 (Lemma 1.1, Salit 8D

A sequence x = (x,) is statistically convergent to c if a only if there exists
suchaset K = {k, < k, < k; < ...} CNthat §(K) = 1 and lim x, = a.

n-o

Lemma 2 (Theorem 1, Fridy [4])

A number sequence x = (x,) is statistically convergent if and only if it is

statistically Cauchy.
A statistically convergent series may be unbounded. For this consider the

example.

Example 1
Let-} a, be defined by
-1k, n =k
a, ={(-D%, n-1=1F,keN,

n2,  otherwise.

Remark 1
All bounded series are not statistically convergent. This is clear on

considering the series Y (-1)".

Remark 2

A bounded statistically convergent series may or may not be convergent,
which is clear from example 2.

Example 2

Consider the series Y a,, where

D% n=4k,
a, =3 (-1, n-1=4k keN,
2

n>=, otherwise.
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It is clear from definition and example 2 that "every convergent series
is statistically convergent but not conversely". Using Weierstrass completeness
principle we have

Proposition 1

A non-negative term series is statistically convergent if and only it is
convergent.

Remark 3

If a series is statistically convergent then any rearrangement of it may or
may not be statistically convergent. For this consider example 2 and it’s

following rearrangement.

Y b, =1-1+47"+1-1+971+1-1+16) T +1-1+(25)" +....
From the definition and above examples we have

Proposition 2

If E a, converges statistically, then stat-lim a, = 0, but not conversaly.

Proposition 3

If Ean and Ebn are two Sstatistically convergent series, then for
complex numbers a,B;E(a a,+Bb,) converges statistically to the
sum oy a,+Bb,.

3. MAIN RESULTS

Theorem 1

If a series Ean is statistically convergent then there exists such a

subset K = {k, < k, < k; < ...} of N that 5(K) = 1 and Eak, is convergent.
i



On Statistically Convergent Series 5

Proof

Let Ean be statistically convergent, then by Lemma 1, there exists

such aset P = {p, < p, < p; < ..} C N with §(P) = 1 that (Sp') is

convergent. Let us construct a subset M = {m,, m,, ms,....} of Nas m,, = g, +
1, my, = q;,, where g; ¢ P*, if there is repetition that is m; =m; , | for some i,
then count m; and reject m,,,. Then (M) = 0= 6(M°) = 1. Taking K = M", we

have Y a, is convergent.
kek

Remark 4
The converse of the above result fails even if E a, is bounded, which

is clear from example 3.

" Example 3
Let Y a, be defined by @, = (-1, n = &, ke N and a, = 0,

otherwise.

Theorem 2
A statistically convergent series E a, has a thin subseries divergent to

oo [f and only if it has a thin subseries divergent to -

Proof
Let E a, be statistically convergent and has a thin subseries divergent

to oo. Then by Proposition 1, it follows that it has positive terms as well as
negative terms. By Theorem 1, there exists such a set K < N that §(K) = 1 such
that (s,) converges on K. Let M be a thin subset of N such

that E a, = «. Then from definition of statistical convergence of series it
keM

follows that Y @, = —«, where B = K - M N K. Clearly §B) = 0.
keB

Similarly the converse part follows.
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We formulate the following results, the proofs are obvious.

Proposition 4
A series E a, of complex terms is statistically convergent if and only

if the series of real and imaginary parts are statistically convergent.

Proposition 5

A number series E a, is statistically convergent if and only if for every
€ > o there exists m = m (¢) such that

vl o

If Ean converges statistically then the remainder tends to 0

Y q, =0

k=m

lim n1

n-

Proposition 6

statistically and conversely.
Proposition 7

The following are equivalent.

i) Y a, is statistically convergent.

ii) There exists a convergent series E b, such that

6[{k € N: q, = b,}] = 0.
iii) There exists such a subset K C N that 6(K) = 1

and Y a, is convergent.
kek

(iv)  There exists series Y, x, and Y.y, such that

a, =x, +y, forall n € N, where Exn is convergent

n

and Yy, is statistically null.
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Remark 5

In case of statistically convergent sequences, the limit remains same for .

decomposition theorem, but for series the limit may be different.
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ABSTRACT: In this work, we investigate some topological properties of
the sequences spaces defined by invariant convergence and related inclusions.

1. INTRODUCTION
Let o be a one-to-one mapping of the set of positive integers into itself
such that o;',',) #n for all positive integers n and m where

Ty = (05.)_1)), m=12,.

A continuous linear functional ¢ on £ is called o-mean if it has the
properties:
) ¢ (x) = 0 when the sequence x = (x,) has x, = 0 for all n,
(ii) ¢ (e) = 1 wheree = (1,1,...) and
(i) ¢ (x,) = ¢(x), forall € £,
when o(n) - n + 1, a o-mean is often called a Banach limit and V, the
set of bounded sequences all of whose invariant means are equal is the set of-
almost convergent sequences [C.C. Lorentz (1948)].
If x = (x,), we write Tx = (Tx) = (x,,). The space V, can be
characterized either (i) as the set of all bounded sequences x for which there is

an L so that lim¢_ (x) = L uniformly in n where
n

__ 1y _
t (x) = m+1§x"<l~)’ n =12,
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or (ii) as the set of all bounded sequences x for which lim I E X is of the
m m+lip @

L, where L = o-lim x.
2. TOPOLOGICAL RESULTS

A paranormed space (X,h) is a topological linear space with the topology
given by the paranorm h. It may be recalled that a paranorm h is a real
subadditive function on X such that g(0y = 0, g(x) = g(-x) and such that
multiplication is continuous, i.e. N\, = A, X, = x imply that A, x, = Ax where
A A scalars and x,, x € X.

