vol 33(2000)

THE PUNJAB UNIVERSITY

JOULAL
or
VIR VA f 109

DEPARTMENT OF MATHEMATICS
UNIVERISTY OF THE PUNJAB

- LAHORE-54590

~ PAKISTAN




EDITORIAL BOARD

Chief Editor: G.M. Habibullah
Editor : Shoaib ud Din '
Managing Editor :©  Shahid S. Siddiqui
Assistant Editors : Shaban Ali Bhatti, S. M. Husnine, M. Sharif,
Rafiq ul Haq, Malik Zawwar Hussain,
Ghazala Akram, Nadeem Haider

Notice to Contributors

1. The Journal is meant for publication of research papers and review articles covering
state of the art in a particular area of mathematical science.

2. Manuscripts should be typewritten and in a form suitable for publication. As
far as possible, the use of complicated notations should be avoided. Figures, drawn on
separate sheets of white paper in Black Ink, should be suitable in size for inclusion in
the Journal.

3. The contributors are required to provide the disk containing the file of
the paper composed in Latex or Scientific Workplace.

4.  References should be given at the end of the paper and be referred to by numbers
in serial order on square brackets, e.g. {3]. Reference should be typed as follows:

Reference to Paper:

Hoo, C. S. BCl-algebra with conditions, Math. Japonica 32, No. 5 (1987) 749-756.
Reference to Book:

Mitchel, B.: Theory of categories, New York: Academic Press, 1965.

5.  Contributions and other correspondence should be addressed to Managing Editor,
Mathematics Department, Punjab University, Quaid-e-Azam Campus, Lahore-54590,
Pakistan.

6.  The decision to accept or reject a paper for publication in the Journal rests fully
with the Editorial Board.

7. Authors, whose papers will be published in the Journal, will be supplied 10 free
reprints of their papers and a copy of the issue containing their contributions.

8.  The Journal which is published annualy will be supplied free of cost in exchange
with other Journals of Mathematics.



Equivalent binary quadratic forms and the orbits ..... 133

Now PS — QR =1, forces that

_P2_<2aP-—bR)R=1

—c
2aPR b
IR =14+ P
c c
9 2 _ 2 _
p(ﬁ)R_(?_zE)m:sz Loy
c c \ c
R2 2 22
sl _pr_Bpp R
c? c c?
ctp? 2ac 2 c?
= PRt R

r=(a-%) + )

Hence, by known results 1.1 and 1.2 we have p =1 (mod 4).

REFERENCES

[1] Ivan Niven, Herbert S. Zuckerman, The theory of numbers, John Willey and
Sonc Inc (1991).

[2] Willaim Judson Leveque, Topics in number theory, Volume 1, Addision Wesley
Publishing Company, Inc. (1965).

[3] Q. Mushtaq, Modular group acting on real quadralic fields, Bull Austral Math
Soc 37 (1988), 303-309.

[4] Q. Mushtaq, Reduced Indefinite binary quadratic forms and orbits of the mod-
ular group, Radovi Mathematicki Volume 4 (1988) 331-336.

[5] Imrana Kausar, S. M. Ilusnine, A. Majeed, Behaviour of Ambiguous and
Totally Negative elements of Q*(\/n) under the action of the Modular Group,
Punjab University Journal of Mathematics, Vol. XXX (*1997), 11-34.



134 Imrana Kousar, S. M. Husnine & A. Majeed

[6] Imrana Kousar, S. M. Husnine, A. Majeed, Action of the group H =<
t,y: & =y3>=1> on the Quadratic Fields, Punjab University Journal of
Mathematics, Vol. XXX (1997), 47-66.

[7] Imrana Kousar, S. M. Husnine, A. Majeed, Classification of the elements of
Q*(\/p) and a partition of Q*(,/p) under the action of Modular Group PSL (2,
Z), Punjab University Journal of Mathematics, Vol. XXXI(1998).



Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. xxxiii(2000) pp. 135-144

FIXED POINT AND BEST APPROXIMATION THEOREMS FOR
*NONEXPANSIVE MAPS

_ A. R. Khan
Department of Mathematical Sciences
King Faud University of Petroleum and Minerals
Dhahran 31261
Saudi Arabia
E-mail: arahim@kfupm.edu.sa
(On leave from Bahauddin Zakariya University, Multan 60800, Pakistan

N. Hussain
Center for Advanced Studies in Pure and Applied Mathematics
Bahauddin Zakariya University
Multan 60800, Pakistan
E-mail: mnawab@yahoo.com
(Received 20 May, 2000)

In this paper we obtain fixed point and best approximation theorems for

*-nonexpansive multivalued maps defined on a closed convex (not necessarily
bounded) subset of a Banach space under certain boundary conditions. The re-
sults herein contain those of Husain and Tarafdar. Ilusain and Latif, Park, Singh

and Watson, Xu and others.

We gather together some definitions and facts which will be used in this paper.
Let C be a nonempty subset of a Banach space X. We denote by 2%, CB(X)
and K(X) the families of all nonempty, nonempty closed bounded and nonempty
compact subsets of X respectively. The Hausdorff metric on CB(X) induced by
the metrix d on X is defined as :
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sup d(a, B), supd(b, A)
acA be B

for A, B in CB(X), where d(a, B) = infycp d(a, b).

H(A,B) = ma.x{

A multivalued map T : C — C B(X) is called nonexpansive if H(Tz,Ty) < d(z,y)
for all z,y in C. A multivalued map T : C — 2% is said to be

(i) Weakly nonexpansive [4, 5] if given z € C and u, € Tz there is a u, € T, for
each y € C such that d(u.,u,) < d(z,y)

(ii) *-nonexpansive [5, 14] if for all z,y in C and u, € Tz with d(z,u,) = d(z,Tx)
there exists u, € Ty with d(y,u,) = d(y, T'y) such that d(u.,u,) < d(z,y).

(iii) Upper semicontinuous (usc) (lower semicontinuous (Isc)) if

T-Y(B)={z €C: TxN B # ¢} is closed (open) for each closed (open) subset
B of X, T is continuous if T' is both usc and Isc.

(iv) Weakly inward if Tz C dl (I.(z)) for all z € C, where the inward set I¢(z)
of C at z € X is defined by Ig(z) = {r+v(y — ) : y € C and v > 0} and ‘I’
means taking closure.

(v) Satisfy the Leray-Schauder conditions (in case C has nonempty interior) if
there is point z in interior of C such that for each y € Tx.

y—2#Mz~y) forall z€ BdC and A>1

For given T : C — 2X | we say that C is (K R)-bounded with respect to (w.r.t) T
(cf. [8] and [10]) if for some bounded set A C C the set

G(A) = NueaGla, Ta)

is either empty or bounded where G(a,Ta) = |J 1, G(a,y) and G(a,y)

={z2€C:|lz—a]| > ]|z—y||}. In what follows, we denote by Pr(z) the (possibly
empty) set {u, € Tz : d(z,u,) = d(z,T(z)} for each z € X (cf. [14]). A single
valued map f: C — X is said to be a selector of T if f(z) € Tz for each z € C.

Bd, and Int, denote the boundary and interior respectively.

The concept of *-nonexpansiveness is different from continuity and hence nonex-
pansiveness for multivalued mappings T : C — 2% as is clear from the following
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example.

Example Let X = R? be equipped with Euclidean norm and C = {(a,0) :
1/v2 <a <1} U {(0,0)}

Define T : C — 2X by

ifa#0

0,1), ’ _
= the line Segment [(0,1),(1,0)], ifa=0

ran={ ¢

The Pr(a,0) = {(0,1)} for all (a,0) # (0,0) in C and Pr(0,0) = {(1/2,1/2)}.
This clearly implies that T is *-nonexpansive. But T is not continuous multifunc-

tion (cf. [12], p.537).

Also note that u, = (1,0) € T(0,0). For any y = (a,0) € C with a #0, u, =
(0,1) such that |u, —u,| = |(1,0) = (0,1)] = /2 > |z — y|. Thus T is not weakly

nonexpansive.

A particular form of Theorem 4 due to Park [9] stated below will be needed (see
also Theorem A[10]).

Theorem A Let X be a uniformly convex Banach space, C a nonempty closed
convex subset of X and f : C — X a nonexpansive map such that C is (KR)
-bounded. Suppose that one of the following holds:

(a) [ is weakly inward.
(b) 0 € Int C and fz # j\!for all z € BdC and X > 1 (i.e. [ satisfies Leray-

Schauder condition).
Then f has a fixed point.

The following is due to Reich [11].

Theorem B Let (' be a closed convex subset of a Banach space X such that the
metric projection is usc. If f: C — X is continuous f(C) is relatively compact,
then there is a y € C such that ||y — fy|| = d(fy,C).
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Results The proof of following general theorem is based on Theorem A.

Theorem 1 Let C be a nonempty closed convex subset of a uniformly convex
Banach space X and T : C — 2z closed convex valued *-nonexpansive map such
that C is (K R) -bounded with respect to T. Then T has a fixed point under each
one of the followir.g boundary conditions.

(1) T is weakly inward.

(2) Timpooy d[(1 — h)e + hy, C]/h = 0 for all z € C and y € Tz.
(3) 0€Int Candy# vz forallz € BdC,y € To and v > 1.
(4) T(BdC)C C.

Proof Since T'(z) is a nonempty closed convex subset of a uniformly convex
Banach space X, therefore each u, in Pr(z) is unique. Thus by the definition of
*-nonexpansiveness of T, there is u, = Pr(y) € Ty for all y in C such that

I1Pr(z) = Pr(y)ll = lluz — wy|| < [l — 9|

So Pr : C — X is nonexpansive. The (K R) boundedness of C' w.r.t. T clearly
implies that C is (K R)-bounded w.r.t. Pr.

(1) As T is weakly inward so for each z € C, Tz C cl (I¢(z)). Since Pr(z) € Tz
“for each z € C therefore Pr(z) € cl (Ig(z)) for all z € C. Hence Pr: C - X
is weakly inward. Theorem A(a) implies that Pr has a fixed point. That is there
is some xg in C such that Pr(z¢) = z¢. But Pr(z) € Tz for each z € C so
zg = Pr(zo) € T(zo) as required.

(2) It is known (cf.[10]), p.654) that f : C — X is weakly inward if and only if
lim—04 d[(1 — h)z + hf(z),C}/h = 0 for all z in a closed convex subset C of a
Banach Space. As Pr(x) € T, for all z € C so limy_g4 d[(1=h)x+hPr(z),C}/h =
0 for £ € C. This implies that Py : C — X is weakly inward. Now the result is
obvious from (1).

(3) As Pr(z) € Tz, Pr(z) # vz for all z € BdC can 4 > 1. Thus Pr satisfies
Leray- Schauder condition. So by Theorem A(b), Pr and therefore T has a fixed
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point.

(4) Since C C I¢(z) for all z € C and Io(z) = X if = is an interior point,
therefore T is weakly inward. The conclusion now follows from (1).

This completes the proof.

For single valued map T the concepts of nonexpansiveness and *-nonexpansiveness
coincide. Thus we have the following;

Corollary 2 Let C be a nonempty closed convex subset of a uniformly convex
Banach space X and 7' : C — X a nonexpansive map such that C is (KR)-
bounded w.r.t. 7. Then T has a fixed point provided one of the boundary
conditions (1)-(4) of Theorem 1 holds.

Corollary 2 extends Theorem 3 (4), (8) and (LIS) due to Park [10] from Hilbert
space set up to that of uniformly convex Banach space. Here we also obtain
conclusions of Corollary 15[3] and Remarks 3.9(iv) [15] when C is closed convex

and (K R)-bounded.

In case T : C — 2€ in Theorem 1, we have;

Corollary 3 Let C be a nonempty closed convex subset of a uniformly convex
Banach space X and T : C — 2° a closed convex valued *-nonexpansive map
such that C is (K R)-bounded w.r.t. T. Then T has a fixed point.

Remark 4(i) In Theorem 3.2 [5], the same conclusion was proved under assump-
tions of the boundedness of C' and Opial’s condition of X. Here we obtained the
same conclusion if C is (K R)-bounded w.r.t. T. '

(ii) Corollary 3 provides the conclusion of Corollary 1 [14] for uniformly convex
Banach space X without the boundedness of C (see also Remark 3 [14]).

(ili) *-nonexpansive multivalued maps need not be continuous so Theorem 1
applies to the fixed point theory of multifunctions which are not necessarily con-
tinuous.
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Corollary 5[1] Let C be a nonempty weakly cbmpact convex subset of a uni-
formly convex Banach space and T' : C — C a nonexpansive map. Then T has a
fixed point. '

Multivalued analogues of Ky Fan’s best approximation theorem have been con-
sidered by researchers and interesting applications towards fixed point theory of
multifunctions are given by them. We establish a version of this important theorm
for *-nonexpansive multivalued maps as follows.

Theorem 6 Let C be a nonempty closed convex subset of a uniformly convex
Banach space X. If T : C — 2% is closed convex valued *-nonexpansive map and
T(C) is relatively compact, then T possesses a nonexpansive selector f such that

ly — fyll = d(fy,C) for some yeC

If in addition ||fy — Qfy|| = d(Ty,C) then d(y,Ty) = d(Ty,C), where Q is
~ projection map of X onto C.

Proof If C is closed and convex subset of a uniformly convex Banach space X,
then the projection map Q : X — 2° defined by

Qe)={yeC:|lz -yl = d(=,C)}

is single valued and continyous (see [12]), p.535). Asin Theorem 1, Pr: C — X is
nonexpansive selector of T'. Since T(C) is relatively compact and Pr(C) C T(C),
therefore Pr(C) is relatively compact. By Theorem B, there exists y € C such
that Y "

ly = Pr(y)ll = d(Pr(y),C)

By definition of Pr we have d(z, Prz) = d(z,U;) = d(z,T,) for each z € C.
Thus d(y, Pry) = d(y, Ty) and hence d(y, Ty) = d(y, Pry) = d(Pry,C) = || Pry -
Q@ Pryl|| = d(Ty,C) as desired.

If T:C — X, then we have the following extension of Theorem 5 due to Singh
and Watson [13].

Theorem 7 Let C be a nonempty closed convex subset of a uniformly convex
Banach space X. If T : C — X is nonexpansive map and T(C) is relatively
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compact, then there exists a point y in C such that
lly — Tyll = d(Ty,C)

As an application of Theorem 7, we get the following fixed point result., which
generalized Theorem 6 and 7 [13].

Corollary 8 Let C be a nonempty closed convex subset of a uniformly convex
_ Banach space X. If T : C — X is nonexpansive map, T(C) is relatively compact
and T satisfies any one of the following conditions:

(1) For each z on the boundary of C, ITz — y|| < ||z = y|| for some y in C.

(2) For any u on the boundary of C with u = Q¢T(u), that u is a fixed point of

r4

T.
Then T has a fixed point in C.

In case T : C — 2€ in Theorem 6, we have the following fixed point result for

*-nonéxpansive maps which provides the same conclusion as of Cor. 3 with dif-
ferent conditions that T'(C) is relatively compact.

Corollary 9 Let Cbe a nonempty closed convex subset of a uniformly convex
Banach space X and T : C — 2 a closed convex valued *-nonexpansive map
such that T(C) is relatively compact. Then T admits a fixed point.

Note that if T is single valued then the conclusion of Corollary 5 holds for closed
and convex set C.

Following generalizes Theorem 3.2[5], corresponding results in [4] and [6] and
Theorem 2 by Xu [4].

Theorem 10 Let X be a Banach space satisfying Opial’s condition and C be
a weakly compact starshaped subset of X. Then each *-nonexpansive compact
valued map T : C — 2€ has a fixed point.

Proof Since for each z € C,Tz is nonempty. and compact so Pr(z) is nonempty
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and compact. As in Theorem 1, Pr : C — 2° is nonexpansive. Thus Pr and
hence T has a fixed point by Corollary 3.11 [15].

Remarks 11 (i) If T is single valued, then the conclusion of Corollary 5 holds for
weakly compact starshaped subset of a Banach space satisfying Opial’s condition.

(ii) All Hilbert spaces and I? spaces (1 < p < o) satisfy Opial’s condition but
L?[0,1](p # 2) are uniformly convex Banach spaces which do not satisfy Opial’s
condition.

Acknowledgement The author A. R.Khan acknowledges gratefully the support
provided by King Fahd University of Petroleurn and Minerals during this research.
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ABSTRACT Although other programming languages are equally good and can be
used to handle RSA cipher, Maple provides a more friendly environment in compu-
tational works. This paper demonstrates how nicely RSA cipher system works with

Maple.

1. INTRODUCTION The widespread use of electronic communications in
a commercial environment means that a great deal of data which was sent in a
fairly secure manner in the past is now sent by communications links to which
many people potentially have access. The aim of security measure is to minimize
the vulnerability of assets and resources hence there is a need for concealing the
contents of a message and for detecting any tempering with a message. Ciphers are
more universal methods of transforming messages into a format whose meaning
is not apparent. The most important technique is RSA cipher. As far as RSA
system is concerned, there is no faster method of attack than factorization. In
1988 Caron and Silverman managed to factorize a 90-digit number into two prime
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numbers of 41 and 49 digits, with the add of 24 SUN-workstations. The required
processing time was about six weeks. In the same year Lenstra and Manasse
successfully factorized a prime number of 96 digits. They employed a large number
of computers, which were interconnected by a combination of local area networks
and electronic ma:l. The whole operation took 23 days, which effectively worked
out to 10 years of CPU time.

Despite the algorithms for reducing the total number of calculations, the RSA
system still requires considerable computational power for processing such large
numbers. For this reason in practice the RSA system is not especially well suited
for real-time encryption of large amounts of data. The RSA system is therefore
often used for enciphering limited amounts of data, for instance for the trans-
portation of secret keys. In this paper we use Maple (computational package of
mathematics) to program RSA cipher.

2. BASIC TERMINOLOGY We suppose that one person, the sender, wishes
to send another person, the recipient, a message which he/she wants to keep
secret from an eavesdropper. The message must be transmitted over an inseure
channel, to which it must be presumed the eavesdropper has access. The message
is called the plainiext. It is enciphered or encrypted by an algorithm or a set of
rules called the encryption algorithm. This algorithm is controlled by a string of
symbols called the key. The key is kept secret from every one except the sender and
recipient and it should be easily changed in case it has somehow been discovered by
the eavesdropper. The output from this algorithm is called the cipher, ciphertext
or cryptogram. The inverse process called decryption or deciphering applies the
same or a diflerent mathematical function to change the ciphertext back to the
original plaintext. It is also.controlled by a key. The breaking of a cipher system
by an eavesdropper is called cryptanalysis. The difference between cryptanalysis
and decryption is that the cryptanalyst has to manage without the decryption
key. A cipher system has following components:

. plaintext message space, M.

. ciphertext message space, C.

1
2
3. key space, K.
4. family of enciphering algorithms, Fy : M — C, where k € K.
5

. family of deciphering algorithms, Dy : C — M, where k € K.



RSA ciphers with maple 147

Cipher systems must satisfy three general requirements:

1. The enciphering and deciphering algorithms must be efficient for all keys.

2. The system must be easy to use.

3. The security of the system should depend only on the secrecy of the keys and
not on the secrecy of the enciphering and deciphering algorithms.

Different cipher systems have different levels of security, d‘epending on how hard
they are to break. The security is directly related to the difficulty associated with
inverting encryption transformation of a system. Now we will take a look at some

methods used in encryption.

2.1. Simple-Substitution Cipher This cipher replaces each character of plain-
text with a corresponding character called its substitute. A single one-to-one map-
ping from plaintext to ciphertext character is used to encipher an entire message.

2.2. Block Cipher Let M be aplaintext message. A block cipher breaks M
into successive blocks Afy, My, -+, and enciphers each M, with the same key k.
Each block is typically several characters long.

2.3. Running Key Cipher In a running-key cipher, the key is as long as the
plaintext message. Assume that the letters of plaintext are represented by integers
in the ciphertext. The letters are then regarded as integers from 1 to 26 with a =
1 and z = 26 and a blank space is given by the value 27.

2.4. Public Key Cipher In a public-key cryptosystem, the public- key algo-
rithm uses an encryption key different from the decryption key. Since the public
key is published, a stranger can use it to encrypt a message which can be decrypted
only by the the owner of the private key. For this reason public-key systems are
also referred to as non symmetric or one-way.

RSA Cipher [1] The RSA cipher named after its discoverers, Rivest, Shamir -
and Adleman. The RSA cipher is based on the fact that it is relatively easy to
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calculate the product of two prime numbers, biit that determining the original
prime numbers, given the product, is far more complicated.