Let p = (p) be a sequence of real numbers such that p, > 0 for all k
and sup p, = H < oo. This assumption is made throughout the rest of this
paper.

Let

k=1

l_S—gl(pk) = {Kl Yy k! ] il!,a,(x) 'ﬂ!k_b,(x)lp * congerges uniformly in n }

5], = sup YK @ - 0t < =,
) nok=1
L&
h = — t s = =
where ¥, (x) PP MCRRTIE S A

, .
[mo]p = {r 1 Yy Ern (t=L)| =0 uniformly in n for some L}

n k+1m0

[ /](p) {‘ Z 4 "-lldb,(X) -dy_, ’n(x)r" converges uniformly in n}

k=1
iy - {"’ YK )y, < w}

k
where d, =d, (x) = Z_JIIE t (%)
m=0
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o

If p, = p (constant) for all k, then we write [So]p and [S] for

I4

— -

0](p) and [o](p)’ respectively, if p, = 1 we write [Sd] and [Sa] for
k k

[s

[ 0](pk) and [SU](pk)’

respectively. Moreover a(n) = n+1 we write for [S'/](p)
k,

and [jf](pk) [3], respectively.

Theorem 1

Let p = (p,) be bounded away from 0. Then [Sc'](p) is a complete linear
t,

topological space paranormed by

© /M
k@) = sup | YK ) —w,,_.A,(x)r't) (1.1)
n \k=1

where M = max (1,suppy). The space [Ea](p) is paranormed by (1.1).

k

Proof

We have
ke <K(X,f ), (1.2)

Where K = max (1,2""). Since,

At < max (LIA]), (1.3)

we have E kp"_lltp,m(lx+ BY) -V, J(Ax+ py)l"'f
k=1

<KK, ; kp,,-l, ll!h(x) . 1.,,(x)|pk
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+K-K2k}_:l K 9,00 = W00 (1.4)

—> 0

e os-27) = X,

as, s,t = oo for each fixed n. Hence, (x°) is a Cauchy sequence in C.
Since C is complete, there exists x € C such that x* - x coordinatewise as s =
oo It follows from (1.5) that given ¢ > 0, there exists s, such that
oM

(Z kpl_ll‘l"kn(xs—xt)_wk—l.n(xs ‘xt)lpk <€ (1.6)

k=1

for s,t > s,. Now making t—=co and then taking supremum with respect to n in

(1.6) we obtain
h(x®-x) < e,

Hence, x e[.S_‘o] is

for S > §,. This proves that x* - x and xe[.S_‘o] -
Pk

. (Pk)

complete.
By taking o(n) = n+1 in Theorem 1, we obtain the following result

which is valid for almost everywhere convergence corollary. The

spaces [glka and [.§l](pk) are complete linear topological spaces relative to the

paranormal defined by the function.

M

h(x) = sup | K|, () -d,_,
k=1

n

Theorem 2

If p is a constant and p = 1, then

5., <
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Proof

Suppose that xe[:S'-on. Hence there exists an integer M > 0 such that

y k”"l\vh(x)—\pk_l_"(x)r’ <1 (2.1
kExM
for each n it is enough to show that,
M-1
¥ Y, -y, &P = O(1), Vn. 2.2)
E=1
(2.1) implies that, for k = M
1
I‘pb,(x)"pk_l_,,(x)lp < -k';_—l <
and so this implies
||ph(x)—|pk_l‘n(x)l < 1,(k2M,Vn) 2.3)
since Yoty = (kD (Vg = Weopn) ~C-D(Wpog n =W 2.0) 2.4)

it follows from (2.3) that, for any fixed k>M ’lx"f)l = O(1)Vn, and this implies

that |x;| is bounded. Hence,

| S -
A R e 21: el

3 1 .
= 0(1) WD) 2 xOf,., O(1),Yk and n.

It follows from this that (2.2) holds and this completes the proof.

Lemma

w | ~limx = L if and only if
[ o]p
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(i) w,-limx = L
and (ii) —;-E 165 -L) U (x-LP = O)
k=1

as m - oo, uniformly in n.

Proof
Clearly [wu]p-limx = L for p = 1, Holder’s inequality of p > 1

1 m
<= t, (x-L)
mglb' I

1 m
Yt (x-L
- kz; wx~L)

m
< Y [t x-DP mi
m -

that w, - lim x = L for p > 1. This proves (i). Again forp = 1
m

1 lp
( E |tbl(x ~L) —\ph(x—L)]P]

mgq

p

m lp m
1 1
— 2 t, (x-L)P| + —2 -L)}P
: (’”H [inlx=1) J (’”k=1 ¥ =Dl )

= El +Ez (say)

Now, by hypothesis L, = 0(1) as m - oo, uniformly in n. Also, (i) gives us | ¥,
(x-L)| = 0 as k> oo, uniformly in n, and hence I, = (1) as m - oo uniformly
in n.

This proves (ii) since

m lp m
(l Y = —L)IP) < (l Y [t L) - Wl ~L)|P)
m g , mi-1

lp

1 m lp
+ (—E 'qybl(x—L)lp )
m -1 .
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the converse part follows immediately.

Theorem 3

[ o]pc[wo]p and if x € [wo]p , then

[w]—limx=w—limx=L
UP o

Proof

Suppose that x‘G[.S—'nL . Hence, if we write

V’M(X) = E K _1|¢Im(x) - Vk-l.n(x),p

k=m

then V,,, () is finite for eachm = 1 and V,,, (x) = 0 as m - oo uniformly in

n.
Since every absolutely o-convergent sequence is o-convergent, we have w, - lim
x = L, (say).

Hence, to prove the theorem, it is enough to show, (by use of the
Lemma) that

1 m
— t(xX)-t, (x)P-0 asm—> o
m kz=1: l kn In Ip
uniformly in n.-Since for k = 1
() = V) = k() =y )
We have

—“E ltb:(x) ll’b,(x)lp = ‘—E kplll’b,(x) Yt ,,(x)lp

m-

EI-

Y k P(Via®) = Vi1 @) ke
k=1
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PO LACRANE)

k=1

V0 s
- a3 (Ve a0) = 0D

k=1

as m - oo uniformly in n. This completes the proof.
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CONVERGENCE THEOREMS FOR SOME VARIANTS OF
NEWTON’S METHOD OF ORDER GREATER THAN TWO
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ABSTRACT: Using the majorant method we find sufficient conditions for
the convergence of a Chebysheff-Halley-type method in a banach space. Two
different approaches are used. The first one utilizes divided differences of order
one, whereas the second employs Fréchet-derivatives of order one and two. Our
results improve all our previous results as well as those of others.

AMS (MOS) Subject Classification: 47H17, 65H10, 65J15, 49D15.
Key Words and Phrases: Banach space, Chebysheff-Halley method,
majorant method, Fréchet-derivative, divided difference.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a
locally unique solution x* of the nonlinear equation.

Fx) =0 ¢y
in a Banach space E, where F is a nonlinear operator defined on some convex

subset D of E with values in E.
We recently introduced the Chebysheff-Halley-type method given

by nEm s ) @
L= ~Pot] " (uba] (o)) M, =(- L) )
Xoo1 =Yn ~[FaX) MA[x,,) - [Kak]) (9 - %) #20,%,€D @)

to find a solution x~ of equation (1) [5], [6], [8].
Here [x,y] denotes a divided difference of order one which is an operator

in L(E,E) satisfying
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[xy] (xy) = F(x) - Fy)  and  F'(x) = [x,x] forallx € D, (5)

[5], [9], [17], where F' denotes the Fréchet-derivative of F.

Using the majorant method and the standard Newton-Kantorovich-type
hypotheses we showed that the iteration {x,} (n = 0) converges with order
eventually three [5]. These results constitute major improvements over all
previous ones. °

In this study we improve on these results even further by assuming that
the foillowing Zabrejko-Nguen-type conditions are satisfied

(o o] = Lot <Ayt i) + Aotz o) | ©)

for al x € U (3, t,) ={x € E ||x-xl st},y € Uk, 1), ||
< R-t, |m] < R-t,, 1, t, = 0 for some fixed R > 0 such that U(x,, R) S
D [1]. The functions A4,, A, are continuous in both variables, and such that if one
of the variables is fixed then 4, and A4, are increasing functions of the other on
[0, R] with A,(0,0) = A,0,0).

Here we provide an error analysis as well as error bounds on the
distances ||x,., - x,| and |x, - x"|| for all n = 0. We also show how to choose
the functions 4, and A,. Special choices of A, and A, will led to all the previous
results [5], [6], [9], [14], [15], [17], [20].

In Section 3 of our study we present a different approach, and method
(Chebysheff-Halley-Werner) for solving equation (1) that uses first and second
Fréchet-derivatives only instead of first Fréchet-derivatives and divided
differences of order one.

The computational cost slightly increases this way but many researchers
find this approach more useful because it avoids mixing Fréchet derivatives and
divided differences. Another reason why we present this second method is
because we can compare our results (favorably) with earlier ones [5], [6], [12],
[14], [15], [17], [18], [20], [21].

2. CONVERGENCE ANALYSIS FOR THE CHEBYSHEFF-HALLEY
METHOD

We will need to introduce the constants
th=0,5 = ")’o - Xo " , B = “ F'(xo)"! " (7
for some fixed x, € D,

=1- 6(2A1(R1,0) + Ay(R,,0) + AR, R)), ) 8)
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a, =1-8(4 (R,0) +4,R0) )

for some fixed R, and R with 0 < R, < R, the sequences for
alln =0 '

a,=1-B(A, +4;)(t,.0) | (10)
by, =P f At nhOd, QD
Cpur =B(1=B,) " | )
4, [, (4, )5 |t )
e,=1-PB(4, +A2)(|lxn =% 0), | (14)

By = f (A (5,)dt+ Ay + A5 t,) s =S5)

w2, [(A A (18

+q"(f (.t dt+f *Crta) 4 (ts)dr) | (15)

B(A(t,/0) *Ay(s5,,S,)) ’
1-B[24,(t,,0) +A,(s,,S,) +A,(t,,0)]

1-B(A,(t,,0) *4,(t,,0)) a16)
1-B[24(t,,0) +4,(s,,5,) +4y(t,,0)]

P, =

q, =

5.m A O Al ol
TP b ) Aol P Al O]

7, ~ P . (8)
1~ B[24,(Jx, %] 0) + Ag(Jxn ~Xo| + [%nYals[Ya o]} * Ax{}%n %o} 0)]

r, = 1 , (19)
1-B[24,t,,0) +Ay(s,.5,)+Ay(t,.0)]
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n+l

Ly =8, + rE'(Al(tn,O)+A2(sn,t"))(s"—tn),

and the functions
T() =5, + Z?T) (! A ys) endes @, AT +p0)
[ 4,4 @ndt +q(r) ( [/ 4,@rde fS:Az(t,r)dt)

+O) (A, 0) + A, (),

a(r) = 1-B(A,(r.0) +4)(r,0)),

A0 +A0)
pr) =
1- BRA0) +Ay(r,n) + Ay(r0)
i 1
and g = 1-BRAG0) +Ar) A 0)) [0.8]

We can now state and prove the main result:

Theorem 1

(20)

@1)

(22)

(23)

(24)

(25)

Let F : D € E - E be a nonlinear operator whose divided difference

[.,.] satisfies condition (6) on D. More assume:

(i) there exists a minimum non-negative number R, such that

T(R) < R;;

(26)

(ii) The numbers, R, R, with R, < R are such that the constants u, a,

given by (8) and (9) respectively are positive, and

U@, Ry S D withR, <R.