The encryption and decryption procedure is as follows:

1. Find two large primes p and ¢, each about 100 digits long and define n by
n=pg. ‘ :

2. Compute the unique integer e in the range 1 < e < (p—1)(¢ — 1) that is
coprime to (p — 1)(g — 1). This should be easy if e is prime and is not a factor of

(p—1)(g—1). _
3. Finally the value of € is used to determine another number, d, for which ed =1

(mod (p — 1)(¢ — 1)). The numbers n,e and d are referred to as the modulus,
encryption and decryption exponents respectively.

4. Release the pair of integers (e,n) as public key while keeping the numbder d
safe to decrypt. ‘

5. Represent M, the message to be transmitted, into an integer, break M into
blocks if it is too big.

6. Encrypt M into ciphertext C' by the rule C' = M*® (mod n).
7. Decrypt by using the private key d and the formula D = C? (mod n).

Theorem [2] Consider a message M, which is enciphered according to the RSA
system, resulting in a ciphertext C = M€ (mod n). The receiver deciphers this
message into D = C? (mod n), ensuring that ed = 1 (mod (p — 1)(¢ — 1)). Then
for all cases: D = M.

The security of this system relies on the fact that it is almost impossible to cal-
culate the value of d if only the public key (e,n) is known. Thus, the person who
issues the public key (e,n) is the only person who knows the precise value of d
and therefore also the only person able to decipher encrypted texts.

4. MAPLE WORKSHEET (RSA Cipher)
Computation of n and d

Enter any two large integers.
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ABSTRACT By using the transformation law for field dependent tensors, the re-
strictions due to magnetic moment inversion and spatial symmetry on the forms of the
magneto-conductivity tensor o;;(B) have been found for magnetic crystals.

Key words: magnetic moments, magnetic point group, transport tensor.

INTRODUCTION There are 1651 3-dimensional Shubnikov space groups which
exist when the magnetic moment inversion operator R is taken into account. These
are catagorized as follows:

(a) 230 Fedorov generating groups which contain magnetic-inversion as an
element.

(b) 230 Senior groups which do not involve magnetic-inversion and

(¢) 1191 Junior bicolour groups which contain magnetic-inversion only in
combination with spatial transformations.

(a) refers to nonmangetic crystals whereas (b) and (c) refer to magnetic
crystals.
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The number of space groups, point groups and Laue (enantiomorphous) groups
in each of the categories (a), (b) and (c) are as follows{1]:

(a). (b) (c) Total
Space groups 230 230 517+ 252 4422 1651
Point groups 32 32 21437 122
Laue groups- 11 11 10 32

In the 122 generalized point groups, there are 32 which are obtained by aug-
menting (increase in number) each of the 32 classical crystallographic point groups
by R and its products with the elements of the classical point groups [2]. These
are known as grey groups. Of the remaining 90 groups, 32 are identical with
the classical groups in the sense that they do not contain either the operator R
or any antisymmetric operation. They are called single coloured crystallographic
point groups. The remaining 58 groups do not contain R but contain classical
as well as anti-symmetric operations. They are called bicoloured magnetic point
groups {M}. The above mentioned 32 classical point groups {S} representing
the geometric symmetry properties of the 32 classical crystal classes {2, 3]. Their
elements consist of rotations and reflections only and can be represented by 3 x 3
orthogonal matrices in 3-dimensional Euclidean space. They obviously form finite

subgroups of O(3) and GL(3).

DISCUSSION [4] and [5] have used the transformation law for field dependent

tensors in conjunction with the Onsager reciprocity relation

0;(B) = 0;;(—B) (1)

to establish the form of the magneto-conductivity tensor o;;(B) for each of the
32 classical point groups {S}. We have now extended that work to find the
effects of spatial and magnetic moment inversion symmetry on the tensors that
represent the transport coeflicients of magnetic materials. This problem has been
subjected to some debate as successive workers have been given their particular
prescriptions for determination of the symmetry restricted forms of the transport
coefficients. After an examination of the treatments of [2] (prescription-A) and [1]
(prescription-B), {7] provided a prescription-C which, although concurring with
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Kleiner’s objection that prescription-A ignored the antiunitary elements of the
magnetic point groups, did predict in certain instances different forms of o;;(B).
We accept Cracknell’s objections to the arguments of both Birss and Kleiner
and make some further modifications of our own, one of the most important of
which is that the transport tensors are not second rank constant tensors T;; which
transform according to ‘

Tij = Rip ququ ‘ (2)

but are magnetic field dependent second rank polar tensors whose transformation
law is [4]

Uij(IRlquBQ’ |R|R2qu, IRlRSqu) = RiijnUmn(Bla~B2a BS) (3)

It is at this point that we depart from the previous treatments; the transport
tensors transform according to (3) not (2); failure to recognize this has lead earlier
to incorrect simplification of the tensors.

Studies of biocoloured magnetic point groups and space groups stem {rom
the introduction by [6] of an antisymmetry operator in addition to the spatial
symmetry operators. In most magnetic materials, the magnetic moment can be
either parallel or antiparallel to a given direction. For such a physical property,
which can take only one or other of two characteristic values, the antisymmetry
operator has the effect of changing one of these values to the other. When the
symmetry operator' R (which for bicoloured magnetic point groups will be the
magnetic moment inversion operator) is taken into account, the three types of
magnetic point groups {M} corresponding to the 32 classical crystallographic
point groups {S} are:

(i) Type I: Magnetic point groups (there are 32), which do not contain R,
ie. {M}={S}.

(ii) Type II: Magnetic point groups (there are 32), which do contain R as an
element on its own and in combined form RG with G, an element of the classical

point groups {S}, i.e. {M} = {S} + R{S}.

(iii) Type I1I: Mangnetic point groups (there are 58), which contain R only in
combination (RG) with the classical point group symmetry elements i.e. {M} =
H+ R({S} - H).

where H is a normal subgroup of the classical point group {S}.



4 ; _ M. Shafiq Baig

Type 11 groups refer to "non-magnetic” crystals (really paramagnetic and dia-
magnetic crystals and some antiferromagnetic crystals). Types I and III groups
refer to magnetic crystals. Several previous workers [1, 2, 7] have identified the
magnetic moment inversion operator R with the time-inversion operator 8, but
this identification is open to doubt. The operator R commutes with all the spatial
symmetry operators i.e. RG = GR, where G is an element of the coset ({S} — H).
To find the form of ¢;;(B) for magnetic point groups, we need to take account of
the symmetry operator belonging to the subgroup H and in addition the opera-
tors RG. We treat the problem throughout as an exercise in transformation of
field dependent tensors, that is an operator must be applied both to the tensor
components and their arguments.

To do this, we must first consider the effect of R on a field dependent tensor
by ensuring the invariance of the corresponding physical law under that operator.
In the present case Qhm’s law of direct current in the presence of a magnetic field:

Ji(B) = 0i;(B)E; (4)

Under the operation of magnetic moment inversion, this becomes

RJ,(B) = RO’,'J'(B)REJ' (5)

To find the effect of R on o;;(B), it is required to know the effect of R on J;(B)
and E;. The electric field vector E; is invariant under R

RE; = E; (6)

The effect of R on B is defined as
” RB = -B (1)
When the operator R acts on a system containing a magnetic moment and a
current density J;(B), the only effect is to alter the direction of B and so
RJl(B) = J,(RB)‘A= J1(—B) (8)
For Ohm’s law to hold in the system under the operation of magnetic moment
inversion, substitution of (6) and (8) into (5) leads to

RO’,’j(B) = O'ij(—B) (9)
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For the symmetry operations R(G, Neumann's principle demands that

RGO’;J'(B) = O';j(RGB)

Therefore
GRoij(B) = 0:j(GRB) (10)

since RG = GR. Substituting for Ro;;(B) from (9), we obtain
RGO’,'J'(-—B) = O'.J(GRB) = O';j(—GB)

Therefore

Goy;(B) = 05(CB) (11)

Thus we obtain

0’.’j(lG|G1qu, |G|G20qu IGIGSQ Bq) = GimGjna'mn(Blv B, BS) (12)

Therefore, the transformation law (3) for o;;(B) (or p;;(B)) applies to crystals:
belonging to any of the three types (I, I, III) of magnetic point groups. When
B # 0, the form of o;;(B) does not depend on whether the specimen ‘consists
of a non-magnetic crystal in an applied magnetic field of a magnetically ordered
crystal.

CONCLUSION The symmetry restricted forms of o;(B) for crystals belonging
to magnetic point groups { M }are identical to those of corresponding crystals of
groups {S} which have been listed for B directed along the major crystallographic
axes by [4] in the even and odd terminology. Our prescription - D for finding the
forms of o;;(B) for a crystal belonging to a magnetic point group is as follows: -

(i) Find the corresponding classical point group {S} of the magnetic point
group {M} noting that {M} depends upon the direction of B,

(ii) Take the Laue group of this classical point group (see table 1 of [4a]) and
use its generating elements in the transformation equation (3) for field depen-
dent tensors to distinguish the non-zero components for a chosen magnetic field
direction; and
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(iii) apply Onsager’s relation (1).

The magnetoresistivity tensor p;;(B) and the magnetothermal conductivity
k;;(B) take the same forms as o;;(B). The forms of the magnetothermoelectric
power a;;(B) and the magneto-Peltier effect 7;;(B) for the magnetic point groups
{M} are also the same as those of classical point group crystals in a magnetic
field; these have been tabulated by [4b].
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ABSTRACT The concept of a fuzzy subset of a non-empty set first was introduced
by Zadeh in 1965. Recently, the present author applaid the concept of fuzzy sets theory
in the theory of algebraic hyperstructures.

In this paper we study the concept of T-fuzzy subhypergroup and anti 7*-fuzzy subhy-
pergroup of a hypergroup H where T and T are t-norm and ¢conorm respectively. We

also obtain some interesting related results.
2
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1. INTRODUCTION The concept of fuzzy subsets was introduced by Zadeh
[20] in 1965. In 1971, Rosenfeld [15] applied this concept to the theory of groups
and introduced the concept of a fuzzy subgroup of a-group. Since then, a host of
mathematicians are engaged in fuzzifying various notions and results of abstract
algebra. In 1975, Negoita and Ralescu [14] considered a generalization of Rosen-
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feld’s definition in which the unit interval [0, 1] was replaced by an appropriate
lattice structure. In 1979, Anthony and Sherwood [2] redefined a fuzzy subgroup
of a group using the concept of triangular norm. This notion was introduced by
Schweizer and Sklar [16], in order to generalize the ordinary triangle inequality in
a metric space to the more general probabilistic metric space. Several mathemati-
cians have followed the Rosenfeld-Anthony-Sherwood approach in investigating
fuzzy group theory (cf. [1, 3, 4, 6, 17]).

The theory of algebraic hyperstructure which is a generalization of the concept of
algebraic structures first was introduced by Marty in [13]. In [7, 8, 9, 10, 11] the
present author applied the concept of fuzzy sets theory in the theory of algebraic
hyperstructures.

In this paper we study the concept of T-fuzzy subhypergroup and anti T™*-fuzzy

subhypergroup of a hypergroup H where T and T™ are t-norm and ¢-conorm re-

spectively. We also study the structure of T-fuzzy subhypergroups under direct
product.

2. PRELIMINARIES We begin by giving some definitions. Although these
definitions can be found in [2, 5, 7, 16, 20], they are repeated here to help to the
reader.

Definition 2.1 A t-norm is a function T : [0,1] x [0,1] — [0,1] satisfying, for
every z,y,z in [0, 1]:

) T(x,y) =T(y,z),
(id) T(e,y) < T(z,2) if y <z
) T(.’E,T(y,z))ZT(T(:L‘,»y),Z),
) T(z,1)=2,T(0,0)=0
A t — norm is Archimedean iff
(v) Tis continuous, i.e., it is continuous
function with respect to the usual topologics

(v?) T(z,z) > .

Obviously, the function min defined on [0, 1] x [0,1] is an Archimedean #norm.
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Definition 2.2 A t-conorm is a function T™: [0, 1] x [0, 1] — [0, 1] satisfying, for
every z,y,z in [0, 1]: ,

(¢) T*(z,y) = T"(y,2),

(12) T*(z,y) £ T*(2,2) if y <z,
(117) T*(z,T*(y,2)) = T*(T*(z,y), 2),
(iv) T*(z,0) = z,T(1,1) = 1

Definition 2.3 Let X be a non-empty set, a mapping p : X — [0,1] is called

a fuzzy subset of X. The complement of yx, denoted by u°, is the fuzzy set of X

given by ' :
p@)=1-pu(z), VzeX

Definition 2.4 Let ' be a group. A fuzzy subset u of G is said to be a T-fuzzy
subgroup of G with respect to a tnorm T, if the following axioms hold:

(2) T(u(2), (y)) < p(zy), Ve, €G,
(é2) plx) < p(=™), Vzed

2

Definition 2.5 A hyperstructure is a set H together with a function: H x H —
P*(H) called hyperoperation, where P*(H) is the set of all non-empty subsets of
H.

Definition 2.6 A hyperstructure (H,-) is called a hypergroup if the following
axioms hold:

(l) (.’lf'y)'Z'::E'(y'Z), Vz,y,z € H,
(23) a-H=H-a=1, Yae H
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In the above definition if € H and A, B,C H then

A-B=U a-b, r-B={z}-B, A-z=A-{z}
a€ApeB

A subset K of H is called a subhypergroup if (K,-) is a hypergroup.

Let H, and H; be two hypergroups. Then in H; x H, we can define a hyperproduct
as follows:
(z1,91) 0 (22,92) = {(a,b)|a € 21 - 2,0 €Y1 - y2}

and we call this the direct hyperproduct. It is easy to see that H; x H; equipped
with the direct hyperproduct becomes a hypergroup.

Let (H,-) be a hypergroup. We define the relation 3* as the smallest equivalence
relation on H such that the quotient H/B3* is a group. In this case §* called the
fundamental equivalence relation on H and H/B* called the fundamental group.
This relation is studied by Corsini [5], see also [18, 19]. Suppose §*(a) is the
- equivalence class containing a € H, the product o on H/3* is as follows:

B(a) 0 B°(B) = B*(c), Vee B(a)B"(b)

According to [3] if U be the set of all the finite products of H then a relation
g can be defined on H such that 3 = f*. For all z,y € H, the relation g is as

follows:

zfy iff {z,y} Cu for some ueU

Theorem 2.7[19] Let H,, H; be hypergroups. Let f;, 85 and 3* be fundamental
equivalence relations on Hy, H, and H; x H; respectively, then

(H\ x Hy)/B" = H,/B; x H, /B3

Corollary 2.8 Let §;, 5; and 8* be fundamental equivalence relations on H,y, H,
and H, x H, respectively, then

(-’Bl,yl)ﬂ*(xz,yz) iff xlﬂ;ﬂh, ylﬂ;yz
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for all (z;,y:) € Hh x Hy, 1=1,2
3. T-FUZZY SUBHYPERGROUPS

Definition 3.1 Let (H,:) be a hypergroup and let g be a fuzzy subset of H.
Then 4 is said to be a T-fuzzy subhypergroup of H with respect to a t-norm T if
the following axioms hold:

(i) T(u(x),n(y)) < infoeoy{p(a)}, Vo,ye H
(ii) for all z,a € H there exists y € H such taht z € a-y and

T(p(a), p(z)) < u(y)

(iii) for all x,a € H there exists z € H such that z€z-aand

T(u(a), () < u(2)

(ii) is called the left fuzzy reproduétion axiom and (iii) is called the right fuzzy
reproduction axiom.

Definition 3.2 Let (H,-) be a hypergroup and let u be a fuzzy subset of H. Then
p is said to be an anti T*-fuzzy subhypergroup of H with respect to a t-conorm
T™*, if the following axioms hold:

ry

(i) supgery{r(a)} < T*(k(z), u(y)), vz, y € H,

(ii) for all z,a € H there exists y € H such that z € a - y and

#(y) < T*(u(a), u(z))

(ii1) for all z,a € H there exists z € H such that z € z - a and

u(2) < T*(u(a), p(x)
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Lemma 3.3 Let T be a t-norm. If we define the foilowing:

T"'(:c,y): 1 _T(l—x7 1—!/)

then T* is a t-conorm.

Proof: The proof is straightforward and omitted. O

Theorem 3.4 Let H be a hypergroup and p be a fuzzy subset of H. Then u
is a T-fuzzy subhypergroup of H with respect to a t-norm T if and only if it’s
complement p° is an anti T*-fuzzy subhypergroup of H with respect to t-conorm
T*, where T* is defined in Lemma 3.3.

Proof Let p be is a T-fuzzy subhypergroup of H with respect to t-norm 7. For
every z,y in H, we have T(u(z), u(y)) < infaesy{u(a)}, or T(1 — p*(z),1 -
#(y)) < infaeay {1 — p(@)}, or T(1 - p(2),1 - p(y)) < 1 ~ sup,e,., {1(a)}, or
sup, ez {1°(0)} S 1-T(1—p(z), 1-p“(y)), or sup,e,., {p°(a)} < T*(u*(z), £(y)),
and in this way the condition (i) of the Definition 3.2 is verified for u°.

Since g is a T-fuzzy subhypergroup of H with respect to t-norm T, so for every
a,z in H, there exists y € H such that ¢ € a-y and T(u(a), p(z)) < pu(y), or
T(1 = p(a), 1 = p(z)) S 1= p(y), or p°(y) <1-T(1-p(a), 1 —p(x)), or
p(y) < T*(u(a), p°(z)) and the second condition of Definition 3.2 is satisfied.
Thus p¢ is an anti T*-fuzzy subhypergroup. The converse also can be proved
similarly. O

Suppose T; and T, be two t-norms. T, is said to dominate 77 and write T} << T,
if for all a,b,¢,d € [0,1],

Ti(Tz(a, ), Ta(b,d)) < To(Ti(a, b), Ti(c,d))
and T is said weaker than T; or T3 is stronger than Ty and write Ty < T, if for

all z,y € [0,1],
T](-’B,y) S Tz(-’l?,y)

Definition 3.5 Let H;, H; be hypergroups and i, A be T-fuzzy subhypergroups
of Hy, Hy under t-norm T respectively. The T-product of g, A is defined to be the
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fﬁzzy ’subset pu x A of Hy x Hy with
(1 x M(z,y) = T(u(x), My)), forall (z,y) € Hy x H,

Proposition 3.6 Let H;, H, be hypergroups and g, A be T-fuzzy subhypergroups
of H; under t-norms T;, ¢ = 1,2 respectively and T/ be a t-norm such that 7" <
Ty,T; and let T be a t-norm such that 7' << T. Then T-product g x A is a T-
fuzzy subhypergroup of Hy x H; under t-norm T".

Proof Let r,y € H, x H, such that z = (z1,22), ¥ = (¥1,¥2). For every
a=(oq,02) € zoy = (x1,22) o (y1,y2) we have
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Therefore the first condition of Definition 3.1 is satisfied. Now we prove second
condition of Definition 3.1 as follows: For every (z,,z2) and (a1,4a2) in Hy x H,
there exist (y1,y2) in Hy x H such that

Ti(p(z1), (@) < (),  To(Mz2), Alaz)) < Ay2)

Therefore we have (z1,z2) € (a1,a2) o (y1,y2) and

T(u(y1), A(y2))
T(Th(p(21), p(ar)), Ta(A(z2), A
(T*(1(21), wlan)), T'(A(e2)
T(T (p(z1), M=2))
( (

(1 x A)(y1,y2)

k)

( (.’E ’ ’ T(ﬂ(a ),)\(az)))

T2 1
((1 X A)(z1,22), (1 X A)(a1,a2))

IV IV IV IV ué

T
T

The proof of third condition of Definition 3.1 is similar to the proof of second
condition. O '
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Corollary 3.7 Let Hy, H; be hypergroups and let x, A be T-fuzzy subhypergroups
of Hy, H; under t-norm T respectively. Then g x A is a T-fuzzy H,-subgroup of
H; x H, under t-norm T. .

Now, let p be a min-fuzzy subhypergroup of H under t-norm min. Then by
Theorem 1 of [6] the set u; = {x € H|u(z) > t} is a subhypergroup of H. In the
following result the T-product is considered for min only.

Corollary 3.8 Let p and A are min-fuzzy subhypergroups of H; and H, then

([l. X A)t‘—‘[l.l X At.

Definition 3.9 Let H be a hypergroup and p be a fuzzy subset of H. The fuzzy
subset pg. on H/B* is defined as follows:

ppe H/B* — [0,1]
np+(B*(z)) = sup ){u(a)}-

a€B*(z

Theorem 3.10 Let T be an Archimedian &-norm and H be a hypergroup and u
be a T-fuzzy subhypergroup of H under t-norm 7. Then ugs. is a T-fuzzy subgroup
of H/B* under t-norm T.

Proof The proof is similar to Theorem 5 of [7]. D

Theorem 3.11 Suppose that
(1) Hy, H, are hypergroups,

(2) B5,P; and B* are fundamental equivalence relations on Hy, H; and H, x H,
respectively.

(3) Tis an Archimedean #norm,
(4) p is a T-fuzzy subhypergroup of H; under t-norm T,

(5) Xis a T-fuzzy subhypergroup of H, under t-norm T
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Then we have
(1 X A)gs = pps X Mgy

Proof By Corollary 3.7 and conditions (4), (5) we get u X X is a T-fuzzy subhy-
pergroup of Hy x H, under tnorm T, then by Theorem 3.10 we have (& x X)g is
a fuzzy subgroup of the group (H, x H,)/f* under t-norm T.

Now, assume that ¢ € Hy and y € H, then

(u x Nge(B(z,9)) = sup  {(ux A)(a,b)}
(ab)ef*(2.)

= sup  {T(p(a), A(b)}
(a.b)EB*(z.9)

= sup  {T(u(a), M(b))}
aEﬁl'(I)bEﬁ;(ll)
= T( sup {u(a)}, sup {A(b)})
HED) bes;(v)
= T(up: (B5(z)), Asz(B3(v)))
= (ug; % Aay)(B5(2), B3(¥)).0
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ABSTRACT A subgroup H of a group G is called a quasi-normal subgruop of G,
if HK = KH for all subgroups K of G. We will show that if H is a quasi-normal
subgroup of a group G such that [G : H] is a prime, or [G : H] = 2°m, where a = 1,2, m
is an odd and square free number, then H is a normal subgroup of G. However for an
odd prime p and n > 3 or fof p = 2 and n > 4 let G be the group of order p™ with
generators a and b and a7 = 1, b» = 1, and ba = a**"*b. Let H =< b >. Then
[G: H] = p*~! and H is a quasi-normal in G but not normal in G.

AMS subject classification Number: 20D35

1. INTRODUCTION If G is a group and if A, B are subgroup of G, the
subgroup < A, B > of G generated by AU B is of interest. To be able to control
. the properties of the group < A,B > by those of A and B, the generation of
< A, B > must happen in a special way. The most transparent case we have is
when < A, B > coincides with the product set AB = {abla € A,b € B}. It is
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vell known that this holds if and only if AB = BA. Two subgroups A and B of
a group (G which have this property, are called permutable. A sufficient condition
for the permutability of A and B is that A normalizes B (that is, a~'ba € B for
all a € A,b € B) or vice versa. Particularly, if A is a normal subgroup of G, we
have AB = BA =< A, B > for every subgroup B of G.

In 1939, [4, 13.2.1] Ore introduced the concept of a quasi-normal subgroup of a
group, a generalization of a normal subgroup.

Definition 1.1 A subgroup H of a group G is called a quasi-normal subgroup
of G, if HK = K H for all subgroups K of G.

Remark 1.2 If H is a subgroup of G, then the following conditions are equivalent.
(i) H is quasi-normal in G.

(ii) For every ¢ € G and h € H, there exist r € ZZ and &' € H such that
hg =g"h'.

We note that G =< z,y|2® = y2 =1, y~'zy = 2°® > is an example of a group
having a quasi-normal subgroup which is not normal. Qg is an example of group
having a quasi-normal subgroup which is normal but Dg is an example of a group
which has a subgroup of index 4 which is not quasi-normal.

Next lemma shows the relation between quasi-normal subgroups and factor groups
of normal subgroup contained in such subgroups.

Lemma 1.3 If G is a group and N C H C G are subgroups with N normal in

G, then H is quasi-normal in G if and only if % is quasi-normal in ]Qv

Proof It follows from definition immediately. O

Of course every normal subgroup is quasi-normal, which might lead one to hope
that subnormal subgroups also have this property. However the converse it is not
necessarily true.

One may adopt the opposite point of view, asking whether quasi-normal subgroups
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are subnormal.

Ore in [4,13 - 2 - 2] shows that if H is a quasi-normal subgroup of a finite group
G, then H is subnormal. While in general a quasi-normal subgroup of an infinijte
group need not be subnormal.

Finally, Stonehewer in [3] shows that, a quasi-normal subgroup of a finitely gen-
erated group G is subnormal. :

In 1962, Ito and Szep [6] obtained an interesting result which showed that the
difference between normality and quasi-normality in general is small.

Also if H is a quasi-normal subgroup of G, then the quotient group Hi is nilpotent,

that is, 7/~ is contained in the Fitting subgroup F ( G) of . Here Hg denotes
therlntersectlon of all conjugates H? = g~V H, of H with g € G.

2. NORMALITY OF QUASI-NORMAL SUBGROUPS Next theorems
shows the condition when quasi-normality implies normality.

Theorem 2.1 Let H be a quasi-normal subgroup of a group G such that [G : H]
is a prime then H is a normal subgroup of G.

Proof Suppose that this is false, then there is a conjugate H' = ¢g~'Hg of
H such that H' # H. Let K = HH' = H'H. Since [G : H] is prime and
Hc K Cc G, K =G. In particular ¢ = hh' for some h € H, h' € H'. Hence
g = hg~'h g for some h,h, € H. However this implies that ¢ € H soc H' = H
contradicting the assumptlon This complete the proof. O

We know that if index H in G is equal to 2, then H is normal in G. We show in
next theorem that a quasi-normal subgroup H of G such that [G : H] = 4 is a
normal subgroup of G

Theorem 2.2 A quasi-normal subgroup H of group G such that [G: H] =4 s
a normal subgroup of G.

Proof Suppose that this is false, then there is a conjugate H' = ¢g"'Hg of H
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such that H' # H. Let K = HH' = H'H. Since H C K T G and [G : H] = 4
it follows that K is H or Gorelse [K : Hl=2. f K = H then H' C K = H
so H' = H a contradiction. If K = G then as in the proof of theorem 2.1, H is
normal in G. Thus [K : H] =2, and H is normal in K, also [G : K] =2, and K
is normal in G.

We conclude that there are exactly two conjugate of H, namely H and H'. Let
N = HNH'. By definition N is core of H in G and therefore is a normal subgroup
of G. Moreover

[K:H)=[HH :H]=[H:N)=[H:N]=2

Since NC HCG, [G:H] =4, [H: N} =2and N is normal in G the
group % has order 8, % is quasi-normal in % and has index 4. We know that
every quasi-normal subgroup of a group G of order 8, is normal in G. Thus % is
normal in ]%- so H is normal in G, contradicting the initial assumption. From this

it follows that H is normal in G. O

In general we show that;

Theorem 2.3 If H is a quasi-normal subgroup of a group G and |G : H] = 2°m,
where a = 1,2, m is an odd and square free number, then H is a normal subgroup

of G.

Proof We will argue by induction on n = 2%°m. If n = 1, the result is obvious.
For n = 2%, where a = 1,2 it follows from Theorems 2.1 and 2.2. Consider any
element g € G. Since H is quasi-normal in G, H < g > is a subgroup of G and H
is quasi-normal in H < g >. If H < g ># G, then by the induction hypothesis,
H isnormal in H < g >,s0 Hg = gH.

If H(g) = G, then [H < g >: H] = n. This implies that n is the least positive
integer k such that g* € H. Let z = g” and y = g™, where p is a prime (p # 2)
and does not divide m, (ml = %) Then the least positive integer k such that

zk € H is 2 =my, so [H <z >: H|] =m, similarly [H(y): H] = p.

Since H is quasi-normal in both H < z > and H < y >, the inductive hypothesis
shows that Hr = zH and Hy = yH. The fact that (p,m;) = 1 implies that
g €E<z,y >, hence Hg=gH. O
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Lemma 2.4 Let H be a quasi-normal subgroup of a finite group G. If (n, |G]) = 1,
then H is quasi-normal in the group G x ZZ,, where ZZ,, denotes the cyclic group

of order n.

Proof Let k € G x Z, and h € H. We will show that Ak = k™ k' for some
integer v’ and b’ € H. We have k = (g,a*) for some g € G and integer s, where
< a >= Z,. Since H is quasi-normal in G, hg = g"h’ for some integer r and
h' € H: Because (n,|G]) = 1, there is an integer r’ such that ' = r (mod |G|)
and 7' =1 (mod n). Hence

hk = (h,1)(g,0") = (hg,a’) = (¢'H',a") = (¢" I, a")
= (¢7,a)(R,1) = (¢",a"")(K,1) = (g,a°)" (R, 1) = k" b’

and H is quasi-normal in G x ZZ,,. O

3. SOME QUASI-NORMAL SUBGROUPS WHICH ARE NOT NOR-
MAL For any positive integer m that is divisible by 8 or the square of an odd
prime, we will exhibit a finite group G and a quasi-normal subgroup H such that
[G: H] = m and H is not normal in G.

Given a group G and a, b € G, let [a, b] denote a=1b67'ab, the commutator of a and
b. Then we have [5, Lemma 2.2]

(i) If [a,b] commutes with a, then [a™, b] = [a,b]" for any n € ZZ.

5

(i1) If [a, b] commutes with q and b, then for any integer n > 0

(ab)™ = a"b"[b, a]®

Lemma 3.1 For an odd prime p and n > 3 or for p =2 and n > 4 let G be the
group of order p™ with generators @ and band a®" ™" =1, b = 1 and ba = a'**" b,
Let H =<b>. Then [G: H] = p®! and H is quasi-normal in G but not normal

in G.

Proof Every element in G has a unique representation in the form a‘t’ with
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0<i<p*!, 0<j<p Sincealba =a”" b ¢ H, H is not normal in G. To
prove that H is quasi-normal in G, we first note the following.

Since :
ban—l _ (bab—l)p = (a1+p"-2.)p — ap+pn—1 =df

we have a? € Z(G) and ¢ € Z(G). Since

[b,a] = b~ (a"ba) = b 'a”" b =a"""
We have [b,a), [a,b] € Z(G). So for any i,j € Z,[VV,a’] = [b,a] € Z(G) by (i)
and similarly [a*, V] € Z(G). Also

n—1

=1

[b,a] = (@) = o

Let g € G and h € H. Then g = a't’ and h = b* for some ¢,j,k > 0. Let
r =14 p*%k. By Remark 1.2, it suffices to show that hg = ¢g"h. By (ii)

gr — (aibj)r = airbjr[bj,ai](;)

Note that . . ' . _ . .
a'’ = az(ap""'“)zk — a'[b,a]'k — a'[bk,a']

and that
n—2k

Bro= T o

Also the restrictions on p and n imply that p divides (; ) and [¥,a]® =
[vb,a]"jG) = 1, since [b,a}? = 1: Thus, ¢" = a'[b*, a’]b’, Consequently,

g'rh — grbk = ai[bk,ai]bj+k — aibk[bk,ai]bj
= a'b*(b~*a~bkat )W = bFa't = hy

4. ON SOME PRODUCTS OF CONJUGATE-PERMUTABLE SUB-
GROUP: In the proof that a quasi-normal subgroup is subnormal [4]. One only
needs to show that it is permutable with all of its conjugates. This leads to a new
concept concerning subgroups.
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Definition 4.1 A subgroup H of a group G is called a conjugate- permutable
subgroup of G(Il <._, G),if HI? = HH for all g € G.

In this section we prove that conjugate-permutable subgroups are subnormal,
and we prove some elementary properties of conjugate-permutable subgroups.
We also give example of subnormal subgroups that are not conjugate-permutable
subgroups, and of conjugate- permutable subgroups that are not quasi-normal.

Of course every quasi-normal subgroup is a conjuage-permutable subgroup, how-
ever the converse it is not necessarily true.

Example 4.1 We note that I/ =< yz > isa conjugate-permutable subgroup of
Dy =< z,ylz* =y? =1, y~'ay = 27! >, but H is not a quasi-normal subgroup
Of Dg.

As in the proof of theorem 2.1, it is easy to see that if I is a conjugate-permutable
subgroup of a group G such that [G : II] is a prime then H is a normal subgroup
of G. Also if I] is a maximal conjugate-permutable subgroup of G, then H is a
normal subgroup of G.

Corollary 4.1 I{ Il <._, G and G is finite group, then H is subnormal.

Example 4.2 Let Dig =< 2,y|le® =y?> =1, y“lay = 27! >, H =< y >, and
K =< yx® >. Then I is subnormal in D (since D¢ is nilpotent), but

HK = {1,yz° y,2%} # {1,y2°y,2%} = KH

So H is not a conjugate-permutable group.

Corollary 4.2 Jf G is a finite group with all maximal subgroups conjugate-
permutable, then G is nilpotent.

Foguel in [1] proved the following theorem: If G is a finite group and there exist
Il <.—, G such that H is a maximum subgroup of a P € Syly(G), thén G is
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solvable.

Huppert [5, Satz 10.3,p.724] proved the following theorem: If a finite group is
the product of pairwise permutable cyclic subgroups then it is supersolvable. Of
course the converse of this statement is not even true in the class of nilpotent

groups.

Assume G be a finite group. 7(G) denotes the set of prime divisors of the order
of the group G.

Lemma 4.3 Let P be a normal p-subgroup of G, a Sylow g-subgroup of
G,p # q, H a subgroup of P such that HQ = QH. Then H is normalized by Q.

Proof It is obvious.

Theorem 4.4 Let H be an abelian normal subgroup of a group G such that
G' < H and the Sylow subgroups of H are elementary abelian. Assume that for
every ¢ € m(H) the Sylow q-subgroup @ of H can be written as @ = Q;--- @,
where @ is a cyclic and permutable with Sylow p-subgroup of G for all p € 7(G)
and 1 <:< S. Then G is supersolvable,

Proof We prove the claim by induction on the order of H. We show that @
contains a normal subgroup of order q of G. Let Q* be a Sylow g-subgroup of G,
then Q < Q*. Let 1 = ByaBya---aB, = @Q such that B; «Q* and B_}?iT is of order
q for all 2. Let 1 <t < r minjmal such that B; contains a subgroup A of G such
that A is permutable with Sylow p-subgroup of G for all p € =(G). If A is normal
in @*, then by Lemma 4.3 it is normal in G, too. Assume A is not normal in Q*,
then there is an element b of @+ such that A® # A. Clearly b fixes every element of
E?"_T by conjugation. Let A =< a >, A® =< a; > with aa]' € Bi_;. Let P be a
Sylow p-subgroup (p # ¢) such that PA = AP, Then by Lemma 4.3 P normalizes
A. Let z € P then a® = a for some integer t. Then (a)*" = (a®)! follows.
As G' < H and a,a® € H we obtain that (a}) = (a®)* = (ab)*l = (ab)?,
hence every element of P acts as raising to some power ¢ on < a,a} > . Now it
follows that < aaj! > is permutable with Sylow p-subgroup of G for all p € 7(G)
and < aa]' > contained in B,_, a contradiction. Thus A is normal in H. It
is easy to see that % satisfies the conditions of our Theorem, consequently % is
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supersolvable, which implies the supersolvability of G. O
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INTRODUCTION Goebel, Kirk and Shimi [1] proved the following theorem.

Theorem. Let X be a uniformly convex Banach space, C' a nonempty bounded,
closed and convex subset of X and f : C — C a continuous map such that

Ifz = fyll < allz —yll + blllz = foll + ly ~ Sylll + elllz — fyll + ly — f=]]]

for all z,y € C where a,b,¢ > 0 and a + 2b+ 2c < 1. Then f has a fixed point in
C.
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The purpose of this paper is to establish.the existence of fixed points for
the above maps in metric spaces. If the continuity of f in the above theorem
is replaced by & > 0 and ¢ > 0, then we may establish a fixed point theorem
in complete metric spaces which extends Theorem 1 of Hardy and Rogers [2].
Imitating Kannan and Kirk’s methods, we obtain also a fixed point theorem in
compact metric spaces.

Let f be a self map of a metric space (X,d). For E C X, E and.6(E) denote
the closure and diameter of E respectively. Define

F =.{E|E in nonempty closed and f —invariant subset of X}
F = {E|E € Fand §€&)>1} '

N and w denote the sets of positive integers and nonnegative integers respectively.
2. FIXED POINT THEOREMS Our main result is as follows.

Theorem 1 Let f be a sell map of a complete metric space (X, d) satisfying

(1) d(fz, fy) < ad(z,y) + bd(z, [z) + d(y, [9)]
+ c[d(z, fy) + d(y, fz)] for z,y € X;
(2) a,band c are nonnegative and a + 2b + 2¢c = 1.

If 6> 0and ¢ > 0, then f has a unique fixed point w in X and li_m,,_.oo'f"a: = w for
each z € X. o ' ' '

The following lemmas will be helpful in proving Theorem 1.

Lemma 1 Let f be a self map of a metric space (X,d) _satisfying (1) and (2).
Then

(i) d(fiz, f**'z) <d(f*'z, frz)

forre X and n € N;
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(i) d(f"z, f*+'z) < d(z, fz) + F[d(fP*z, frH1z) — (1 + k)d(z, fz))

for z € X and n,k € w with 0 < k < n.

Proof By (1), (2) and the triangle inequality we have

IN

(a+b)d(f* "z, f*z) + bd(f*z, f**'z)

+ cd(f*'z, *a)

< (a+b+o)d(f" 'z, ffz) + (b+ c)d(f"z, fMH'z)
= (1-b-c)d(f* 'z, frz) + (b+ c)d(f"z, f*'z)

d(f*z, f*t'z)

which implies (i) holds.
For r,s € w and r > s we have by the triangle inequality and (i)

3) d(fz, f*z) < Z'_]df‘r fHe) < (r - s)d(z, fz)

Take n € w. Clearly (ii) holds for £ = 0. Suppose that (ii) holds for ¥ = m < f;
1.e.

(4) d(ftz, i) < d(z, fz) + (", frHa) — (L+m)d(z, fz)]
Using (1), (2) and (3) we obtain

A7 ) < ad(ffm e, fhr) 4 Bd( T e, [ )
+d(frz, )] + (" e, M)
fd(fe, )
a(l +m)d(z, fr) + 2bd(z, fz)
+ cd(fr Tz, M 2) 4+ md(z, fz))
(@ +2b+2c)(1 +m)d(z, fr)+ c[d(f*™ 'z,
frlz) — (2 + m)d(z, [z)]
= (1+m)d(z, fe) + cd(f*" 2, £
—(2+m)d(z, fz)]

IN

IA

From (4) and the above inequalities we get

d(f"z, f7*7) < d(z, fz) + (T e, [ ) ~ (2 + m)d(z, fz)]
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Hence (ii) holds for k = m + 1. By induction (ii) is true for 0 < k < n. This
completes the proof.

Lemma 2 Let f be a self map of a complete metric space (X, d) satisfying (1),
(2) and b > 0. Assume {z,}nen C X, D C X and h(z) = d(z, fz) for z € X.
Then '

(iii) f-has at most a fixed point;
(iv) {zn}nen is convergent provided that lim,_ o d(z,, fz,) = 0;
(v) D is bounded if A(D) is bounded.

Proof We first show that (iii) holds. Suppose z and y are fixed points of f and
z #y. By (1), (2) and b > 0 we have .

d(z,y) = d(fz, fy) < (a +2c)d(z,y) = (1 - 2b)d(z,y) < d(z,y)

which is a contradiction. Hence (iii) holds.

We now show that (iv) holds. It suffices to prove {z, }.en is a Cauchy sequence.
Let n,m € N. By (1), (2) and b > 0 and the triangle inequality we get -

d(fzn, f2m) < @d(zn,Tm) + bld(zn, f2,) + d(@m,s fTm)]
+ cld(zn, fzn) + d(fTn, fTm)
+ d(Tm, fTm) + d(fTm, fa)]

which implies

d(fon, fom) S Tz d(@n ) + 1b jzcc [d(n, f2n) + d(Tm, fTm)]
Consequently
d(Tn,Tm) < d(zy, f2,) +d(f2n, fTm) + d(fTm,Tm)
a b—c
< 1= 2cd($m .’Cm) + 1'1:{—_7[(1(37", f:l:n) + d(xm, fxm)]
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which implies
14b—-c¢
d(xn,xm) < i_—°[d(:§m f‘rn) + d(.’l)m, ffl?m)]
—a—-2c

Since limy— o0 (Tn, f£,,) =0, {z,}ren is a Cauchy sequence by the above inequal—
ity. Hence (iv) holds. ‘

We next show that (v) holds. Suppose that h(D) is bounded. Then there
exists M > 0 such that h(z) < M for all z € D. Take u € D. For each z € D,
we obtain by the triangle inequality and (1), (2)

dow) < @)+ h(u) +d(fz, fu)
< 2M + ad(z,u) + b[h(z) + h(u)] + c[d(z,u) +
h(u) + d(u, z) + k()]

which implies :
2M(1+b+¢) 1
< = -
d(z,u) < T2 50 bM(1+b+c)

Hence 5
§(D) = sup{d(z,y)lz,y € D} < 7 M(1 +b+¢)

i.e.,, D is bounded. Hence (v) holds. This completes the proof.