@7
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Then (a) The scalar sequence {t,} (n = 0) generated by (15)-(16) is
monotonically increasing and bounded above by its limit, which is-
number R;
(b) the sequence {x,} (n = 0) generated by (2)-(3) is well defined,
remains in U(x,, R)) for all n = 0, and converges to a solution x" of
the equation F(x) = 0, which is unique in U(x, R).
Moreover the following estimates are true for all n = 0

1¥n = %af 555 2,5 (28)
(A EUNRE A | (29)
“x‘ —x”usR1 -1, (30)
[x* -s,| <R, -5, 31)
1ESn )] st S P 32)
[ =27 <c k. <R, -t (33)

and - sx" 2] + (1 -a,) (34)
— 1 '

where hooy =fo (A A ([P %o * ¥%nes Yals§¥n %ol )[*ns1 ~Yal 42

A ) (oo [Yaxal o] Fner =i
- 7l :
+2, [ (A As) (15 %o * a2l a ol %a]lt
1 - rl
P Al 01, [y Aol a5l

It M L B A N A e

Proof

(a) By (7), (15),(20),(21), and the monotonicity of the functions A, and
A,, we deduce that the sequence {t,} (n = 0) is monotonically increasing and
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nonnegative. Using (7), (15), (20) and (21) (for n = 0) wecan get f, < 59 < ¢,
< 5, < R,. Letus assume that ¢, < 5, < t,,, < 5,,, < R, fork = 0,1,2,...,n.
Then by (20) and (21) we can have in turn

t st o+ b {[ ?"(AﬁAz)(t,sk)dH(Al+A2)(sk,tk)(tk+l—sk)}

k+2 (2.} a(Rl)

{+ q; ( -/; ‘:k A, (t, tk)dt-{- : 1) Az(t ,Sk)dt) + P, j; :k ( A, +A2) (t’tk) dt}

Br,
alR,)

s 50 s At YRR 175

(At 150) + AgfSperstinr)) (Sis ~ tkfl)

{+q(Rl)(fJ‘Al(t,Rl)'?‘*f;'Az(t’Rl)d‘)*P(Rl)fJ’("l*"2)(‘ ')"‘}

. RaR)
oRy)

Hence, the scalar sequence {t,} (n = 0) is bounded above by R,. By hypothesis
(26) R, is the minimum nonnegative zero of the equation 7{r) - r = 0 in [O,R|]
and from the above R, = lim,.,, ¢,.

(b) Using condition (7), (20) and (21) we get x,, ¥, € U (x,,R;) and that
estimates (28) and (29) are true for n = 0. We first show that [x, x,] is
invertible for all n = 1. Let us assume that (28) and (29) are true for &k =
0,1,2,...,n - 1. Then we will obtain in turn

e %ol <[esr Yol * Yool <1 =Yl * i ~Yol ~[Po=%o]

(Ay(R0.0) +AyRy R ))is¢.; ~t,) S TR <R, by (26).

S o < (B mS) *(S50) *So < By < Ry
and et %ol <[Vees Yol *[Po%ol [¥eet e |+ Kesr Vil * [Pl * Yool

$ e S (S Tean) (G 7SE) H(SkS0) *S0 S S < Ry
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That is, x,, y, € U (xy, R)) foralln = 0.
Using hypothesis (6) we can obtain

FE o) JE ) = F o) < B e %] = [0 %o]|
BlA (o O)+Axflx o[ :0)) < B{A;+4,)(t.0)

< B(A1+A2)(Rl,0)<l by conditiona > 0

It now follows the Banach lemma on invertible operators [9], [13] that
[x, x,] is invertible, and

s '] s £ foratn=o0. 35)
n

Using (2), (3) and (4) we can easily obtain the approximation

Fit) = [y [P0 4501 2) =) a2,
HF ) F e V) Mo [ (e 13, 050}
+M,F'(x [x",yn] %)) f [F’ (XY %,) [x",y"]](y"—xn)dt.

Then, by using the estimates
M- JF ) sy sl < s
|M.] < P,
conditions (6), (35) and (28), we can obtain through the triangle inequality
[Pl [y Aol s 2ol ~0)
A A N

+ LA (%] # a5 %))
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+A2(’|x"—x0" +"y" _xnn'"xn —xOH)] "xml —yn"

- 1

+ B [ A A ([T xR Fo )P i
- 1

+, [ A (o] 5o o))

+ Ao+ D5, =, [ %o Pa o]t

= By s [ (At Ay) (S, {ty15,)s8,)s (fry =So)

* (At Ay)(sust) b 52) 2y [ (A A E01,)

+qn[ [T A4 ti5, 1) 1) +Ar (5,410, 1,).5,) (sn—tn)]]dt

= h

n+1

From approximations (2) and (36) we get

Pt =Zneal < [ ) [- 108 0)|

hml t

= n+l ‘nel?