Proof of Theorem 1 Let z € X and r, = d(f" 'z, f*z) for n € N. It follows
from (i) of Lemma 1 that the sequence {r,}.en is monotonically decreasing and
bounded and so convergent. Put lim, . . = r. By (v) of Lemma 2, {f*z}ncu
is bounded. Consequently there exists M > 0 such that d(fPz, fiz) < M for all
P,q € w. We claim that r = 0. If not, then there is m € N such that (m+1)r > M.
Note that 0 < ¢ < 1. Take € = %cm[(m + 1)r — M] > 0. Since limyoo rn = 7,
there exists k € N such that 0 < r, —r < e for n > k. By (ii) of Lemma 1, we
obtain

d(f™ ¥, frE A )

d(f*'e, fre) + M [d(f* e, fma)
— (1 +m)d(f* 'z, f*z)]
re+c"[M—(14+m)r]<r+e

+ M M-14+m)]<r

d(fm+k—1.’l), fm+k.’lf)

IA I

IA
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which implies r < r,4x < 7, which is impossible and hence r = 0. It follows from
(iv) of Lemma 2 that {f™z},cn converges to some point w in X.

We next prove that w is a fixed point of f. Using (1) we have

d(w, fw) < dw, ["z)+ d(f*z, fw)

< d(w, f*z) + ad(f" ', w)
+ bld(f* "z, [M2) + d(w, fw)]
+ c[d(w, f*z) + d(f* 'z, fw)]

As n — oo, we obtain

d(w, fw) < (b+)d(w, [w) < 5d(w, fw)

which implies w = fw i.e., w is a fixed point of f. It {ollows from (iii) of Lemma
2 that w is the only fixed point of f. This completes the proof.

Remark 1 Our Theorem 1 extends Theorem 1 of Hardy and Rogers [2].

The following results are inspired by Theorem A of Kannan [3] and Theorem of
Kirk [1].

Theorem 2 Let f be a self map of a compact metric space (.Y, d) satisfying (1),
(2) and b = 0. Assume for each E € F, there exist z,y € F such that

(5) limu—o supd(y, ffz) < 6(E)
Then f has a fixed point.

"Proof Order F by set inclusion. Clearly X € F # é. By the compactness of
X, we can apply Zorn’s lemma to show the existence of a minimal element E in
F. Obviously fJE C E. This implies f[fE C f£ C [E. Hence fE € F. By
minimality of E, we obtain fE = E. We assert thai ¥ is a singleton. Otherwise
8(E) > 0. Then E € F. 1t follows from (5) that there exist zg,yo € E such that
r = lim,—0 sup d(yo, [*z0) < 6(E). Sct

F={ylye E and lim supd(y, ["z0) <}
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We now prove that F' = E.Clearly yo € F' # ¢. Let {yr}ren C F and lim,_,00 yx =
y. For k € N we have

d(y, f"xo) < d(y,yx) + d(yk, /" zo)

we implies

Tim sup d(y, ["zo) < d(y,yx) + lim sup d(yx, ["zo) < d(y,yx) + 7

Let k tend to infinity. Then lim,eo sup d(y, fmo) < r. Consequently y € F; i.e.
F is closed. For y € F, by (1) we have

d(fy, ["zo) < ad(y, " xo) + cld(y, [M20) + d([y, [ 20)]
which implies
lim supd(Jy, ["za) < a lim sup d(y, [~ z0)
+ [ lim sup d(y, ["zo) +
lim sup d(fy, /" a0)]
= (a+c) lim supd(y, f"zo) +
¢ lim SSP :lo(fy,f"%)
= (1 —(x;)r +¢ lim sup d(fy, ["2o)

ie. im,_o supd(fy, ffx9) <r. Hence fy € F and f € F. Thus the minimality
of F yields FF = FE. Set

G={uwéE and sup{d(u,y)ly € E} <r)

We next prove that (¢ = E. Since X is a compact metric space, {f"zo}nen has a
convergent subsequence {f™, 20}ren. Let limy_ o f™, 2o = v. Then v € E. For
any y € E, we have

d(y,v) = lim d(y, [*zo) < lim supd(y, ["zo) <7

which implies v € (G # ¢. Let {uy}nen C (7 and lim,_,o, u, = u. Then for any
y € ¥ we get
d(u,y) < d(u,un) + d(un,y) < d(u,uq) + 1
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Asn — oo, we have d(u,y) < r and hence u € G; i.e. Gis closed. Fory € E = [E,
there exists a sequence {y, }ren C E such that lim,_o d(y, fy=) = 0. Let u € G.
Using (1) we get

d(y, fyn) + d(fyn, fu)
d(y, fyn) + ad(yn, u) + c[d(yn, fu) + d(u, [yn)]
d(y, fys) + (a + c)r + csup{d(y, fu)ly € E}

d(y, fu)

IN A IA

It is easy to show that

a+c

sup{d(y, fu)ly € E} < r=r

1 -c
Hence fu € G and fG C G. Consequently G € F. By the minimality of E, we
have G = E. It follows that

0(G)<r= li_l"rl sup d(yo, [Mz0) < 8(E) = §(G)

n— oo

which is impossible. Hence E contains only a point, which is a fixed point of f.
This completes the proof.

Corollary Let f be a sell map of a compact metric space (X, d) satisfying (1),
(2) and b = 0. Assume for each F € F, there exists y € E such that

(6) sup{d(y, )l € £} < 8(E)

Then f has a fixed point.

Proof Note that (6) implies (5). Corollary follows from Theorem 2.
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ABSTRACT: In this paper we determine the number of orbits of Q*(v/P),p a
rational prime, under the action of the modular group G =< z,y: z2 =93 =1>in
the cases p=2 and p =1 (mod 4)

1. INTRODUCTION: Forva,ny two rational integers a and &, (a,b) denotes
the greatest common divisor of a and b.

For any non square positive rational integer n, let Q*(1/n) = {a+c = a,
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c€ Z, Efc:’_‘). a rational integer and (a, a?—n c) _ 1}.

c !

For a == mc@ € @Q*(1/n); its conjugate @ == a—_g@ may or may not have the
same sign. If @ and & have different signs, then « is called an ambiguous number

[4].
If a= Tbcg, then N(a) = aad = "zc;" is called the norm of a. An a € Q*(\/n) is

an ambiguous number if N(a) = —1

In such a case n = a? + ¢*

A coset diagram is just a graphical representation of a permutation action of a
finitely generated group.

In this paper we study the coset diagrams of the modular group G =< z,y: z? =
y® = 1 > under its action on @*(1/n). Thus in our case the diagram consists of a
set of small triangles representing the action of C3 =<y : y> =1 > and a set of
edges representing the action of C; =< z2? =1 >.

They are called coset diagrams because the vertices of the triangles can be iden-
tified with cosets of some subgroup of the group.

In our diagram where there are only two generators, namely z and y. In the case
of y, which has order 3, there is a need to distinguish y from y~!. The 3-cycles of y
are therefore represented by small triangles, with the convention that y permutes
their vertices counter-clockwise, while the fixed points of y are denoted by heavy
dots.

Also to make the diagram slightly less complicated, we omit the loops correspond-
ing to fixed points z, because then the geometry of the figure makes the distinction
between z-edges and y -edges obvious.

Let C' = CU(o0) be the extended complex field. Mushtaq [4] has proved that
@*(y/n) is invariant under the action of G =< z,y : z? = y® = 1 > where
z:C"— C'"and y: C' — C’ are the Mobius transformations defined by:

-1 z—1

2(2) = =, y() =

He has also shown that Q*(1/n) contains only a finite number of ambiguous num-
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bers and those occurring in a particular orbit of Q*(y/n) form a unique closed
path in the coset diagram under the action of G on Q*(\/n).

The actual number of ambiguous numbers in @*(y/n) has been determined in [2]
as a function of n. '

~In [3], the integers, units and primes of @*(\/n) have been investigated. The exact
number of ambiguous integers, ambiguous units and ambiguous primes in Q*(y/n)
have also been determined there.

In particular it has been mentioned that an ambiguous unit (respectively prime)
is a unit (respectively prime) which is an ambiguous number in Q*(y/n).

G will always denote the modular group, unless mentioned otherwise.

In this paper we determine the number of distinct closed paths formed by am-
biguous numbers of Q*(y/n) under the modular group action.

2. PERLIMINARIES

Lemma 2.1 [1] Let p be a rational prime. Suppose that p=2or p =1 (mod
4). Then p can be written as a sum of two squares.

Note: A rational prime p where p = 1 (mod 4) can be expressed as a®?+b%. Apart
from these eight variations (+a)? + (£b)? = (£b)? + (%a)? = p, the expression of

p as a sum of two squares is unique.

Theorem 2.2  [4] Ambjguous numbers in the orbit o = {af : g-€ G} of
a € Q*(y/n) form a single closed path and it is the only closed path contained in
the coset diagram for the orbit oC.

The following simple remark is useful to determine the number of orbits of @Q*(/n)
under the action of G.

Remark 2.3 The number of disjoint orbits o®, a € Q*(y/n), is equal to the
number of closed paths in the coset diagram under the action of G on Q*(\/n).

The results that follow will be used later in this paper.
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Lemma 2.4 Let a € Q*(v/n).

Then

g(d) =M7 Vge G

Proof: Let a € Q*(\/n)

Then
z(a) = (—71) = :61 = z(@)
ya) = 1+a(a)
y(@ = 1+z(@)=1+z(a)
- TF2@ = 7@
Also y*(a) = y(y(a)) so that

y?(a) =y(y(a)) = y(@), o =y(a)

= y(y(@)) = y(y(@)) = y*(a)

As each ¢ € G is a word in z,y or y? = y~! and &7 &; = @7 a3, so g(a) =

g(a), Vg€ G.

Deﬁnltlon 2.5 Let a € Q*(y/n. Then the number of ambiguous numbers in the
~orbit o is called the ambiguous length of o with respect to G. We 31mply call it
the ambiguous length of a.

Lemma 2.6 For a real quadratic irrational number 8 in a%,a € Q*(\/n).

(¢)
(i)
@)
(év)
(v)
(vi)

2(—B) = —=z(B)
y(=B) =2-y(8)
ry*(~B) = —[yz(B)]
yz(—B) = —[zy*(B)]
y*z(—B) = —[zy(B)],
zy(—B) = —[y*=(B)]
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Proof:
(i) Here for B € o, o€ Q*(v/n)

(i) y(-B) =1+a(-f) =1+}=2-(1-}) =2-y(8)

(i) zy*(B)=B—-1, so zy*(-B)=-f-1
Also yz(8) = B+ 1, so that yz(B) =1 + 8 = —zy*(—B)

(iv) Hereyz(f)=B8+1=yz(-p)=-F+1
and 2y*(8) = f— 1 = z(8) = B — 1

so we have (iv). Similarly for (v) and (vi)

Remark 2.8:

¢ Using lemma 2.4, it is easy to see that for

a € Q*(v/n), if ae€ a then, for all B € o, § € af.
e Using lemma 2.6, it is easy to see that for

a € Q*(vn), if —a € af then, for all 8 € o€, -8 € o°.
o Hence, by corollary 2.7, it is easy to see that for

a € Q*(v/n), if —aea® then, for all 8 € a®, —f € oF.

Remark 2.9: For a € Q*(\/n), since g(&) = g(a), for all g € G, & consists of
just conjugates of elements of o® and vice versa. So for each a € Q*(v/n), the
ambiguous lengths of o and a are the same.

A necessary condition for the orbits a® and &% to be identical or disjoint is given
in the lemma that follows.
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Lemma 2.10: For a € Q*(/n) let N(a) = —1, then of = a°.

Proof: Here N(a)

=aa=-1=a== =z(a)and z(a) = a. So a € &% and
a€a® Asa€ o af G,

and a“ are not disjoint so a® = &

3. THE ORBITS OF @*(v2) UNDER THE MODULAR GROUP AC-
TION: In this section we prove that G acts transitively on Q*(+/2).

Throughout this paper we assume that p is a rational prime. Since either p = 2
or p=1,3 (mod 4) so we discuss these cases separately.

Theorem 3.1: The only orbit under the action of G on Q*(v/2) is Q*(V/2) itself.
That is G acts transitively on Q*(v/2).

Proof: Let |

a= “+c‘/§ € Q*(v2)
such that
N(a) =aa = -1
Then

a?4+cf=2 (1)

Theonly integral values of a and ¢ satisfying (1) are £1, £1. Therefore there are
exactly four distinct ambiguous numbers, namely

14v2 43[ of Q"(\/ﬁ)ﬁsuch that z(:i:l + v2) = £1 — /2 and no other

£1 0
element of Q* (\/_) is mapped onto its conjugate under z.

Moreover

2(£V2 = %‘/_—2- yo(£VZ =1+ V2
and a:y2(:i:\/§) = —1 4 /2. This shows that the eight numbers

i\/—:f:\/_1+\/—1 V2

e Q"(v?)

form a single closed path under the action of G.
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By [2] @*(V/2) contains eight ambiguous numbers and these numbers are

if1+f1—f
i\/_ ’ +1 +1

So, by theorem 2.2 and remark 2.3, the only orbit under the action of G on Q*(V/2)
is Q*(V/2) itself.

Consequently G acts transitively on Q*(1/2)

4. THE ORBITS OF Q*(,/p), WHERE p =1 (MOD 4) UNDER THE
MODULAR GROUP ACTION: The section is concerned with the deter-
mination of number of orbits of @*(,/p), p = 1 (mod 4), under the action of
G.

In contrast with the action of G on Q*(v/2) we prove that G does not act transi-
tively on Q*(v/2), p =1 (mod 4). Before a discussion on the number of orbits in
Q*(\/p) we prove the following lemma.

Lemma 4.1: Let

=P ¢ ()

where p is any fixed rational prime and c is fixed. Then elements of the from
VR of Q*(y/p), @ =a+ke, k€ Z,belong to af.

Proof: Let

;"’ a+ p .
Of"—-c—\/':EQ(\/I_’)
and a’ =a+ ke, k€ Z. Then

cl(p— a*) & c|(p — a”)

2 _ ?2 _
(a,a p, c):l@(a',a p,c)=l
c c

0 eQ(vh) & a+k="2TEVEVE g

and

So
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for all k € Z.

Also, as yr(a) = a + 1 and zy*(a) = a — 1, (yz)¥(a) = a + k and (zy?)*(a) =
a—k VkeZsoaeQ(yp)ea+keabforalkeZ.

Note: If ‘Z‘i = k is a rational integer then

Lemma 4.2: Let p be an odd rational prime and a = ﬂ’g@ be an ambiguous
number in @*(,/p). Then

- -1+ 1+
yz(a) = —a &= ——2——\-/—1_) or ———2——\/1_)

Proof: Let

o=V c o)

c

Then a is an ambiguous number & a? < p.

Now

1®a+‘/ﬁ+a—\/ﬁ=—1©—2d=c
C

yrz(a)=~ae atl==a e ata=—
c

a+\/p . a’—p
—2a AV IR —2a

a’—p
—2a | =1
(=52 )

Now % is an integer & —2a|(a® — p) & a* — p is even and a|(a® — p)

As we know that :

is an integer and

Which is possible only if a is odd and a|p

( al(a® - p), ala®)
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That isa = £1 (“a? < p and p is rational prime)

So
| -1+ P 1+ P

yz(a) = —a &= or a=

Remark 4.3:

¢ If a is one of the numbers £/p, :-5,@, then —@ = a and no other element of
Q*(y/p) satisfies this condition.

e Also there is no a in Q*(,/p) such that a = a.

e Moreover a # —a, for all a € Q*(,/p).

Theorem 4.4: Let p =1 (mod 4) be a rational prime. Then Q*(,/p) splits into
exactly two disjoint orbits under the action of G.
Proof: Since p =1 (mod 4),

P =a®+c = (£a)? + (£c)? = (2c)* + (Fa)® = (A)

Apart from these eight variations, the expression (A) is unique for some integers
a and ¢, by lemma 2.1. Now
a®—p

c? =1

P=d*"+3* =
L
so that,
ify= %@, then ¥4 = —1 and 7 is an ambiguous number of Q*(,/p)-
Also z(v) = ——,17 =%
The equation (A) shows that @ and ¢ can not be both even or both odd.

Without any loss of generality, we can suppose that a is even and ¢ is odd. Then
there are exactly eight distinct ambiguous elements, namely,

a+.,p —-a+,/p c+
+c ' +c ' %

R R
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which of mapped to their conjugates under z.

That is if 4 is one of these numbers then z(v) = -‘1—1 = 4 while other elements of
Q*(\/p) are not mapped on to their conjugates under z.

Let
oo 2tVP
c
and N
c
p= VP

So biseven as b= ”—"aﬁi=a
Consider now the orbit 3¢. Clearly 8 € 8%. Also let

g=C P g

al

We prove that all 3’ = -c—'-t—,@ € Q*(\/p), with ¢’ odd, and ¥’ = P;—fa, a’ both even,
belong to BC.

Now every ¢ € G is a word in z,y or y?> = y~!. So it is enough to show that

z(B"), y(B') are of the form f'.

But z(8') = c’_b,‘/’; = _C'_t,ﬁ. Here —¢’ is odd and —¥' is even.

Also P:_%‘l = —a’ is even.
Similarly y(8') = W- Here —(V' + ¢') is odd, —¥' is even and 2=+ f;cz =

”___.n !
—b2_2_9p _ . . - 1
p=bT—c—abe = 2 — _a'+ ¥ +2¢ is even. In particular %@, %2@ belong to A¢. So

BC consists of all elements of Q*(,/p) of the form C’+)/’3, with ¢’ odd and P;—fa, a

both even. As, by lemma 4.2, yz(a) = —& if and only if o = —14;@ or 1—+_42@, so by
remark 2.8, for all § € BC,8,—6,-6 € BC. Hence all the four ambiguous elements
B,—B,—PB,—p belong to . Further since, by theorem 2.2[4], ambiguous numbers
in the orbit A form a unique closed path in the coset diagram, so there exists

g € G such that g(8) = —B. But by lemma 2.4, g(8) = ¢(8) = —B. Thus we

G
have a closed path of 5C¢ = (1+2 ”) shown in figure 4.1.
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|
1
i
t
L8 8
t
:
I
!
I

. ¢  Figure 4.1

Again, by remark 4.3, if 7 is one of the numbers £, /p, 51)@, then —y = v and no
other element of (*(,/p) satisfics this condition. Also é # é forall § € Q*(\/p). As
r(+£/p) = ip‘/j, so by remark 2.8, 5, —v, =7 belong to the same orbit a® = (\/ﬁ)G,
for all ¥ € a%. The closed path of a© is shown in figure 4.2.
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o)

[¥)]
us

o Figure 4.2

Further since a ¢ 39, so o and B¢ are disjoint

Moreover since y(6) # %8, yx(6) # 6, 6 € Q*(/p). Forif y(6) = +46, Then

-6%1 = +6, and so § — I = %66, which is impossible because +66 is rational and

& — lis an irrational number.

Similarly if yz(6) = §, 6 = %ﬁ, then ("‘+Z)+ﬁ = al;ﬁ so ¢; = —2,/p which
is impossible. Also y2(6) # =£4, for all § € Q*(\/P).

Thus, as there are exactly eight distinct ambiguous numbers of Q*(/p) which we
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mapped on to their C()l]jl,lgﬂ‘t;(;s under x, so there are exactly two distinct closed
paths in the coset diagram under the action of G on Q*(/p) and hence, by Remark
2.3, Q*(/p) splits into exactly two disjoint orbits under the action of G.

G
They are preciscly (\/ﬁ)G and (lz—ﬁ) .

Remark 4.5:

(i) Q*(/p) splits into exactly two orbits such that one of these orbits consists

of all elements of the form a = %@, where a is odd and c, P——C"—z are both even,
and the second orbit contains all forms of clements other than this form. So both
of the disjoint orbits of Q*(,/p) under the action of G have different number of
ambiguous numbers.

That is the number of ambiguous clements in these orbits is not the same.

Morcover the ambiguous length of 8 = %ﬁ is greater than that of the ambiguous

length of a.

(ii) The action of G on Q*(v/2) is transitive, whereas it is not so on Q(Vp),p=1
(mod 1).
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1. INTRODUCTION Let S denote the class of functions of the form

f(:):z+Zanz" (1.1)

which are analytic in the unit disc U = {z : |z| < 1}. We use () to denote the class
of analytic functions w(z) in U satisfies the conditions w(0) = 0 and |w(z)| < 1
for z € U.

Let S*(A, b) denote the class of functions f(z) € S satisfy the conditions f(z)/z #
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zf'(z) 1+ Az s
1+ (f(z) 1)<———1+Bz, ev (1.2)

where < denotes subordination, b # 0 is any complex number and A and B are
arbitrary fixed numbers, —1 < B < A < 1. The class S*(A, B) was studied by

Sohi and Singh [30].

0in U and

Further let C*(A, B) denote the class of functions f(z) € S satisfy the conditions
J(z)#0in U and
1zf"(z) 14 Az

1+ ) (T B eU (1.3)
It follows from (1.2) and (1.3) that
f(z) € C¥ A, B) if and only if zf'(z) € S*(A, B) (1.4)

By specializing b, A and B, we obtain several subclasses studied by various authors
in earlier papers:

(1) SYA, B) = §*(A, B) (Janowski [11]), CY(A, B) = C(A, B) (Mazur [16],
Silverman and Silvia [27]), §'~%(1,—1), = §*(a)(0 < a < 1) the class of star-
like functions of order a, 0 < a < 1) was introduced by Roberston [26]) and
C'=%(1,—-1) = C(a) (0 < a < 1) (the class of convex functions of order ,0 << 1,
was introduced by Roberston [26] and Pinchuk [25]).

(2) SO-edeosre™ (] —1) = §3a) (]\ < £,0 < @ < 1) (Libera [14]),

Cl-adeosde™ (1 1) = C*(a) (]A] < Z,0 < a < 1) (Chichra [8] and Sizuk [29}),
S1-a)cosXe™ (] 1_94 = S‘ B) (IAI <A/2,0<a<1,0<p<1)(Mograand
Ahuja [18]) and C(i- ﬂms‘f““(] 1-28) = C*aB) (A < 2, 0<a<1, 0< A< 1))
(Ahuja [1]).

(3) S*(1,—1) = S(1 —b) (Nasr and Aouf [20]), C®(1, —1) = C(b) (Waitrowski
[32]) and Nasr and Aouf [21]), Sb(1,1 —28) = S(1 —4,8)(0 < B < 1) and
C1,1=2B8)=C(b,8)(0< B <1) (Aouf_ Owa and Obradovic’ [6]).

(4) S*(1,57 1) =F(b,M)(M > 1) (Nasr and Aouf [22] ), Ct(l,4—1) =
G(b,M) (M > 1) (Nasr and Aouf [23}), C<>*™ (1, L - 1) = Fam (|A| <z

M > 2} (Kulshrestha [13]2, Ceosre™ (Lay-D)=CMm(M<E M>3)(Kul
shrestha [13]), SU=2)eosde™ (1 L — 1) = Fm(A0) (JAl < £,0 < a<l, M>1)
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(Aouf [23]), CO-eosde™ (/L 1) = Gy(\,a) (A <2,0<a<]l, M> 1)

(Aouf [2,3]), S* (1,45 —1) = F(1, M) (M > 1) (Singh and Singh [28]) and

S(l—a)cosAe--A (1\12_}‘"; +m’ lj—wm) — S;;,M(a’/\)(] —m<M< m,0<a<l and

[A] < ) (Jakubowski [10]).

MacGregor{15] obtained upper bounds for the moduli of the coefficients of a
starlike functions whose power series representation in U is of the form

f(z)=z+ Z anz" (1.5)

n=k+1

Boyd [7], Srivastava [31], Mogra and Juneja [19], Aouf [4, 5] and Owa and Aouf
[24] extended MacGregor’s result to different classes of analytic functions.

In the present paper, we determine sharp coefficient estimates for the classes
Si(A, B) and C(A, B) whose power series representation of the form (1.5).

2. COEFFICIENT ESTIMATES We shall use the following lemma in our

investigation:

Lemma 1. If k, ¢ are positive integers and —1 < B < A <1, then
(A= B) |1|2+Z{ }
ANA = B)b—mkB|* — m*k*} =

]

The Lemma can be proved by induction of ¢ for a fixed &k in the same way as the
lemma in [7].

(A— B)b

PR

Theorem 1 Let a function f(z) given by (1.1) be in the class St(A, B).
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G) f(A-B?b? > (n—-1){(n-1)(1 - B*) +2B(A - B) Re {b}}, n >
mk+ 1, m € N, then

k m—1
ol S G T =) {H

7=0

———(A‘kB)b—le} (2.1)

formk+1<n<(m+1l)kand m=1,2,3,---,N+1, and
N+1

(A - B)b
LA

le (22

k
leal € T H

7=0

for n > (N + 2)k, where N = [G] (Gauss symbol) and

(A— B)Jb/*

T G {10 - B+ 2B(A~ B) Re (3))

(i) H(A=-B?2P<(n-1){(n=1)(1-B%)+2B(A—B)Re {b}} n > k+1,

then
(A— B)|b|

oy (2.3)

lan| <
for n > k+1. The estimates in (2.1) are sharp forn = mk+1, m =1,2,3,--- ,N+
1, while the estimates in (2.3) are sharp for each n.

Proof Since f(z) € Si(A, B), by definition of subordination, there exists an
analytic function g(z) which satisfies

N =) |
M= T A= B ) (24)

and |g(z)| < 1(z € U). Also we note that
9(2) = k2" + o 2 -
It follows from (2.4) that

Z (2~ 1)apz" = (ex2® + ey 27 4+ - )[(A = B)bz
n=k+1"
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+Z ((A—= B)b— B(n—1)a,z"].

n=k+1

Equating the coeflicients of the same powers on both sides (2.5), we see that

(n—1)a, = (A= B)ocoaa(n=k+1, k+2,---,2k) (2.6)

Since |¢(z)] < 1 implies that
2k—1

D el <1 (2.7)
n=k

we have
o0

> (n—1)?anf® < (A = B)?[b]? (2.8)

n=k+1

Equation (2.5) can be written as

P
Y (n—Dagz" + Z d,z" = g(2)[(A - B)bz
n=k+1 n=p+1
p—k
+ > (A= B)b— B(n —1))anz"] (2.9)
n=k+1

Since, (2.9) is of the form F(z) = g(z)h(z) and |g(z) < 1(z € U), we know that

1

2 ;F ; 1 2r ;
o |, |/«(rcf’)|2dog-2-;/0 |h(re®|” do (2.10) -

for each r(0 < r < 1). Equation (2.10) in terms of the coefficients (2.9) can be
expressed as

4 [>9]
S (= 1anfr? 4 D (dalr® < (A — B)?jbfr?

n=k+1 n=p+1

Z| (A= B)b— B(n = 1)) Play|*r™" (2.11)

=k+1



56 M.K. Aouf, H. E. Darwish and A. A. Attiya

In particular (2.11) implies that

Z (n _ 1)2|an|2r2" < (A _ B)2‘b|2r2
p—k
+ > (A= B)b= B(n = 1)) lan[*r* (2.12)

Letting r — 1 in (2.12), we obtain

P

Y (n—1)anf* < (A- BB
p—k
+ > {l((A= B — B(n— D) = (n —1)*}anf? (2.13)
n=k+1

(i) I (A= B> (n—1){(n—-1)(1 = B)+2B(A— B) rmRe {b}}, n>
‘mk+1, m=1,2,3,---

We now establish, by an inductive argument, the inequalities

(m+1)k ' m—1 2
Lk —
Z (n —1)?a,)* < (A-B)b _ B]l (2.14)
Merdit (m—1)! - k
and
(m+1)k
ZjﬂA B)b— B(n = 1) = (n = 1)*} |an|’
n=mk+1
2
17 [(A=B) 2 212
< L — ——T——~[3] {l(A = BYb — mkB|* — m*k*} (2.15)
1=0

form=1,2,3,---, N +1, where N = [(i] is given by

(A= BPP
(n—1){(n —1)(1 — B?) +2B(A — B) Re {b}}

G =
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and [G] is the greatest integer not greater than G.
For m = 1,(2.14) gives

2k
> (n = 1)%an]? < (A~ B)b]?

n=k+1

which is the same as (2. 8) Thus (2.14) is valid for m = 1. We can prove (2.15)
for m = 1 by using (2.8) as follows:

2k
S {(A = B)b— Bn— )2 = (n — 1)*}]anf?

n=k+1

Bb— 2
'(f4 13L| 2{: (n Ian|2

n=k+1
{I(A - B)b— Bk — k*}(A — B)*|b]?

which establishes (2.15) for m = 1.

Now let ¢ > 1 and suppose that (2.14) and (2.15) hold trueforn = 1,2,3,---,¢—1.
Using (2.13) with p = (¢+ 1)k and the inductive hypothesis concerning (2.14), we

have
(g+1)k

> (n=1)*aq* < (A - B)*b]?

n=qgk+1

qk
+ > (A= B)—Bn—1)]’ = (n—1)*}|a.]*

n=k+1
< (A= B+

g-1 (m+1)k

Y X A= B = Bl — 1) = (1= 1)}’

m=1 n=mk+1

< (A- B+

g-1 me1 ,
! (A-B}p . o
;’:I{WJ_UU T‘BJ'} {I(A = B)b— mkB|? — m2%k?}
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be the induction hypothesis.
Using Lemma 1, we get

(g+1)k ) k g—-1
> (=1l < {(q—lmzo

n=qgk+1

so that (2.14) holds for m = q.

Continuing our argument, we use (2.14) with m = ¢ to deduce (2.14) for
m =q. ‘

This completes the proof of (2.14), (2.15) and (2.1) follows from (2.14).

In order to prove (2.2), we suppose n > (N + 2)k. Letting p = (¢ + 1)k in

(2.13), we sce
(a+1)k

Y (=1 ag)* < (A- B bl

n=qgk+1

gk
+ > {l((A=B)b—B(n— 1)~ (n — 1) }a.|*

n=k+1
which gives
(n — 1)?la.]? < (A - B)*b|*+

Z{l (A-B (n~1))* = (n=1)"}|an|

n=k+1
(N+2)k

= (A= BV + > (A= BYb = B(n = 1)) = (n = 1)*}]anl+

n=k+1

qk

Yo {lA= B = B(n = 1)*| = (n — 1)} |anl?

n=(N+2)k+1

N+1 (m+1)k

=(A=BPP+> > A{l(A=B)b—Bln~1)~(n—1)*}|af?

m=1 n=mk+1

g—1  (m+1)k

Z Z {l(A-B)p-B (71—1))]2—(71,——1)2}anl2

m=N+2 n=mk+1
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< (A - B)*b)*+

N+1 (ﬁ+1jk
S S Al(A-BB=Br-1)F-(n-1}al  (216)

m=1n=mk+1

An application of (2.14) and (2.16) leads us to

, k N+1
(n—1)%|aq|* < {(N+1 lH

(A kB)b ~ B]}}

that is,

(A= B)b

k .
I“"'-(N+1)(n—1)111 PR

(n> (N +2)k)

(i) H(A=B)}oP<(n—-1){(n-1)1 = B)?+2B(A— B) Re {b}}, n>k+1
then (2.13) gives

,
™ (n— 1Plaaf? < (4 - BB
n=k+1

o (A— B)J| ‘
lan| < ——1)—, (n>k+1)

which proves (2.3). The function f(z) given by

(B 7 AR ggk—ap B #0,
f(z)=19 (1 + B (2.17)
zexp (3824, B=0,

where (A— B)?[b]> > (n=1){(n—1)(1 ~ B)?+2B(A— B) Re {b}}, shows that the
estimates in (2.1) are sharp for n = mk + 1, 1,m = 1,2,---, while the estimates
in (2.3) are sharp for

fa(2) = zexp [%z"‘l] (2.18)
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where (A — B)}[b? < (n—1){(n—1)(1 - B)?*+2B(A— B) Re {b}}, n> K +1

Remarks on Theorem 1

1. Putting A=1, B=—1and b =1 in Theorem 1, we get the result due to
MacGregoer [15].

2. Putting A=1, B=~landb=1-a, 0 < a<1,in Theorem 1, we get
the result due to Boyd [7].

3. Putting A =1, B=—-1and b= (1 —a)cosre™, 0 <a <1 and
|A| < Z, in theorem 1, we get the result due to Gopalakrishna and Shetiya [9].

4. Putting b = (1 —a)cosAe™, 0 < o <1 and [\ < %, in Theorem 1, we
get the result due to Aouf [4].

5. Putting A=1, B=1-28, 0 < <1, in Theorem 1, we get the result
due to Owa and Aouf [24].

6. Putting (i) b= (1 —a)cosre™, 0 <a<land [\ <% A=1and
B=1-28,0<p<1, (i) b:(l—a)cos/\e —iA 0<a<1and|/\|< , A=1
and B = -1 (iii) b=coshe™™, [\ < % A—landB— 206> 1, (1v) b=
cos \e™ and B = °°S\ LM <2 respectlve]y, in Theorem 1, we get the results
obtained by Mogra [17]

7. Puttingb=1-0,0<oa<1,A=1l,and B=1-23,0< < 1in
Theorem 1, we ger the result due to Mogra and Juneja [19].

Nothing that f(z) € Cﬁ(Ab, B) if and only if 2f'(z) € S}(A, B), we have for the
functions belonging to the class Ci(A, B).

Theorem 2 Let a function f(z) given by (1.5) be in the class Ci(A, B).

(i) If (A = B?|b]2 > (n — ){(n — 1)(1 — B?) + 2B(A — B) Re {b}},
mk+ 1, m € N, then

la.| < (‘m__ l)!l;(n =) { Ll (A-B _I;B)b' — Bj} (2.19)

J
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formk+1<n<(m+1)k, m=1,2,3,---,N+1, and

k Ya-Bp
lanls(N—l)!n(n—l)]-:-!; ( k ! _BJI (2:20)

for n > (N + 2)k, where N is defined in Theorem 1.
(i) If (A—=B)?|b]* < (n—1){(n-1)(1-B?)+2B(A—B)Re {b}}, n > k+1, then

(A - B)lbl

1) (2.21)

lan| <.

for n > k 4+ 1. The estimates in (2.19) are sharp for function f(z) given by

zf"(z) 14 [B+ (A— B)b*
1 = 2.22
e I+ BzF (222)
for n = mk +1, m = 1,2,3,---, while the estimates in (2.21) are sharp for

functions f,(z) given by

[1(2) = exp <Ml>

n—1
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ABSTRACT In this article we prove the statistical analogue of some of the limit
theorems on convergent sequences,

Key Words statistical convergence, density, statistical cluster point, thin subsequence,
nonthin subsequence,

1. INTRODUCTION The conceptol statistical eonvergence was introduced
by Fast [4], Buck [1] and Schoenbery [10] independently. Further the concept was
studied and linked with summability by Fridy (5], [6], Cannor [2], Maddex [7],
Rath and Tripathy [8], Salat [9], Tripathy [11], [12], [13] and many others. The
concept of statistical Canchy sequences and statistical limit points was introduced
by Fridy [5], [6]. Most of the concepts depend on the idea of certain density of a
subset of the set of N of natural numbers. Iu this article we give examples where
the statistical limit deviates from ordinary limits and establish some resuits,

For K € N, we have Ky = {k € N : k £ n} and |IV,,] denotes the number of
elements in Ay, Then the nalural densily of I is defined hy 6(N) = limpoee %
if exists, A real numher sequence (2,) is sald to be slatistically convergent to L,
written as stat-lim r, = L il forevery e > 0, §({k € N: oy =L| 2 €}) = 0. The
number L is necessarily unique.
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2. DEFINITIONS AND PROPERTIES If (z;;) is a subsequence of (z,)
and K = {k; : € N}, then it is called as a thin subsequence of (z,) if §(K) = 0.
It is called as a nonthin subsequence of (z,) if §(K) # 0 or K fails to have natural
density. A sequence with is statistically convergent to zero is called a statistically
null sequence. '

Definition 1 The number u is a statistical limit point of the number sequence
(z,) provided that there is a nothin subsequence of (z,) that converges to p.

Definition 2 The number g is a statistical cluster point of the number sequence
() provided that for every € > 0 the set {n € N : |z, — | < €} does not have
density zero. ‘

Definition 3 The sequence (z,) is said to be statistically bounded if there exists
a A > 0 such that the set {n € N : |z,| > A} has zero natural density.

Definition 4 A real sequence (z,,) is said to be statistically monotonic increasing
if there existssuchaset K = {ky < by < ——— <k, < ——-=} C N that §(K) =1
and z, < g, ,, forallne N.

—_— n+1

Similarly we can define statistically monotonic decreasing sequences. The above
definition is corrected by Tripathy [12], became proposition 3 of Fridy [6] fails to
hold by his definition. This 1s shown by an example.

The following well-known lemmas are required for establishing the results of
this article.

Lemma 1 Let a bounded sequence (z.) be statistically convergent to L, then
(C,1) = limz, = L. (See for ezample [10], Lemma {.)

Lemma 2 A sequence (z,) is statistically convergent to L if and only if there
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exists such a set K = {k; < k; < — — -k, < — — =} C N that §(K) =1 and
limy o0 Tk, = L (see for ezample [9], Lemma 1.1).

Lemma 3 If the sequences (z,,) and (y,) tend to zero and if (y,) is positive and
decreasing then .
. Iy . Iy — Tn4i
lim — = lim ————
n—oo yn n—oo yn _ yn+1
provided the limit on the right exists, whether finite or infinite (see for ezample

[3], Problem 18(i), page 86).

Lemma 4 If(z,) is a bounded number sequence, then (z,) has a statistical cluster
point. (See for ezample [6], Corollary.)

For (z,) a convergent sequence, we have lim — sup z,, = lim —inf z,, = limz,. But
for statistically convergent sequences, the equality may or may not hold. For this
consider the following example.

Example 1 Define the sequence (z,) by

2, if n = k? and n is even,
r, =< —2, ifn=k>%?and nisodd, k€ N,
n~!, otherwise

From the above example it is clear that a statistically monotonic sequence can
have at most one statislical cluster point, but more cluster points.

If a sequence has one statistical cluser point, then it may or may not be statistically
convergent. Consider the following example.

Example 2 Define the sequence (z,) by

1, neven
T, =
" n, n odd

From the above examples, it is clear that lim - sup =, and lim-inf £, may or may
not be the slalistical cluster poinls of the sequence (z,,).
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3. THE MAIN RESULTS The proof of the following two propositions are
obvious.

Proposition 1 If a sequence (z,) is statistically convergent to L, then every
nonthin subsequence will have L as a statistical limit point.

Proposition 2 A statistically monotonic sequence is statistically convergent if
and only if it is statistically bounded equivalently il is unbounded over a thin sub-
sequence.

Theorem 3 Let (z,) be a bounded statistically convergent sequence. Then

lim (22923 - - :cn)l/" = stat — limz,
n—oo

where ., > 0, for all n.

Proof Let (r,) be a bounded sequence which is statistically convergent to ‘L.
Then (log z,) is also a bounded sequence, statistically convergent to log L. Then
by Lemma 1 it follows that
logzy, +logza +--- + log z,
' n

—logL, as n=— o0
= (212923 - T,)/" > L = stat —lim z, as n — oo

s 'Trhe‘ folloWihg Propoéition folléows‘from Lemma 4.
. P‘kr.oposition 4 If a sequence has no statistical cluster point, then it is unbounded.

Theorem 5. If the boundcd sequences (z,) and (y,) are statistically convergent
to L and M respectively, then '

.1
,"h"r?" - ;xkyn—k+1 =LM
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and
n

lim -1- kayk = LM

n—oo N

k-1

Proof Let (z,) and (y.) be bounded sequences, statistically convergent to L and
M respectively. Then we have z, = L + a, and y, = M + by, say, where (a,) and
(bn). are statistically null sequences which are bounded. Then '

n

;ll-zmkyn—kﬂ =LM+— 1 Zakb” ki1t MZGV*_ Zbk
k=1

k 1 k+1

By Lemma 1, the three sums on the right converge to zero. Similarly the second
part follows.

Theorem 6 Let (.1:") be a sequence and K = {k; : i € N} C N be such that
§(K) =1 and lim;_ ~x—'ﬂ L , then stat-lim z, = 0if |L] < 1.

Proof Let (.z:n) be a sequence and K = {k, : ¢ € N} C N be such that 6(1() =1
and limy_, %‘kﬂ =1

1]
Tkit1
-Tk.'