<

S

n+1

which shows (28) for all n = 0.
Using hypotheses (6) and (35) we can obtain from (4)

o=yl <P )| P k] = o~ 5]

S @ufAs (%ol 0) * Aa(n=o] P =a o5l [Py

< rﬁ[A1 (1320 s, £ )](5 ) = Epr S0
n

which shows (29) for all n = 0.
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It now follows from estimates (28) and (29) that the sequence {x,} (n =
0) is Cauchy in a Banach space E and as such it converges to some x° € U (x,,

R)) with F(x") = 0 (by (2)).
To show uniqueness, we assume that there exists another solution y* of
equation (1) in U (x;, R). Then from hypothesis (6), we get
o) Ty 1 05 %)) < By (%] 0) + Ay * o] . 0))
< ﬁ(Al(Rl,O) +A2(R,O))< 1, (sincea, > 0)

from which it follows that the linear operator [x", y°] is invertible. From this fact,
(4) and the approximation

Flx*)~F@y*)=[x",y*](x"~y")

we obtain x” = y".
Estimates (30) and (31) follow easily from estimates (28) and (29),

respectively.
Using the triangle inequality, and the approximations

%01 =% =B F (5.0
B, =f:[x'+t(xn+1—x'),x'+t(xn+1—x')]dt,
R A
( fo*[xnﬂ(x*-xn),x,,ﬂ(x'-x,,)]-[x,,,xn])(x'-xn)dt,

B-l

n+l

] )

<[l14,(a-0

+A2((1 —t)nx'-xou )t —xOH,O)]dt
< [[[4,(1-O R +R, ,0) + A, (1-O R, +¢R,,0) |t
=A1(R1,0)+A2(R1,0)<1 (by hypothesis a > 0),

we can immediately obtain estimates (33) and 34).
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That completes the proof of the theorem.

Remark 1

(a) Let us denote the right-hand side of (6) by

U LT AR 1OV ALY

Then we can choose

As(t1+lh1"’t1,tz+ﬁh2||’t2) = ,Eu(,oil)‘gw(,o " "[x+h1,y+h2]—[x,y]"
[Pl s R-2p . B2]| s R -2

Estimate (6) will now hold for the above choice of the function 4,.
(b) Let us assume that instead of condition (6) the following is true:

Il[xo,xo]" (L)1 - [2:2)] <q, (D x-2 [ + @, () y~zl
for allx, y € U (x, R), and gq,, g, be two nondecreasing functions on [0,R] with
q:(0) = ¢,(0) = 0. For example we can choose.

ql(’.) = qz(r) = sup. | [x,)’]‘[z,Z]“
xyzeUz.R) 1x-2] + ly~z|

For some applications of these results to the solution of nonlinear integral
equations we refer the reader to [9] and the references there.

Theorem 2
~ Let f: U(x,, R) = E be a nonlinear operator satisfying
If ) ~f@Dl sk @lx-z] + kynly-2l, @7
Jorallx, y, z € U(xy, r), r < R, and for some nondecreasing function k, and
k, on [O,R). Then
Wxhysy+hy)=Axn] < vifthu]) - vift) + va(ta* |af) - va(ta)- (38)
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forall x € U@, 1),y € Ut t), ] = R-1, |l < R-8,

v = fo 'kl(t)dt and v,(r)= fo '@2(t)dt.
Proof

Letx € U(x, ty), y € U, t), "hll < R-t and "h2u < R,. Using
(37) for m € N, we obtain

||f(X+h1 ’)’+h2) _f(x,)’)u < E Ilf(x+m_1jh1 ,)’+m_1jh2)
j=1

~Flrm™ G-y, y+m G-D k)1

m m

<3 ke e a3 bl el )

<vi{t i) vi(ts) vofta o) - vats) as m > oo,

by the monotonicity of k;, k, and the definition of the Riemann integral.
Therefore another choice for the functions A, and A4, is given by

Aty | 1) ‘l+llhllql(t)dt, Ayt k| 1y) = f,:z+'lhzn¢12(t)dt, (39)

n

Moreover if we let g,(r) = gy(r) = g for some g > 0 and for all r € [0,R].
Then our results can be reduced to the ones in [5], which have improved the ones
in [5]-[8]. Furthermore, we can have

Aft ) < a] and Ay +Jha)t) < gt

which means that our estimates on the distances "y" —xnu and "xn -x‘l can

easily be proved to be better than the ones in [14], [15], [17], [20] (and
references there) for all n > 0. These ideas can also be used for Steffensen’s
method [9].
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Remark 2

(c) Estimates (33) and (34) can sometimes be solved explicitly
for "x'—xnl for all n = 0. For example, choose ¢,(r) = q,(r) = q and 4, and
A, as in (39).

3. CONVERGENCE ANALYSIS FOR THE CHEBYSHEFF-HALLEY-
WERNER METHOD

Suppose that the nonlinear operator F defined on some convex subset D
to E, containing U(xy,R), with values in E,, is twice Fréchet-differentiable at
every interior point of U(x,,R) and satisfies the conditions

|F/(x+h) - F'x)| < A(r, 1R1), (40)
IF"x)) < M, @1

and |F/(x+h) - F"x)| < B(r,|k]) forallx € U (x, R),
0<r<RO<|h| <R-r (40)

Here A4, B are nonnegative and continuous functions of two variables such that

if one of the variables is fixed, then they are nondecreasing functions of the other

dA(0,0)
dt

on the interval [0,R]. Moreover we assume that is positive, continuous

and nondecreasing on [0,R - r], with A(0,0) = 0.

Note that by setting for all , | 2], A(r, | 2]}) = c|#] for some ¢ > 0,
we obtain the usual Lipschitz condition on F' (see [4], [9]), whereas for
A(r, | 1]]) = e(r) | 2]} we obtain some generalized conditions considered also in
[9], but for Newton’s method. Conditions of the form (1) we also considered in
[22], for Newton’s method.

We denotg, by F'(x,) and F"(x,) the first and second Fréchet-derivatives
of F evaluated at x = x,. Note that F'(x,) € L(E,, E,) is a linear operator,
whereas F“(x,) € L(E,, E,)) is a bilinear operator for all n = 0, [2], [3].