= lim

=0

= |Lj

. Since

Then for any € > 0 there exists ng such that zk' .

|L| <1, so we can have € > 0 such that |L| +¢= /\ < 1. Thus we have IT'-kii—l <A

for all k£, > no. Now repla,cmg nby n,n+1,n+2,--+,n + p successively and on
multiplying we have

Izkn+P| _< /\p
Tk,
|Tkpy,] = 0, as p— o0
= x,—0, as n—o oo

= (z,) is a statistically null sequence

Similarly the other case follows.
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Theorem 7 Let (z,) and (y,) be bounded statistically null sequences such that
(yn) is positive and statistically strictly monotonic decreasing, then there ezists a
subset K = {k;:1 € N} C N such that §(K) =1 and

. Tn; . Tn; — Ty,
.hm Z0 .hm ML L 1 Y
P20 Ynp 70 Yni — Yniga

Proof By Lemma 2, let K; be the set on which (z,) is a null sequence. By defi-
nition let K be the set on which (y,) is statistically strictly monotonic increasing
and is a null sequence. Let K = K; N K,. Then §(K) =1 and on K,(z,) and
(yn) satisfy all the conditions of Lemma 3. Thus the result follows.

Now we state the statisticalanalogue of a result on convergent sequences.

 Proposition 8 If(y.) is a statistically monotonic sequences divergent to oo with
Yn # 0 for all n and (z,) is any sequence, then there ezists a subset K = {n;:1 €
N} C N such that §{(K) =1 and.

Ty,

_— xn‘

. T .
lim — = lim
1—300 yn; 1 —00 yn.'+1 _ yn.'

The following result follows from Lemma 2 and Cauchy’s Second Theorem on
limits.

Proposition 9 Let (z,) be a number sequence such that z,, > 0 for all n, then

Tn . cr
L = stat — lim(z,)'/", if it exists

stat — lim
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ABSTRACT New results are obtained concerning natural number solutions of the
Diophantine equation 2! = z” + y°. Bounds are found on the exponents of this equation.
Evidence is provided supporting the conjecture that if (z,y) = (y,2z) = (2,z) = 1 then
there are no solutions to this equation for r,s,¢ > 3. It is shown that the equation has
no solutions for r = t > ¢(y) + 1 and s < ¢(y)log, z when (z,y) = (y,2) = 1, where
¢ is Euler’s totient function. Proof is given that if (z,y, 2) also satisfies the equation
z? + y? = 27 then min (pr/4,ps/4) < t < max (pr/2/,ps/2). Also, an analogue of a
theorem of Sophie Germain, concerning Fermat’s Last Theorem, is given for the above
equation.

AMS subject classification: Primary 11D41; Secondary 11D75.

Key words and phrases Generalized Fermat equation, Diophantine equation, Sophie
Germain’s theorem.

1. INTRODUCTION The aim of this paper is to study the Diophantine
equation
=z +y (1)
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Conditions on solutions to this equation are derived. This paper provides evidence
in favour of the conjecture that there does not exist a solution to equation (1) for
r,s,t > 2 and (z,y) = (y,2) = (2,2) = 1. However, this conjecture appeares to
be extremely difficult to prove, as it is generalization of Fermat’s last theorem.
The conjecture is discussed in [1], [5] and [6]. It is known that there are only a
finite number of solutions for 1 +1 +1 < 1 to equation (1), where (z,y) = (y,2) =
(z,z2) = 1, by a result of Darmon and Granville [1] (see[6]). Nevertheless, from
Fermat’s last theorem (see[9], [12]) we may assume that r, s and ¢ do not have any

common factor.

The results obtained herein are different from those of the well known paper by
Darmon and Granville [1].

There has been interest about the problem of showing that when equation (1) has
a solution (z,y,z) then there do not exist natural numbers ry, 81,1, which do not
coincide with r, s or t in equation (1) such that

2t =2 +y" (2)

with particular conditions placed on x,y and z. For example, in 1956 Sierpinski
[8] showed that if £ =3, y = 4 and z = 5 then equation (1) has only the solution
(r,s,t) = (2,2,2). Furthermore, Jesmanowicz [4] proved that the only positive
integral solutions for equation (1) satisfying (z,y,2) = (5,12,13) or (7,24,25) or
(9, 40, 41) or (11, 60, 61) are given by (r,s,t) = (2,2,2) and the conjectured that
if (z,y,z) are Pythagorean triples, i.e. natural numbers satisfying equation (1)
with (r,s,t) = (2,2,2), then equation (1) only has the solution (r,s,t) = (2,2,2).
Le partially proved Jesmanowicz’s conjucture in [3]. Later Terai [10] conjectured
that if r, s, > 2 then for any (r,s),t;) satisfying equation (2) then r = ry,s =
s1,t = 11, where suitable conditions must be placed on z,y and =.

Of a similar nature, Terai [11] conjectured that the equation

¢ =22+ b, z,Y,2,b,c € N
has only the solution (z,y,2) = (a,2,2) where a® + b* = ¢*. This conjecture was
partially proved by both Le [2] and Terai [11].

This paper is arranged as follows. First, elementary methods are applied to equa-
tion (1). Then bounds are found on the exponents of this equation, which must be
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satisfied for a solution to exist. These bounds are proved by applying basic prop--
erties of Euler’s totient function. The bounds are applied in Theorem 3, where it
is proved that, in particular, equation (1) has no solution forr =t > ¢(y)+1 and
s < ¢(y)log,, z, when (z,y) = (y,2) = 1, thus providing evidence in favour the
conjecture generalizing Fermat’s last theorem which was mentioned above. Theo-
rems 4 and 5 contribute to the verification of the conjecture of Terai, by showing
that if equation (1) and the equation 22+ y? = z? have common solutions then the
constraint min (pr/4,ps/4) <t < max (pr/2, ps/2) must hold, where p,r,s > 2.
The conditions for the solvability of this latter equation are given in Proposition
8.1 of [1]. However, this result is of of a different character to our result.

Finally, we prove Theorem 6, which is an anologue of a theorem of Sophie Germain.
This proof is based on proofs of results due to Powell [7] and can be considered an
application of his methods to equation (1). Nevertheless, we require the following
conjecture to hold as a prerequisite for Theorem 6 to hold.

" Conjecture A Assume that r,s and ¢ are greater than 2 and that a solution
(z,y,2) exists to equation (1) then there exists a positive constant ¢ such that
z<e¢, y<cand z < ¢, where ¢ is independent of r,s and {.

Note that results from the paper by Powell [7] are required for the proof of this
Theorem 6. We have not able to prove Conjecture A at present, but it appears
to be probable given the aforementioned result of Darmon and Granville.

A common after theorem 6 indicates that information to the asymptotic behaviour
of solutions to the equation, which is considered in Theorem 6, can be obtained
independently of Conjecture A.

In the following we let N = { non zero positive integers }. In the sequel we assume
rys,t, K,z,y,2 € N and let ¢ denote Euler’s ¢ - function.

2. RESULTS INVOLVING EULER’S FUNCTION The possibility of
some special solutions to equation (1) are excluded by elementary considerations
as in the following Theorem 1.

Theorem 1 Equation (1) has no solution for (y,t) = (z,t)=1, =2z (mod ¢
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)and r =t + Ko(t).

Proof Assume (1) holds then y* = z!(1 — zK%(*)) = 0 (mod t); a contradiction. -
o.

We give a simple corollary, for the special case when t = p, for p a prime natural
number.

Corollary If p € N is a prime then there is no solution to the Diophantine
equation ”
P =2 4 y®,. where

z=z (modp), (z,p)=(y,p)=1 s€EN

Proof Follows immediately from Theorem 1, by setting K = pO

Note that for equation (1) to hold z*~%(*") may not be an integer for z sufficiently
large. After taking the lorarithms of both sides of equation (1), this may be shown
as follows: Assume z" > y® then, let n be the number of distinct prime factors of
z. For log z > 2", we have t < 2log, z7 < i%% < % < ¢(z"). In the sequel, this
limits the test of whether or not zt~4(*") is a natural number to small values of z.

In the following theorems bounds are found on the exponents of equation (1).
These results are consequences of Euler’s generalization of the lesser Fermat the-
orem. Only part 2 of this theorem will be used later.

Theorem 2 The following hold:

1o If (z,y) = (y,2) = 1 and 27 KW — ;t-K8W) ¢ N then equation (1) satisfies
tlog,z >r>log,y+ Ko(y).

2. Ift<r, (z,y) = (y,2) = 1 and 2'~5¢0) _ z7-Ké() € N then equation (1)
implies thattlog, z > s > K¢(y)log, 2.

3. There is no solution to equation (1) for (z,y) = (y,2) =1, z > z and
SA=0(*) _ gr—6") ¢ N

4. Equation (1) has no solution (y,z) =1 and " — z*=*®°) € N with y* > ="



On a generalization of the fermat equation (i

Proof We prove case 2, the other cases are proved similarly. Case 1 is proved
directly and cases 3 and 4 are proved by contradiction. Firstly, note z > z because
logz > Tlogz > x. There exists N; € N such that

LKéy) _ r=Kély) N,y

After multiplying both sides of this equation by zK%() we get

ot = KW pr-Ke(y) | N2yZK¢(y) >zt 4 N2y2K¢(y)

So y* > NpyzRe¥) > y2K4() These inequalities constitute a contradiction unless
s —1 > K¢(y)log, z. The remaining inequality follows since 2! > y°.0

Corollary There are no solutions of equation (1) fory =2, z,z odd, t < r,r,;t >
2, s <logyz andlog,z > =1.

Proof r,¢> 2 and log, z > =1 ensure that z'~! — 271 € N.O

The following theorem, Theorem 3, provides evidence in favour of the general-
ization of Fermat’s last theorem, which is mentioned above. Theorem 3 roughly
expressed indicates that if r = ¢ and log, z are large when compared with ¢(y)
and s is small with respect to ¢(y) then there are no solutions to equation (1).

Theorem 3 [f (z,y) = (y,z) = 1 then there are no solutions to equation (1),

-when
log, 24+ Ko(y) >r>1> Ké(y) + 1,

where
s < K¢(y)log, z +1

In particular, if (z,y) = (y,2) =1, r=t> ¢(y)+ 1 andlog, z > ¢(y) + 1 then
there are no solutions to equation (1) for s < ¢(y)log, z + 1.

Proof Assume ! — K¢(y) > 1, r > t and (z,y) = (y,2) = 1 then 27K
27K > 5 _ g7=Kelv) > 0, providing log, z + K¢(y) > r. Therefore the condi-
tions of Theorem 2 part 2 are satisfied. So no solution exists of equation (1) when

s < K¢(y)log, = + 1.
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Following from above, if log, z + (K — 1)¢(y) + 1 for all K € N, which occurs
if and only if log, z > ¢(Y) + 1, then there are no solutions of equation (1) for
r=t>¢(y)+1, s < ¢(y)log, z+1 and (z,y) = (y,2) = 1, because the intervals,
[log, z + K¢(y), Ké(y) + 1], overlap. O

3. ON TERAI’S CONJECTURE The following two theorems provide con-
straints on ¢ in equation (1) in terms of s,r and p, where z,y and z also satisfy
z? 4 y? = 2P,

Theorem 4 [fz? +y? = 2P then equation (1) has no solution for t > max (pr/2,
ps/2), where r,s,p > 2, p,z,y,z € N.

Proof Suppose there exists z,y,z € N such that 22 + y? = 27 and =" + y° = 2%,
Then after eliminating z from these equations, we obtain the equation

2+ )P =a"+y° (3)

Now consider the two forms f(X,Y) = (X2 4 Y?)¥/? and ¢(X,Y) = X" + Y>.
Then g(1,1) = 2 < 2!/7 = f(1,1). Let fz(X,Y) denote the partial derivative of
f with respect to X evaluated at the point (X,Y’), and similarly define fy,gx
and gy. So fx(X,Y) = 2);(—t()\’z + Yz).t;};z >rX™ ' =gx(X,Y) for X,Y > 1 and
2’;‘- > r (which is equivalent to £ > £°). Similarly for ¢t > &, fy(X,Y) > gy(X,Y)
and X,Y > 1. Consequently, f does not meet g for any real values of X and Y
which are greater than 1. So, there are no natural number solutions to equation

(3). O

Theorem 5 Ifz?+y? = 2” then equation (1) has no solution fort < min(pr/4, ps/4),
where p > 2 and p,z,y,z € N.

Proof Firstly, note that 2? is not equal to 2 for z an integer, therefore we may
assume that both z and y do not equal 1. Now we show that there are no solutions
to both of the equations,

1+y*=2" and 14y° =2 (4)

wheret < 2. We may assume that y is not equal to 2, since 5 is not equal to z? for
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z an integer. Assume equation (4) has a solution, then eliminating z from equation
(4) we find that (14+3?)' = (14¢*)". But (1+Y2)5 < (2Y)r <Y? <1+Y*
for t < % and Y > 2 a real number; which is a contradiction. Similarly, a similar
contr adiction applies to equations involving the variable r. Hence, we may assume
T,y > 2.

We argue similarly to Theorem 4. If Theorem 5 is false then there exists z,y,2 € N
such that

2t

2 = (") = (2 +")* = (& +¢')’
As above consider f(X,Y) = (X% + Yz)%‘ and g(X,Y) = (X" +Y*)% The partial
derivatives of f and g are denoted similarly to above.
We use the fact that X2 +Y? < X2Y? for X,Y > 2. So that
2_t

P
t

< oxZ(xy)ieen
P

fx(X)Y) = 2X=(X?+ V)5

< 2XTHX"+Y?)
= gx(X,Y) if

2
3
and both inequalities hold for ¢ < min(pr/4,ps/4). Also, f(2,2) = 2% < 2% <
(2 +2°)? = ¢(2,2) if t < B < E-. So the theorem follows. O

% <r, %(Zt —p) < s and % < r. A similar inequality holds between fy and gy,

4. AN ANALOGURE OF, S. GERMAIN’S THEOREM In the following
theorem we prove a result similar in nature to a classical result of Sophie Germain
(see [6]). Our result follows from Conjecture A by a method due to Poweel [7].

Theorem 6 If we assume Conjecture A holds then for any even integer m for
which 3¢(m) > m, if n is any positive odd integer sufficiently large for which
mn + 1 = q, where ¢ is a prime, then equation (1) has no solution in natural
numbers z, y, z such thatr =n+1r", s=n+s" andt =n+t", wherer”,s",t" €
N,(z,y) =(y,2) = (z,2) =1 and 2r",2s",t" < n.r",s" and t" are independent of
n and r",s" > t". - o
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Proof The proof {ollows the proof of Theorem 2 of Poweel [7]. Lemma 1 is a
modification of the Lemma in Theorem 2 and Powell [7). Lemma 1 is proved using
the techniques of the proof of this lemma of Powell but assuming Conjecture A,

Lemma 1 For any even integer m for which 3¢(m) > m, for any inlegers vy, 83
and ty for which 0 < ry,80,ta < m, and any prime number q sufficiently large,
there does nol erist an inleger a which belongs to the ﬁ#l'])()’llfﬁ[ m (mod q) and

for which g(a) = 2"’ & y* % & "a"* 2 0 (mod ¢. 2, y, 5, 7", 8", 1" are defined
¥ s
as above. The samf holds true i = 2"a £ e, e £ 2"a and
g\a y?
vt & 2" a2 " 5" and 1" are dcfncd in Theorem 6.

Proof of Lemma 1 For Lemima 1 te hold we must shew that the following four -
cases do not hold;

1! Z,rrn — y.g:n _+= = :
2 :L,r:ﬂ — _y.g=n o 7!-—71
PR = =] — 2 :
3; .‘Tr-n = ._y§=ﬂ + g;(t=xn!
4, 27" = y's"_‘" _ Ztan

Firstly, we may assume y > r by the symmectry of equalion (1). Now llogzz >
slogy, from (quation (1). Sologz > &logy > logy, since s > {. Thus z > y.
Case 2 is false since the LIS > 0 and HHS < 0; a contradietion. Multiply both
sides of the equation {or case 1 by z" and y™, Thcucfme "= 2™y 42" and

y' =yt (2" - 2t ") Sor from equation (1), 2! = y*"z"" r‘(31:2’“ T4y S (2"~
y™)z2t" Thus, 27%(z" + y% = 2*) = y* """ (2® + y?**. Since (ry,2) = 1,
we have that " = gin-r + y***. Consequently, zt = 2™(2%"=" 4 y¥*=¢) »

2T Y8t s " 4y = 2Y a contradiction. As above, multiply both sides of the
equation in case 3 by x". Thus, we obtain that z" = z™(z"™" = y*™") = ' =y,
which is equnvnlent to J "(.z: z”) = =" (" =y"), Since (y,z) = 1 we have that
=yt =" and y" = 2" = 2", After substututmg these resulting equations
into the eguation for case 3, we find that 2™" = y™ — 2", Therefore, y > z. But
z > y; a contradiction. Now multiply the equatlon for case 4 above by z". We
obtain that y*="(x" 4 y" ) = 7‘ "z 4+ 2"%). So, since (z,y) = 1, we have that
YR =gt 42" <yt and 2N = 2" 4yt < 2% Subsituting the abave expressions
into the equation for case 4, we obtain that £™=" = " = y" < z". But then
"+ y" > " > "+ y" a contradiction, O
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End of Proof of Theorem 6 The remainder of the proof is similar to the proof
of Theorem 2 of Poweel [7]. Firstly, assume solutions (z,y, 2) exist satisfying the
conditions of the theorem. From Powell [7], the group of £=* th power residues
modulo ¢, is isomorphic modulo ¢ to the cyclic group modulo ¢ with m elements
denoted by {a' : a™ = 1 (mod ¢)} for some integer a. Thus if ¢ does not divide zyz
we have: z™'z% = z7"a™ (mod g), vy =y a (mod g¢), 2% = 2t
(mod q), for some integers. So we have

ga? +y"a? +2"a? =0 (mod q) (5)

From Lemma 1 the congruence (5) is impossible. Hence a|zyz, but we may choose
g > xyz; a contradiction. O

Note that, by the method of proof of Theorem 6, any set of bounded triples of
natural numbers, A = {(z,y,2) : z,y,2,¢ € N,z,y,z < c}, also has the property
that for any even integer m, for which 3¢(m) > m, if n is any positive odd integer
sufficiently large for which mn 4+ 1 = ¢, ¢ a prime natural number, then none of
the triples (z,y, z) is a solution of equation (1), where r,s and t are given as in
Theorem 6. In this case ¢, and hence n, depends on the set A.
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ABSTRACT In this paper, the new concept of Boolean algebras with Fuzzy shell
is proposed, some important examples are given. A new implication operator, Z-
implication operator, and a new kind of valuation lattices, Z-valuation lattices are made.
And then, a new kind of nonclassical logic systems are established, the properties of this
logic are investigated, some interesting results are obtained. Especially, it is discovered
that for every « in this paper « HS and and a-MP must hold unconditionally.

Key Words Fuzzy logic; Boolean algebra with Fuzzy shell, Boolean heart; GR.- impli-
cation operator; GR,-valuation lattice; a-tautology; GR.-Dangerous signal recognition
logic; Approximate reasoning; Control principle.

1. INTRODUCTION In order to give a strict logic foundation of fuzzy control
and fuzzy reasoning, literatures [1-6] have established a new fuzzy logic system L*,
and linked the system with the kenel problems, Fuzzy modus Ponens and Fuzzy
Modus Tollens, of fuzzy control and fuzzy reasoning meaningfully, thus provided
a strong logic support for them. In the new fuzzy propositional logic system
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L*, the throught of semantic with degree is absorbing, such as )_ —(a- tautology
)[1‘4] Y —(a — MP) rule -3 3" —(a— HS ) rule -3, o —3I algorlthm (-4
sustentation degree [ theory and S0 on.

On the other hand, a variety of nonlinear ordered 6-valued logic system Is’% has
been used in dangerous signal recognition of circuit design successfully, but the
investigation of its mathematical foundation is still immature. For the reason of
lacking suitable implication operator the investigation of its semantic has not been
found.

Enlightening by new fuzzy propositional logic and the limitation of 6-valued sys-
tem K1 this paper deals with the generalization of K} in amore general sense.
We'll first propose the new abstract concepts of Boolean algebra with Fuzzy shell,
its Boolean heart, its Fuzzy shell. Then We'll give some examples of this kind
of lattices. Secondly, a new implication operator, GR.— implication operator, is
‘made, and a new valuation lattice, GR, -valuation lattice, GR. -valuation lattice
as valuation lattice, and is called a GR.-dangerous signal recognition logic, is es-
tablished. We'll give an elementary investigation of the logic system. Especially,
We’ll investigate the semantic of this logic and obtain some interesting results.

Our new logic system can be fractionized into two fragments, the Boolean heart,
the Fuzzy shell. There will be two kind of logic structures with different and
distinguished styles features and in our system, a kind of Gaines-Rescher logic
systems based on usual Boolean algebras, and another kind of Fuzzy logic systems
which takes Gaines-Rescher operator as the implication operator and based on
extensive Fuzzy lattices. Of cause, there exist many complicated situations in the
investigation of transfragments, it is a interesting attractor in this logic systems.
We’ll discover that for every « in the logic, both a-HS and a -MP must hold
unconditionally.

2. BOOLEAN ALGEBRA WITH FUZZY SHELL First, we are going to
establish the new concept of Boolean algebra with Fuzzy shell, give some examples
of this algebra, and discuss the special properties.

Definition 2.1 A distributive lattice L is called a Boolean algebra with Fuzzy
shell, if following conditions are satisfied:
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(1) L has the greatest clement 1 and the least element 0.
(2) L has an order-reversing involution —.

(3) L has an unigue maximal Boolean type sublattice L# such that the greatest
element 1# and the lcast clement 0% are different with 1 and 0 respectively, and
the restriction of — on L# just coincide with the Boolean complement’ in L¥.

L# is called the Boolean heartof L, = L — L# is called the Fuzzy shellrof L.

Example 2.2

(1) Suppose that B is any arbitrary Boolean algebra, 1# and 0% are the greatest
element and the least element of B. Let L = O,.‘; UuBU [%, 1], take usual
ordering of real numbers in [O, ]5] U [%, 1]. Ifze 0,]5 ,yEB, z¢€ [%, 1], then
let,z<y<z.Vy€e B,let —y=y";Vxe [0,%] U [%,1], let —z=1—z. Then
L is just a Boolcan algebra with Fuzzy shell, where L# = B is just the Boolean

heart, and L = [0, }3] ) [%, 1] is just the Fuzzy shell.

| \ ‘
i
e
2/3 2/3 - l
. o 1" t 2/3
l t 1’ " .; I 1
€ " o :
¥ogn
. 13
s 13 .
173 ;3
0
0
0 )
(a) 0 (d)
é (b) )

Figure 1. Boolean algebras with Fuzzy shell.

(a) Boolcan heart: 2'; Fuzzy shell: infinite.
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(b) Boolean heart: 22; Fuzzy shell: infinite.
(¢) Boolean heart: 23; Fuzzy shell: infinite.
(d) Boolean heart: 2!5l; Fuzzy shell: infinite.

There are some examples of Boolean algebras with Fuzzy shell in Figure 1, their
Boolean hearts contain 2!,22,23 ... 2Bl elements respectively, their Fuzzy shells
are all infinite aggregations.

(2) Suppose that B is any arbitrary Boolean algebra, 1# and 0¥ are the greatest
element and the least element of B respectively. Take 1. 0 ¢ B, denote L = BU
{0,1}. Vze B,let0<z<1; Vz€B,let —x=2';andlet = 0=1,—1=0.
Then L is just a Boolean algebra with Fuzzy shell, where L¥ = B is just the

Boolean heart, and I = {0,1} is just the Fuzzy shell.
Figure 2 give such examples, their Boolean hearts also contain 2!,2!,23, ..., 218l
elements respectively, but their Fuzzy shells only contain two elements uniformly.

*

AT .l l
K '-_..‘ _ , _,i.‘ | it
Y ¢ A
SN St B |
N/ a , | 1
‘. :j K3 ‘ S
# -'\\ 4 . ' ...?"'
0 V 0* 0*
¢ O
5 0
» 0 0
b 0 @)
() )

(a)

Figure 2. Boolean algebras with Fuzzy shell

(a) Boolean heart: 2'; Fuzzy shell: 2.
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(b) Boolean heart: 2%; Fuzzy shell: 2.
(c) Boolean heart: 2%; Fuzzy shell: 2.

(d) Boolean heart: 2/Bl; Fuzzy shell: 2.

Lemma 2.3 In any Boolean algebra with Fuzzy shell, de Morﬁéﬁ dual laws hold:
(1) = (aVd)=—aA —b.

(2) —(aANb)=—aV —b

Proposition 2.4 Suppose that L is a Boolean algebra with Fuzzy shell, L# and
L are the Boolean heart and the Fuzzy shell respectively, then

(1) For every t€l,—zve>1¥ —zAhz <0*
(2) Forevery z€ ¥, —zVve=1#% —zAz=0%
(3) For every z€l,—zVz<l,—zAz>0
(4) —1=0,—0=1;—1% = 0% — 0¥ = 1#

Proposition 2.5 In any Boolean algebra L with Fuzzy shell, does not exist any
element e such that

— € = €
Proof Suppose that there exists an element ¢ € L such that — e = ¢, then

e = —eVe>1#
= —evV<0*

But 1# # 0#. This is a contradictory.

Note 2.6 Any Boolean algebra is not a Boolean algebra with Fuzzy shell. Any
Boolean algebra with Fuzzy shell is not a Boolean algebra. But the Boolean heart
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L#* of any Boolean algebra L with fuzzy shell must be a Boolean algebra, its
Fuzzy shell L is a bounded distributive latice with order reversing involution. Tf
we deal with the Boolean heart L# and the Fuzzy shell L of a Boolean algebra
L with Fuzzy shell seperately, then they obey the corresponding operation laws
respectively. But our more interest is just in the combined or fused investigation.

3. GR.-DANGEROUS SIGNAL RECOGNITION LOGIC We are now
going to establish a new kind of nonclassical logic, GR.- implication operator as
implication operator. '

Definition 3.1 Suppose that L is a Boolean algebra with Fuzzy shell. Let us

make a mapping
GR.: LxL—>L

as following
l,a<bbel,
GR.(a,b) = { 1#,a <b,be L¥,
0,a Kb,

and call the mapping GR. as GR.-implication operator. If we take GR..-implication
operator GR. as the implication operator — in the Boolean algebra L with Fuzzy
shell, then L is called a GR. -valuation lattice. A mappingv: F(S) — L is called

a GR.-valuation, if v is a homomorphism of type —, V, A, GR.). Where F(S) is
the free algebra of type (—, V,A, —) generated by a nonempty set S. We denote
the set of all GR. -valuations-from F(S) to L by Qgnr..

Definition 3.2 Suppose that A € F(S) and a € L. If for every GR.-valuation
v € Qgr., v(A) > a(A4) > a,v(A) > 0,v(A) = 1, v(A) = 1#,9(A) = 0¥, then
the proposition A is called an a-tautology (a* -tautology, pretautology, tautology,
1#-tautology, 0#-tautology).

We denote the set of all a-tautologies (at-tautologies, pretautologies, tautologies,
1#-tautologies, 0% -tautologies) by a—~T(Z#)(at-T(Z#),QT(Z#),T(Z#),T(Z#),

i* —T(Z#),0* — T(Z#)).
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Definition 3.3 The octuple Z = (F(S)), Qr,,a - T,a* —T,T,i# - T,0# — T)
is called the semantic of GR.-dnagerous signal recognition logic Z¥. ,

Definition 3.4: The ordered pair Z# = (E, Z) is called a GR,-dangerous signal
recognition logic, where E is the syntax of this logic.

Proposition 3.5 For every family {a|t € D} C L, we have
(e =T(2#) = ({J &) - T(2#)

teD teD

Note In any GR.-valuation lattice L, GR.- implication operator GR. doesn’t
coincide with Gaines-Rescher implication operator MRgr: L xL— L,

1,a < b,
Rer(a,b) = { o,z Kb

Because for each element of c of the Boolean heart L#, GR.(c,c) = 1* # 1, that
is GR.(c, ¢) # Rgr(c, ¢).

Proposition 3.7 In the Boolean heart L* of a GR. -valuation lattice L, the
restriction of GR.-implication operator GR, on L¥ is just equivalent to the
revised Gaines-Rescher implication operator Rggr : L# x L# — L#,

1#1 <'b,
RGR(a1b) = { 0, Z /—<b

Proposition 3.8 In the Fuzzy shell L of a GR.-valuation lattice L, the restric-
tion GR. -implication operator GR. on L is just equivalent to Gaines-Rescher
implication operator [

L, < b1
Rer(a,b) = { 0, Z-/-Kb,
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Proposition 3.9 In a GR.-valuation lattice L, if L = {0,1}, then the restric-
tion of GR,-implication operator GR. on L just equivalent to Klenne-Dienes
implication operator MNRep: LxL— L

RKD(a, b) =—aVb

and is also equivalent to Wang Guojun implication operator MRo : L x L — L,

1, <b,

Proposition 3.10 In any GR,-valuation lattice L, following revised Dubois-
Prade conditions are satisfied:

(1) Ifa < a*, then GR.(a,b) > GR.(a*b)

- i o#
L bel 1, belo*<p,

(2) GR.,(O,b):{ ¥, be L# GR.(0*,b) = ¢ 1#, be L#,
0, beL,0* Kb

L b1 | 1, bel,1#<b,
— ’ - # = # — 1#
(3) GR.,(1,b) {O, b21  GR(1%0) 1#, b= 1%,

0, otherwise
(4) If a < b, then GR.(a,b) > b. If a Kb, then GR.(a,b) < b.

L aeﬁz,
(5) GR,,(a,a)—{ * gL

) GR.(ae,b)=ifa<bandbe L.GR.(a,b)=1* if a<bandbe L¥
Ve o s

Proposition 3.11 In the Fuzzy shell L of a GR. -valuation lattice L,
GR.(a,b) = GR.(— b, — a)

Proof Suppose that a Kb, then — b <— a and so
GR.(a,b) =1 = GR.(— b,— a)
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Suppose that a £b, then — b £ — a and so
GR.(a,b) =0 = GR,(— b,— a)

"Thus completes the proof.

Proposition 3.12 In the Boolean heart L# of a GR. -valuation lattice L,

GR.(a,b) = GR.(— b, — a)

Proof Suppose that a < b, then — b <— a and so
GR.(a,b) = 1* = GR,(— b, — a)

Suppose that a Kb, then — b £ — a and so |
GR.(a,b) = 0 = GR.(— b, — a)

This completes the proof.

Note 3.13 Generally, in a GR.-valuation lattice L,
GR.(a,b) #1, GR.(— b, —a)=1*

For example, take a € L¥ and b € L such that a < b, then — b <— a, — a € L¥,
and so

GR.(a,b) =1, GR.(—b,— a)=1%
where GR.(a,b) # GR.(— b,— a).

Proposition 3.14 In any GR.-valuation lattice L, if 5 < a or a = 0, then

GR.(a,GR.(b,a)) > 1#

Proof If b<aand a € L, then

GR.(a,GR.(b,a)) = GR.(a,1) =1
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If b<aand a € L¥, then
GR.(a,GR.(b,a)) = GR.(a,1¥) = 1#
If b LKa and a =0, then
GR.(a, GR.(b,a)) = GR,(a,0) = 1
If < aanda=0,then
GR.(¢,GR.(b,a)) = GR.(0,GR.(0,0)) = GR.(0,1) =1

This completes the proof.

Proposition 3.15 In any GR.-valuation lattice L,
(1) Ifa<borb<a,then

GR.(a,b) V GR.(b,a) > 1*

(2) If a £band b Ka, then
GR.(a,b) V GR.(b,a) =0

Proof Suppose that a < band b € L, then GR.(a,b) = 1 and so
GR.(a,b) VGR.(b,a) =1
Suppose that a < b an! b= L#, then GR.(q¢,b) = 1¥ and

0,0 > a,
GR_(b,a):{ ko

or

GR.(a,b) V GR.(b,a) = 1¥
This completes the proof of (1). (2) is clear.

Proposition 3.16 In any GR.-valuation lattice L, — a = GR.(a,0) if and only
if a € {0,1}.
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Proof Suppose that a ¢ {0,1}, then — a ¢ {0,1} and so GR.(a,0) = 0 #— a,
Therefore it follows from — a = GR.(a,0) that a € {0,1}.

The proof of the rest is straightforward.

Proposition 3.17 In any GR.-valuation lattice L,

(1) bV GR.(a,b) = bif and ony if a < b or b= 0.

(2) bV GR.(a,b) = 0 if and only if a £bor b= 0,

(3) I b+ 0, then bV GR.(a,b) = b if and only if a < b.
)

(4) Ifb#0, then bV GR.(a,b) =0 if and only if a Kb

Proposition 3.18 In any GR.,-valuation lattice L,

(1) bv GR.(a,b) = GR.(a,b) if and only ifa < bor b=0.

(2) If Kb, then bV GR.(a,b) =b.

(3) If b#0, then bV GR.(a,b) = GR.(a,b) if and only if a < b.

Note 3.19 It doesn’t follows from bV GR.(a,b) = b that a /&b generally. For
example, take a = b = 1, then bV GR.(a,b), but where a < b.

Proposition 3.20 In any GR,-valuation lattice L,
(1) aV GR.(a,b) = a if and only if a < b.

(2) aV GR.(a,b) =0 if and only if a £b, or a = 0.

Proposition 3.21 In any GR,-valuation lattice L,

(1) ay GR.(a,b) = GR.(a,b) if and only if a < b.
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(2) aVGR.(a,b)=aifand onlyifa Lbora=1,0ra=b= 1#.

Theorem 3.22 In any GR.-valuation lattice L,

GR.(e,GR.(a,d)) = GR.(a,b)

Proof Ifa<band be L, then

GR.(a,GR.(a,b))
GR.(a,1) =1
= GR.(a,b)

Ifa <b and_l) € L#*, then
GR.(a,GR.(a,b))

= GR.(a. i*'=1%#
= GR.(a,b)
If a £bthen a # 0 and thus
GR.(2, GR.(a,)))
= GR.{2,0)=0
= GR.(a,b)

This completes the proof.

Corollary 3.23 In any GR.-valuation lattice L,

(1) GR.(a,GR.(a,b))=bV GR.(a,b) if and only if a < bor b = 0.

(2) If b # 0 then GR.(a, GR.(a,b)) = bV GR.(a, b) if and only if a < b.
(3) GR.(a,GR.(a,b)) =aV GR.(a,b) if and only if a < b.
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Theorem 3.24 In any GR.-valuation lattice L,
GR.(a,b A c) 2 (GR.(a,b)) A (GR.(a,c))

Proof
(1) Suppose that a < b and a € L, then GR.(a,b) = 1.
Ifa<cand ce Z, thena < bAc,bAc€ i, and thus
GR.(a,bAc)=1=1A1
= (GR.(a,b)) A (GR.(a,c))
Ifa < cand c € L#, then a < bA ¢ and thus

_J 1, bAce i, |
GR.(a,b/\c)—{l#, bAce LE
(GR.(a,b)) A (GR.(a,c)) =1A1# =1#

therefore

GR.(a,b) A ¢ > (GR.(a,b)) A (GR.(a,c))
If a Kc, then a AbA cand thus
GR.(a,bAc)=0=1A0
= (GR.(a, b)) A (GR.(a, c))

(2) Suppose that a < band b€ L#, then GR.(a,b) = 1#
Ifa<cand c€ L, then a < bAc and thus

1, bAcel,

GR.(a,b/\c):{ 1* bAce L

(GR.(a,b)) A (GR.(a,c)) = 1¥ A1 =1#

therefore
GR.(a,b A ¢) 2 (GR.(a,bd)) A (GR.(a,c))

Ifa<ec then c€ L# thena < bAcand bAc € L#, thus

GR.(a,bAc)=0=1¥ A 1#
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= (GR.(a,b)) A (GR.(a,c))
If a KLc, then a £bAcand thus

GR.(a,bAc)=0=1#A0
= (GR.(a, b)) A (GR.(a,¢))

(3) Suppose that a £b, then @ £bA c and so
GR.(a,bAc) =0=0A(GR.(a,c))

= (GR.(a,b)) A (GR.(a,0))
This completes the proof.

Theorem 3.25 In any GR,-valuation lattice L,

GR.(a,b A ¢) = (GR.(a, b)) A (GR.(a, )

If and only if one of the following conditions holds:
(1) a KbAc, that is a ginderline<bor b Kc

(2) a<bAcbel,cel

(4) a<bAc,be L¥ bAce L*

)
(3) a<bAc,be L¥ be L¥
)
) a<bAc,ce L¥ bAce L¥

(5

Theorem 3.26 In any GR,-valuation lattice L,

GR.(a,bAc) > (GR.(a,b)) A (GR.(a,c))

if and only i one of the following conditions holds:

(1) a<bAcbeL,ce L* bAacel
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(2) a<bAcbeL* cel,bAcel

Note 3.27 A GR.-valuation lattice L needn’t be a Heyting algebra, because
that GR.(a,a) = 1 does not holds generally. For example, if ¢ € L¥, then

GR.(c,c) = 1* #1

Proposition 3.28 In any GR.-valuation lattice L, suppose that b < b*, then
GR.(a,b) < GR.(a,b")

_ if and only if one of the following conditions is satisfied:
(1) a<b b el

(2) a<b a<bb eL*belL*

(3) a Kb

(4) a Kb"

Proposition 3.29 I[n any GR.-valuation lattice L, suppose that b < b* then
following conditions are equivalent:

(1) GR.(a,b) £KGR.(a,b")

X

(2) GR.(a,b) > GR.(a,b")
(3) a<b,a<bb el*bel

(4) GR.(a,b) =1, GR.(a,b") = 1#

Proposition 3.30 In any GR.-valuation lattice L,
GR.(GR.(a,b),b) = GR.(a,b)

if and only il one of the following conditions is satisfied:
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(1) b=1

(2) b=1*a<b

Proposition 3.31 In any GR,-valuation lattice L,
(1) fa<bandbe L, then
1,b=1
GR.(GR.(a,b),b) = { 0.b#1
(2) fa<bandbe L¥#, then

GR.(GR.(a,b),b) = 0,b# 1#
(3) Ifa /_S_b, then

L,bel
1#*,be L¥

GR.(GR.(a,b),b) = {
Corollary 3.32 In any GR.-valuation lattice L,

(1) Ifb=1, then
GR.(GR.(a,b),b) = a vV GR.(a,d)

(2) ¥b=1* and a < b, then

GR.(GR.(a,b),b) = a vV GR.(a,b)

Corollary 3.33 In any GR.-valuation lattice L,
(1) fb=1, then

GR.(GR.(a,b),b) = GR.(a, GR.(a, b))



Boolean algebra with fuzzy shell and ..... | 99

(2) Ifb=1* and a < b, then

GR.(GR.(a,b),b) = GR.(a, GR.(a, b))

a-HS rule ! means that from GR.(a,b) > a and GR.(b,c) > a refer GR.(a,c) >

a.

Theorem 3.34 In any GR.-valuation lattice L,
(1) 1 - HS holds.
(2) 1# - HS holds.

Proof

(1) Suppose that GR.(a,b) = 1 and GR.(a,c) = 1, thena < b,b € Lb<ccel |
and so a < ¢, c €«L, therefore GR.(a,c) = 1. This shows that 1-HS holds.

(2) Suppose that GR.(a,b) > 1# and GR.(b,c) > 1#, b < ¢,c € L¥#, and so
a < c,c € L¥, thus GR.(a,c) = 1¥.

If GR.(a,b) = 1* and GR.(b,c) = 1, then a < bb € L*¥, b < c,c€ L, and s0
a<cce€ L, thus GR.(e,c) = 1.

If GR.(a,b) =1 and GR.(b,c) = 1, then it follows from (1) that GR.(a,¢) =1

If GR.(a,b) = 1 and GR.(b,¢c) = 1#, thena < b, be L,b<c¢ce L#*, and so
a < 0* b< 0% a<ccé€ L'thus GR.(a,c) = 1¥,

These show that 1# - HS holds.
Of cause, 0-IIS holds naturally, it's a trivial rule.

Because GR.-implication operator GR., takes only three values, 1, 1#, and 0, so
we now can say that for all @ € L, a-HS must hold.

Theorem 3.35 In any GR. -valuation lattice L, for every a € L, o -HS must
hold.
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Proof Take any arbitrary o € L.

If a > 1#, then if follows from Theorem 3.34 (1) that a-HS holds.
If a > 0, then it follows from Theorem 3.34 (2) that a-HS holds.
It had been mentioned that 0-HS must hold.

These complete the proof.

a-MP rule (!l means that from GR.(a,b) > a and a > a refer b > a.

Theorem 3.36 In any GR.-valuation lattice L,
(1) 1-MP holds.

(2) 1# -MP holds.

Proof

{1) Suppose that a =1 and GR.(a,b) = 1, then a < b,b € L, and so b = 1. This
shows that 1-MP holds.

(2) Suppose that GR.(a,b) > 1# and a > 1¥.
If GR.(a,b) and a = 1, then it follows from (1) that b = 1.

If 1# < GR.(a,b) < 1 and 1# < a < ¢, then GR.(a,b) = 1#,a = 1#, and so
a < bbe L¥, thus b=1# > 1#.

If GR.(a,b) =1 and 1# <a<1,thena < bbe L, andso b>1#,

If 1#¥ < GR.(a,b) <1 and 1# < a < 1, then GR,(a,b) = 1¥, and so a < b,b €
L#, thus a < L#, this contradict to a = 1. Therefore we can say that b > 1#
according to classical logic.