Let x, € E, be arbitrary and define the Chebysheff-Halley-Werner

method on E, for all n = 0 by
Yo = %n —F/(xn)—lF(xn)’ (43)
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Hx,.y) = - Flx)" F'ix)),-x,) (44)

n =

and X, = yn—lF’(xn)'l

-1
5 1—§H(xn,yn)] F'lx )0, %, (45)

Halley’s method has a very long history. One can refer to [5], [6], [9], [12],
[14], [15], [17], [20], [21] and the references there for some background.

In this study we are concerned with the problem of approximating a
locally unique zero x* of the equation

Fix) = 0.

Using the majorant theory, we will show that under certain Newton-
Kantorovich assumptions on the part (F,x,) the Halley-Werner method converges
to a locally unique zero x™ of equation (7). We also provide upper bounds on the

distances ||x" —x"ﬂ and "yn—x‘u forall n = 0.

Finally, we show that our results improve earlier ones [11]-[22].
It is convenient to introduce the constants

n 2 o=%).B 2 [Flxg) . 1 = 0, (46)
szn,tzsg=—m‘i, @7
0 ! 2-BMn _

the scalar iterations for all n = 0
Sn+i = tn+l +D(tn+l)P(tn’sn) (48)

1
tn+2 = sn+1 +ED(tn+l)C(tn+1)M(sn+1'_tn+1)2’ (49)
= B 1
where D(tn) = — ([t (50)

1-pA4(0.)’ b - 1-MJ2ﬂD(t")(s,,—t,,)

and  Pls) = ["AS, 0t A5, 1),
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. %C(tn)D(tn)M(sn 1) = [ AL 1)t
. '—;lC(t") ) j"B(tn,t)dt(sn-tn)z. (52)

Furthermore, we define the function T on [0,R] by

() =t, + D) [ fo 'A(r,t)dt+A(r,r)r+—;-C(r)D(r)Mr fo ’A(r,t)dt]

en . lalr?
5 C0) [o B(rpd + 2T COOM, (52)
1
where C() = ——m———— (53)
1-Mlal py ‘

We can now prove the main result of this section:

Theorem 3

Let F: D C E, - E, be a nonlinear operator defined on some convex
subset D of a Banach space E, with values in a Banach space E,. Assume:

a) F is twice Fréchet-differentiable on U(x,,R} < D for some x, ¢
d, R = 0, and satisfies conditions (40)-(42);
(b) the inverse of the linear operator F’(x,) exists;

(©) there exists a minimum nonnegative number R,, with
T(R)<R,, ' (54)
R <R; : (55)
(d the following estimates are also true:
BA(O,R)<1, (56)
R
Mla| PR 7)

2 1-BAQO.R)
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B
R-F, f A0, dt<1 |
if R # R, or BAO,R) < 1 if R = R, (58)
Then :
@) the saclar sequence {t,} (n=0) defined by (48)-(49) is
monotonically increasing and bounded above by its limit R, for
alln = 0;
(ii) the Chebysheff-Halley-Werner method {x,} (n = 0) generated by
(43)-(45) is well defined, remains in U (x,, R)) for alln = 0 and
converges to a unique zero X~ of equation F(x) = 0 in U(x,R).
Moreover the following estimates are true:

"xn —x‘l <R, -t (59)
and |y, -x*|sR;-s, foralln=o0. (60)

Proof

(i) We will show that sequence {¢,} (n = 0) is monotonically increasing
and bounded above by R, and as such it converges to R, (by (c) and (54). From
(46)-(49) and (55) t, < 5y < 5; < f,. By assuming ¢, < 5, < t,,,, k=0,1,2,...,
n we obtain t,,, < 5., < &, from (48), (49) and the hypotheses on A and B.
Hence, {t,} (n = 0) is monotonically increasing. From (46) and (55) ¢, < t; <
R,, and from (49) forn = 0, t, < T(R, < R,. Let us assume that ¢, < R, for
k = 0,1,2,...,n+1. Then from (47)-(49) we get in turn

t

n+2’

=lpay +D(tn+l) [P(t’l ’sn) * % C(tﬂ*l)M(s’”l—tnd)z}

<t

n+l n n+l

+D(Rl)[P(t 5+ % Clty ) M(s,., -tm)2]

<.. st+D

Xo:f"'As f)de+A(R, R)]

[(Zo: (e —s,.)) +% C[R)D(R)MR, + %D(Rl)Rlz
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[(E f ‘B, tdt) UC( R)M (g(s”l » )}ST(R)SRI, (by (54)).

Hence, {t,} (n = 0) is bounded above by R,. Moreover t, < s, < ¢,,, < R, for
allk = 0.

That completes the proof of part (i).

(ii) We will show that if

Pa-%,|<5, -1, (20), (61)

IFEN < Plty155,1) (21), (62)

IF%) | < Dltyr) (r2-1), (63
and % IH(x,.3,)] < % MD(t,)(s,~1)<1, (64)
then %,y =Yy Stpe1 =5n0 (65)

[F &l < Pltnss,) | (66)
and Dot ~%net| $Spey ~tay foralln = 0.

From (41), (45), (62) and (63) we obtain

e )

1 _ 1
"xrul _yn" < 5 "Fl(xn) (1 - 5 H(xn ’yn))
pM

1
Sim(o’_tn)c(tn)})(tn—l’sn l) fre1 ~5a

Hence, (60) is true.
From (40), (45), (46), (51), (61)-(63) and the approximation
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Flty) = [ 01 =)~ Flp] s 3.}
Pl ) S -He ] Pl
() 0n =y [ 100 2) - Fl )
|- Lae)| [Pt Plea-op, sp. 6

we obtain by using the triangle inequality in turn

1F )] < f “Afs, tdt+A(t Sp =t trer =S,)

, ng Clt)D(t M5, -1,) [ ’"A(i,,,t)d:

o5 ) [ Blt)ls, =1, = Pl5)

We have also used the estimates

Faer5ol <t =3l * oo}

S"xn+l_yn"+"yn—yol +")’0"on' (69) .
e S (b =Sp) +(S,50) +5p =ty SRy, '

1Yt =20 <[Par o[ + o]
and - o PARRC Y g AR R Y e I (70)

S er S(Spat Tpar) * (Ees =Sn) +(Sn o) $Spa SRy

n+l “p+l

Hence, (66) is true.
From (43), (61) and (66)

PraZaal < PF Q) | - )] S Dltass) PltnsS) =501 Hr
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- Hence, (67) is also true..
Moreover, from (40), (46), (56), (69), and the estimate

[ |1 Pl <B AL < BAQR) <1,

is follows from the Banach lemma on invertible operators [13] that F’(x,)" exists
and

TR E |7 ) < Dft,

i G AR
for all n = 1. Furthermore, from (41), (57), (61), (63), and the estimate
lal s s |a -
o LN ERCT LR VPR N R

< ﬁzl“—' Dit)(s,-1,) < %ﬂ D[RR, <1,

n

1t follows that I- £ H (x,,,y ) is invertible, and
2

< C(tn) foralln = 0.

u(l—gll(xn,yn)—l)

Hence, the iterates generated by (43)-(45) are well defined for all n =
0. Also, by (65), (67) and (61)

Ixsi - Xl < tosy -2, and |ly,e; - .| < Spay -5, foralln =0 (71)

It now follows from (71) and (i) that the sequence {x,} (» = 0) is Cauchy in a
Banach space, and as such it converges to some x” € U (x,, R;), which by taking
the limit as n - oo in (43) becomes a zero of F, since F(x") = 0. Moreover, by
(69) and (70) x,, y, € U (x,, R,) for all n = 0. The estimates (59) and (60) now
follow from (71).

Finally to show uniqueness, we assume there exists another zero y~ of
equation (1) in U(xy,R). Then from (40) and (63), we obtain :

[F'ap . [ 1F e e -y - Flapiar
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1 * *
s [ AQ-Dley -y +tlr, ~x"Ddi<1, by (19).

It now follows from the above inequalityv that the linear operator

fol F'(y*+t(x*-y*))dt is invertible. From this fact, and the approximation
E 1 x x * * x
F(e')-FO") - [ Flo™ (" -y N " -y)dr

it follows that x” = y".
That completes the proof of the theorem.

Remark 3

(a) From the estimates
"X" _y0" = "xn _yn" + "yn -y0" = (tn _sn) + (sn _SO) = tn -n = Rl -n

and "yn+l - y()" = "yn+l - Xnyy " + uxn+l - ynu + "yn - yO"
< (sn+l - tn+l) + (tn+l - S") (sn - SO)
S SN =R -7

it follows that x,, y, € U(y,, R, - n) for all n < 0. Note also that R, is the
unique nonnegative zero of 7(r) - r = 0 in [0,R,] (by (54)).

(b) We can use the Chebysheff-Halley-Werner method to approximate
nonlinear equations with nondifferentiable operators. Indeed, consider the
equation

Fi(x) = 0, (72)
where F(x) = F(x) + Q(x),

with F as before and Q satisfying an estimate of the form
loa+h) - QW | < E(r, |h]). x € UxR), 0 < r <R, < || <R-r

where F is a nonnegative and continuous function of two variables such that if
one of the variables is fixed then E is a non-decreasing function of the other on
the interval [O,R]. Note that the differentiability of Q is not assumed here.
Replace F in (41) by F, and leave the Fréchet-derivatives as they are. Define the
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sequences {t_n} and {s“n} (n = 0) as the corresponding {¢,} and {s,} (n = 0)

given (48) and (49) respectively. The change will be an extra term of the form
E(t,, s, - t,) added in the definition of P(¢,, s,). Define T, by T in (52) the insert
inside the bracket the term E(r,r). Then following the proof of the above theorem
step by step we can show a similar theorem with identical hypotheses and
conclusions, but holding for equation (72). (See, also [4], [9], [22].)

(c) Following the proof of the theorem, we can show the result (see also

[9D):
Theorem 4

Let F: D C E, » E,, E,, E, be real Banach spaces, and D be an open
convex domain. Assume that F has second order continuous Fréchet-derivatives
on D and that the following conditions are satisfied:

IFray - F ol < a [yl [F @
<M |F'@-F o] <NJx-yl,
forallx,y € D

IF' o' < 8, lyo -5l <,

[(2+a)M2+ 2N 2
(2-9) 32-a)p

b

485 if0<acx 1,}

" h=K n<d
bn {.5 ifl<a<2

and U(yo,rl -n)cD

Moreover, we define

g(t)=%Kt2——1—t+—T-l, rl=1_“______ VI'Zhn, and 0 = _1_’@,
g B h 1+/1-2h

where r, is the smallest zero of the equation g(t) = 0. Then the Chebysheff-
Halley-Werner method (43)-(45) is convergent. Also x,, y, € U (yo, Iy - 1), for
all n € N,. The limit x" is the unique zero of the equation F(x) = 0 in U (x,,
phrn<r <nifa=K,(orM=Kyandr, =nifa < K(orM < K).
Moreover, we have the following error estimates and optimal error
constants: '
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"xn -x‘" = r _tnl’ “yn -x‘“ = rnI -5y,

2
and r, - tnl = (1 ees)nn 63"-'1 foralln = 0,

1_1_3(‘:) 1_ TR S TRV B
where s, —th ) =0, h(t,,,s,,)— g (t,,)g (t,,)(s,, t,,)

1 ‘)2 g(t,l,) l ”( ’l') foralln = 0.

(d) Several sufficient conditions can be given to show for example that under
the hypoteses of Theorems 3 and 4

1_1
s,<t, s s,-t, foralln = 0.

One such condition can be

D) [ fo "A(r,0dt + A(r,Dr + 1;—100) D) Mr fo rA(r,t)dt] <8, -1,

80
g'(n

for all r € [0, min {r,,.R;}].

The details are left to the motivated reader.

() By Theorems 3 and 4, we conclude that under the order of
convergence for the Chebysheff-Halley-Werner method is three, whereas for
Newton's method it is only two [4], [13].

() Similar theorems can be proved if | k] in (40) and (42) is replaced
by a Holder condition of the form ||h|| ? for some p € [0,1], [9]. :

(g) The function A can be chosen as

ARD) = sup  |F(x+h)-Flx)|,
xYeU(xq7)
tkI<R-r

or  AGIkD = [ qae
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where ¢ is a nondecreasing function on the interval [0,R] satisfying
IF'@) - Fo)l < q0) [x-»l

forallx, y € U (x,, 7).
Similarly, the function B can be given by

B(r,Jhl) = sup  |Fl(x+h)-Fl(x)].
x,yeU(xg,r) .
1A IsR-r

Other choices are to be equal to the usual Lipschitz or Ptak-like
conditions usually imposed on F (see, e.g. [4], [9], [22]). Other choices are also

possible.
One can refer to [9] for some possible applications of these ideas to the

solution of integral equations.

(h) Finally, if the right-hand sides of conditions (40) and (42) change to
A(r,r+ | 1], and B(r,r+ || 2|)) a new theorem similar to Theorem 3 can then
follow immediately. Remarks similar to (a)-(g) above for the new condition can
then follow also.

(i) Using the estimate

1F@) = 1F'@-Faoll + IFell < BR,0) + |F'e)l = M,
we see that hypotheses (41) can be replaced by the weaker one, given by

|Fref < .

() The Lipschitz condition (42) can be dropped, but the order of

convergence will be slower (see, also [5], [9]).
4. APPLICATIONS

. In this section we will give an example for Theorem 4 when a = 1

(similarly we can work for Theorem 3). We first note that by eliminating
¥, (n = 0) from approximations (43)-(45) we can obtain the method of tangent
hyperbolas (or Chebysheff-Halley) which has been extensively studied in [1], [5],
[61, 9], (121, [14], [15], [17], (18], [20], [21]. In all but our references it is
assumed that N > 0, which means that their results cannot apply to solve
quadratic operator equations of the form

P(x) = B(x,x) + L(x) + z, (73)
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where B, L are bounded quadratic and linear operators respectively with z fixed
in E,. We then have that P'(x) = 2B(x) + L and P"(x) = 2Q. Hence we get
M =2 |B| and N = 0. Integral equations that can be formulated in the form
P(x) = 0 have very important applications in radiative transfer [2], [3], [9], [10].

As a specific example, let us consider the solution of quadratic integral
equations of the form

x(s) = ¥ +As(9) [ als.)x®de 4

in the space E;, = (]0,1] of all functions continuous on the interval [0,1], with
norm

Izl = max |x(s)|.
O<s<1

Here we assume that X is a real number called the “albedo” for scattering
and the kernel g(s,?) is a continuous function of two variables s, ¢z with 0 < s,¢
< 1 and satisfying

(1) 0<q(s,HD=<10<s51t<1,4q(0,0 =1;
() g6 D+qts)=1,0<s1<1.

The function y(s) is a given continuous function defined on [0,1], and
finally x(s) is the unknown function sought in [0,1]. .

Equations of this type are closely related with the work of S.
Chandrasekhar [10], (Nobel prize of physics 1983), and arise in the theories of
radiative transfer, neutron transport and in the kinetic theory of gases, [2], [3],
[9], [10]. .

There exists an extensive literature on equations like (74) under various
assumptions on the kernel g(s,f) and A is a real or complex number. One can
refer to the recent work of [2], [3], [9] and the references there. Here we
demonstrate that the theorem via the iterative procedure (43)-(45) provides
existence results for (74).

For simplicity.(without loss of generality) we will assume that

g(sf) = = forall0 < s,£ < 1, g(0,0) = 1
S+t

Note that q(s,i) so defined satisfies (i) and (ii) above.
Let us now choose A = .25, y(s) = 1 for all s € [0,1]; and define the
operator P on E, by ‘



40 ~ loannis K. Argyros

P(x) = Ax(s) [0 ! ;i—t X dt-x(s) +1.

Note that every zero of the equation P(x) = 0 satisfies the equation (74).
Set xi(s) = 1, use the definition of the first and second Fréchet-
derivatives of the operator P to obtain using and the theorem,

N=0,a=M=2|A|maxlf dtlZ|A|ln2 34657359
0cs<1f 0 S+t

K = M/3 = 600283066,

B = | Pl1)CD| = 1.53039421,

n > [PI)CPPQA)|= pAln2 = 265197107,
h = .243628554<.5

r, = 3090766, r, = 1.867984353

and @ = .165459951.

(For detailed computations, see also [2], [8] and [10].)

Therefore according to Theorem 4 equation (74) has a solution x and the
two-point method (43)-(45) converges to x”. Note that the results obtained in [1],
[12], [14], [15], [17], [18], [20], [21] cannot apply here, since N = 0. For
Theorem 3 we can take A(r,f) = «f and B(r,f) = 0 for all r € [0,R]. The
computational details for this case are left to the motivated reader.
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