These show that 1# - MP holds.
Of cause, 0-MP naturally holds, it is a trivial rule.

Because GR.,-implication operator GR, takes only three values, 1, 1#, and 0, so
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we now can say that for all @ € 1, a - MP must hold.

Theorem 3.37 In any GR, -valuation lattice L, for each a € L, a-MP must
hold.

Proof Take any arbitrary a € L.

Suppose that o > 1#. If GR.(a,b) > a and @ > a, then GR,(a,b) = 1 and
a<bbelL,sob>a. This shows that a-MP holds.

Suppose that a > 0. If GR.(a,b) > a and a > a, then GR.(a,b) = 1¥ or 1.
If GR.(a,b) = 1#, then @ < b,b € L, and so b > a. If GR,(a,b) = 1, then
a<bbe L, and also b > a. This shows that a-MP holds.

It had been mentioned that 0-MP naturally hold.

This completes the proof.

It is easy to see that

(1) 1 ~T(2#)=T(2Z#)=QT(Z#),0 — T(Z#) =F(S5).

(2) T(Z#)c QT(Z#) C F(S),i.e.,1 - T(Z#) C 1# —T(Z#) C 0 - T(Z#).

Moreover, we have

Theorem 3.38 In any GR.-dangerous signal recognition logic Z#, suppose that
A,B € F(S),1#¥ < a < 1¢ Then GR.(A, B) is an a-tautology if and only if
GR.(A, B) is a tautology.

Proof Suppose that GR.(A, B) is an a-tautology, i.e., for every GR.-valuation
v € Qcr,v(GR.(A, B)) > a. Therefore GR.(v(A),v(B)) > a. Because 1# <
a <1 and GR,-implication operator GR, takes only three values 1, 1#, and 0,
so we can say that GR.(v(A),v(B)) = 1 must hold. This shows that GR.(A, B)

is just a tautology.

On the other hand, suppose that GR.(A, B) is a tautology, i.e., for every GR,-
valuation v € Qgg,v(GR.(A,B) = 1 and so GR.(v(A),v(B)) = 1, of cause
GR.(v(A),v(B)) 2 a. This shows GR.(A, B) is an a-tautology.
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These complete the proof.

Similarly, we have

Theorem3.39 In‘any GR.-dangerous signal recognition logic Z#, suppose thajc
A,B € F(S),0 < o < 1¥. Then GR.(A, B) is an a-tautology if and only if GR.
is a 1#-tautology.

Conclusion We have proposed the new concept, Boolean algebra with Fuzzy
shell. Some important examples are given. We have made a new implication
operator, GR.-implication operator, and a new valuation lattices, GR.-valuation
lattices. Then a new kind of nonclassical logic system, GR.-dangerous signal
recognition logic, is established. 1#, the greatest element of the Boolean heart,
plays a special and important role in proposed logic.

Our new logic can be fractionized into two fragments, the Fuzzy shell, the Boolean
heart. There are two kinds of logic structures with different and distinguished
styles and features in our new logic, Fuzzy logic, and Gaines-Rescher logic, they
are fused and combined each other by the characteristic algebraic structures of
Boolean algebra with Fuzzy shell and GR.-implication operator. In the Boolean
heart, many features and styles of Gaines-Rescher logic are shown or reappeared.
In the Fuzzy shell, many features and styles of a kind of Fuzzy logic are shown
indirectly and full of cause, there exist many complicated situations in the investi-
gation of transfragments, it is another interesting attractor in this logic. We have
discovered that a-HS and a-MP hold unconditionally for every a in our logic.
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ABSTRACT In this study we use perturbed-Steffensen- Aitken methods to approxi-
mate a locally unique solution of an operator equation in a Banach space. Using projec-
tion operators we reduce the problem to solving a linear system of algebraic equations
of finite order. Since iterates can rarely be computed exactly we control the residuals
to guarantee convergence of the method. Sufficient convergence conditions as well as an
error analysis are given for our method.
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I. INTRODUCTION In this study we are concerned with the problem of
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approximating a locally unique fixed point z* of the nonlinear equation.

T(z)==z, (1)

where T is a continuous operator defined on a convex subset D of a Banach space
E with values in E. The differentiability of T is not assumed. Let T} be another
nonlinear continuous operator from FE into E, and let P be a projection operator

(P*=P)on E.
We introduce the perturbed-Steffensen-Aitken method

Tp41 = T(zn) + PAn(zn+l - zn) — 2y, Ap = [gl(zn)?g2(zﬂ)] (n > O)v (2)

where: [z,y] denotes a divided difference of order one of T; at the points z,y
satisfying

[z,y)(y —z) =Ti(y) = T\(z) forall z,ye D with z#y (3)

and

[z,2] = F'(z) (z€ D) (4)

if T} is Frechet-differentiable D;g,,9. : D — E are continuous operators; the
residual points {z,}(n > 0) are chosen in such a way that iteration {z,}(n > 0)
generated by (2) converges to z*. The important of studying perturbed Steffensen-
Aitken methods comes from the fact that many commonly used variants can be
considered procedures of this type. Indeed the above approximation characterizes
any iterative process in which corrections are taken as approximate solutions of
the Steffensen-Aitken equations. Moreover we note that if for example an equation
on the real line is solved z, — T(z,) > 0(n > 0) and I — PA, overestimates the
derivative, z,, — (I — PA,)"!(z, — T(z,)) is always larger than the corresponding
Steffensen-Aitken iterate. In such cases, a positive z,(n > 0) correction term is
appropriate.

For: P = I(I is the identity operator on E),T(z) = Ti(z)(z € D),q1(z) =
g2(z)(z € D), and z, = 0(n > 0) we obtain the ordinary Newton method [1], [2];
P = I,Ti\(z) = T(z)(z € D),g1(z) = z(z € D), and 2, = 0(n > 0) we obtain
Steffensen method [4], [5]; P = I,T\(z) = T(z)(z € D), g2(z) = g1(z — T(z))(z €
D), and 2z, = 0(n > 0) we obtain Steffensen-Aitken method [4], [5].
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It is easy to see that the solution of (2) reduces to solving certain operator equa-
tions in the space E,. If moreover E, is a finite dimensional space of dimension
N, we obtain a system of linear algebraic equations of at most order V.

We provide sufficient convergence conditions as well as an error analysis for the
Steffensen-Aitken method generated by (2).

II. CONVERGENCE ANALYSIS We state the following semilocal conver-

gence theorem.

Theorem Let T,Ty,g1,92 : D — E be continuous operators defined on a conver
subset D of a Banach space E with values in E, and P be a projection operator on
E. Moreover, assume: '

(a) there exists zy € D such that By = I — P Ay is invertible;

(b) there exist nonnegative numbers a;, R, ¢=0,1,2,---,9 such that

1B5" P([z,y] = [v, w])ll < ao(llz = vl + [ly — wl)), (5)

NBs (2o~ T(@o))| S ar, (6)

185" P([z,y] = [91(2), 22(2)DIl < az(llz = g1 ()]l + lly = g2()),  (7)
IB5H(QTh(z) = QTi(y))l S aslle —yll, @=1-P, (8)

1B (F(2) = FG)II < aullz = yll, F(z) = T(z) - Ti(2), (9)

Iz = g1(2)|| < as|| B~ (2)(z ~ T(z) — 2(2))ll, B(z) =1I- PA(z),

for some continuous function z:D — E, (10)
Iz~ 022)] < asll B~ (@)(e ~ Tz) ()]l an)
B3 (2n = 2n-1)l| € @rllza — zna]l (0 21), (12)

lg1(z) — (¥l < asllz —yll, a5 €]0,1), (13)
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and

llg2(7) = g2(¥)ll < asllz —yll, a9 €10,1), (14)

forall z, y, v, w € U(ro, R) = {x € Ell|z — zol| £ R} C D;
(c) the sequence {z,}(n > 0) is null;

(d) there exists a minumum nonnegative number r* satisfying

G(r')<r* and r"<R (15)
where
as(1 + ag + ag)r + (a3 + a4 + a7)
G(r) = ; 16
(r) =a: + [a — ao(ag + ag)r][l — az(as + ag)rB(r)) T (16)
and
B(r) = [1 = ao(ag + ag)r]™ (17)
(e) the numbers r*, R also satisfy
r* < ! (18)
az(as + as) + ao(ag + ay)
. < llg1(zo) — zol|
> WJ1vr0/ — =0l
s (19)
« < llg2(z0) — 2ol
> Hg928+0) 7 2ol
r= 1 — dg (19)
b=a(r,R) < 1. (21)

where

az(l +as+ aqi(s +t)+az+aq -
1) = e : , e, R 22
a(s ) [1 — ao(ag + (19}8}“ - (12((15 — ae)(s + t)ﬂ(S)] s N ] ( )
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and
fim o= @)
where
o= ", cm=llzal, Ba=I-PA, (n20)  (24)
m=0
- Then

(i) the scalar sequence {t,} (n > 0) generated by

to = 0, tl =a Z ”.’L'] — .’Eo”, (25)

az(1+ as + ag)(tn — tuo1) + as + a4 + ar
[1 — ao(as + ag)t,][1 — az(as + ag)(tn — tn-1Bn

t'n+1 =t, + ](t'n - t'n-—l) (TL > 1)

(26)
is monotonically increasing, bounded above by r* and lim,_, o t, = r*, with §, =
[1 - a()(ag + ag)tn]—l (n Z 0)

(i) The perturbed-Steffensen-Aitken method generated by (2) is well defined, re-
mains in U(zg,r*) for all n > 0, converges to a unique fized point z* of T in

U(IL‘(), R)
Moreover the following error bounds hold:

Iz zall < az(1 + as + a9)l|zy — Tn-1|| + as + a4 + a7
nt+l T Ln|| =
* [1 — aolas + as)l|zn — zo|][1 - az(as + ae)l|zn — zn-1(|Ba]

2w = Zusll(m > 1) @)
lZns1 — Zoll Sty =t (R 20) (28)

and
lzn =2 | < 77—t (n20), (29)

where B, = [1 — ag(ag — ag)||z, — zo|]]”!  (n > 0)
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Proof (i) By (15) and (25) we get 0 < tp < ¢t < r*. Let us assume 0 < ¢ <
ty < r*for k =1,2,---,n. It follows from (18) and (26) that 0 < ¢, < tp41.
Hence, the sequence {¢,}(n > 0) is monotonically increasing. Moreover using
(26) we get in turn

ax(l + ag + ag)r* + az+ a4 + az
[1 — ao(as + ag)r*][1 — az(as + as)r*B(r*)]
ax(1 4+ ag + ag)r*az + a4 + a7
[1 — ao(as + ag)r*)[a — az(as + ag)r*B(r*)]
< Gy <t (by (15)) |

(tk — tk-1)

IN

tet1 e +

(tk — to)

IN

...Sal+

That is the sequence {tn}(n > 0) is also bounded above by r*. Since r* is the
minimum nonnegative number satisfying G(r*) < r*, it follows that lim,_ t, =

*

r.

(ii) By hypothesis (15) and the choice of a; it follows that z; € U(zg,7*). From
(19) and (20) we get g1(0), g2(z0) € U(zo,r*). Let us assume z¢41,91(2x), g2(zk) €
U(zo,r*) for k =0,1,---,n — 1. Then from (13), (14), (19) and (20) we get :

g1(zk) — zoll < llgr(zk) — gr1(zo)ll + |lg1(20) — zo|| < asllzs — zo|| + llg1(20) — zo]|
<agr* + ||g1(xo) — zof| < 7°
and

lgz(zk) — ol < llga(zk) — g2(xo)l] + l|lg2(20) — Tol| < asllzk — zol| + ||g2(z0) — zol|
< agr® + ||ga(xo) — zo| L 7

Hence gi(x,), g2(zn) € U(a:o,;‘). Using (5), (13), (14) and (17) we obtain
I B (B = Bo)ll < ao(llgi(zo) — g1(zx)|| + llg2(z0) — g2(zs)]])
< ao(as + ag)||zo — zk|| < ag(as + ag)r* <1

It follows from the Banach lemma on invertible operators [3] that By is invertible
and
1

— ag(as + as)||zx — zo|

1By Boll < 1 = B (30)
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Using (2) we obtain the approximation |
iy — Tk = B (T(zx) — ok — 2) = (B; ' Bo) B!
{(PT\(zx) = PTy(zk-1) — Plg1(zk=1), g2(xh—1)] (zh — Thm1)
+HQTi(zk) — QTi(zk-1) + (F(2k) — F(zk-1)) + (261 — 21)} (31)

From (7), we get
| B5  [PTy(zx)— PTy(2k-1)— PAk-1(ze—zk-1)]|| < || B P([2h—1, Tk]— Akt )(Th—2 k1)
< ag(llzk-1 — gi(ze-1)|| + |2k — ga(zr—r)Dllzk — zr-1l (32)

and since by (10), (11), (13), (14)

lzk-1 = zill + llg1(z) — gr(ze—1)l + |2k — g1 ()]}

lzk — 2kl + asllze — zha || + asl| By 2k — T(2k) — 2l
zr — g2(zi )|l + Ilg2(2x) — g2(zk-1)||

ag|| By 2k — T(zk) — 26)|| + aollzk — 24|

k-1 — g1(ze1)

llzx — g2(zk-1)||

IANIA N A

(32) gives
| Bg {PT1(zx) — PTi(zk-1) — PAr_1(zk — zk-1)|| < a2(1 + as + ao)llzi — zey ||

+ az(as + ao)l| By (zk — T(zi) — 2)lll|zk — zia | (33)

Moreover from (8), (9) and (12) we obtain respectively

185 (QTi(z4) ~ QTi(z4—1 )|l < asllzi =zl (k21) (34)
IBs ' (F(ax) = Fzi-)ll < aallzi — 2]l (k21) (35)

and
1B (26 = zea)ll < arllzi — 2ol (k2 1) (36)

Furthermore (31) because of (30), (33)-(36) finally gives (27) for n = k.
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Estimate (28) is true for n = 0 by (25). Assume (28) is true for k =0,1,2,---,n—
1. Then from (26), (27) and the induction hypothesis it follows that (28) is true
for k = n. By (28) and part (i) it follows that iteration {z,}(n > 0) is Cauchy in
a Banach space E and as such it converges to some z* € U(xq,7*) (since U(zo, r*)
is a closed set). Using hypothesis (c) and letting n — oo in (2) we get * = T(z*).
That is z* is a fixed point of T. Estimate (29) follows immediately from (28) using
standard majorization techniques [2], [3].

Finally to show uniqueness let us assume y* € U(zo, R) is a fixed point of equation
(1). Asin (31) we start from the approximation.

Tnp1 =Y = (B;_IBO)BO_I{[PTI(In) - PTl(y*) - PAn(xn - y*)]
+ [QT(zs) = QTh(y")] + [F(zn) — F(y™)] = 2z}

and using (5), (7)-(11), (13), (14), (21), (22) and (24) we get

lznn =yl S bllza =yl +ea < S oo~y +¢2 (n20)  (37)
By letting n — oo as using (21) and (23) we get lim,_, o , = y*. It follows from
the uniqueness of the limit that z* = y*.

That completes the proof of the Theorem.

Remarks

(1) Conditions (19) and (20) guarantee g,(z), g2(z) € U(zo,r*) for x € U(zq,r*).
Hence condition (7) can be dropped and we can set a; = ag. However it is hoped
that a; < aq.

(2) It can easily be seen that the first inequality in (15) can be replaced by the
system of inequalities (17), (18) and

f(r) <0

where

f(r) = dor* + dir + do
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with

by = a2(1+ ag + ag), b2 =as+ as+ az, bz = ao(as + as) + az(as + as)

dy = bi+bs
d = b—1-ba

and dg = a;.
(3) Condition (23) is satisfied if and only if z, = 0(n > 0)

(4) Tt can easily be seen from (10) and (11) that conditions (19) and (20) will
be satisfied if as + ag < 1 and ag + a9 < 1 for ™ # 0. Indeed from (10) we
have ||zo — g1(z0)]| £ as]|z1 — 2o|| < asr*. Hence (19) will be certainly satisfied if
ast* < (1 — ag)r*. That is if as + ag < 1. We argue similarly for (20).
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and with the fixed second coefficient. In the present paper we have obtained coefficient
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under arithmetic mean and convex linear combinations. Lastly we have obtained the
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1. INTRODUCTION: Let } denote the class of functions of the form

- _
f(z) = z—p + EaP+n—12p+n 1(ain+n 2 0; pE N = {1,2,---,}) (1-1)
n=1

which are analytic and p-valent in the punctured disc U* = {z: 0 < |z] < 1}. For
afunctionf(z)inzp,andfor—l§A<B§1, 0<B<l1, 0<ax<l, 0<
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ﬂgland(—slfiA—)<'y<(B —)a 1fa7£0and(3 A)<7<11fa—0 we say that
f(z) € 2°,(A, B,a, B,7) if and only if

zf'(z!+p
‘ 1) <B,zeU (1.2)
2f!(z zf'(z ! )
(B = A)y (—lf( ) a) _B (—UM +p)

The class )_ (4, B, a,B,7) was studied by Joshi and Aouf [3].

Meromorphic multivalent functions have been extensively studied by Uralegaddi

and Ganigi [9], Aoufl ([1, 2]) and Mogra ([4, 5}).

We begin by recalling the following lemma due to Joshi and Aouf {3].

Lemma 1: Let the function f(z) be defined by (1.1). Then f(z) is in the class
ZP(A, B, a, 3,v) if and only if

Z C(p. A, Bya,8,y,n)apsr1 < D(p, A, By, 8,7) (1.3)

n=1

where
Cp.AB,a,f.y,n)=2p+n—-1)+3{(B-A)y(p+n—-1+a)

- B2p+n-1)} (n=12,--) (1.4)

and

D(p, A, B,a,8,7) = (B~ A)y3(p — a) (1.5)

The result is sharp.

In view of Lemma 1, we can see that the functions f(z) defined by (1.1) in the
class ZP(A, B,a,,v) satisfy the coeflicient inequality.

D(p, A, B,a,3,7)

@= A Bay B 1) (1.6)
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Hence we may take

D(p, A, B,a, B,7)k
~ <k<
%= Cl, A, B, B,7,1) Osksl (1.7)

Let 3 (A, B,a,B,7) denote the subclass of 3 (4, B, a, 8,7) consisting of func-
tions of the form '

-, D(»,A, B, B,7)k S -
— =P P noq 2Pl 1.8
flz) =277+ C’(p,A,B,a,ﬂ,7,1)z +n2=;ap+ 12 (1.8)

where apy,-1 2 0and 0 <k < 1.

The object of the present paper is to determine coefficient inequalities for the
class Ep,k(A, B, a, 3,%). Further we show that this class is closed under arithmetic
mean and convex linear combination. Lastly we have obtained radius of convexity.
Various results obtained in this paper are shown to be sharp. Techniques used
are similar to those of Silverman and Silvia [7], Uralegaddi [8] and Owa, Darwish
and Aouf [6].

2. COEFFICIENT INEQUALITIES:

Theorem 1: Let the function f(z) be defined by (1.8). Then f(2) is in the class
> ,x(4, B,a, B,7) if and only if

Zc(pa Aa B,aa :Ba 7,n)ap+n—1 S D(pa A, Baaa ﬂ, 7)(1 - k) (21)

n=2

The result is sharp.

Proof: Putting

D(p, A, B,a, B,7)k
- <k< )
o C(p, A, B,a, 8,7,1)’ 0sksl (22)

in (1.3) and simplifying we get the result. The result is sharp for the function
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D(p, A, B,a, 8,7)k

>y = 7P P
Jiz) == C(p, A, By, B,7,1) ot

D(p,A,B,a,ﬂ,‘y)(l _k) p+n—1
2P > 2 2.3
Cip: A, B, o, By, 1) (n22) )

Corollary 1: Let the function f(2) defined by (1.8) bein theclass } (A, B,a, 8,7).
Then

D(p3A3 B3a3ﬂ77)(1 B k)
> .
Qp4n—-1 S C(p,A, B,a,ﬁ,'y,n) 3 (n 2 2) (2 4)

The result is sharp for the function f(z) given by (2.3)

3. CLOSURE THEOREMS: In this section, we shall show that the class

>,x(As B,a, B,7) is closed under arithmetic mean and convex linear combination.

Theorem 2: Let the functions

D(p, A, B,a,B,7)k

(z)=2z7P P

Jitz) Clp A, B, B ). T
Zap+n—l,jzp+n_1 (@pin-1; = 0) (3.1)
n=2

be in the class Ep‘k(/l, B,a,B,7) for every j =1,2,---,m. Then the function

D(p,A, B,a, B,7)k

2) = 2P P
9 = B A B oy ) T

Z bp-i;n-lzp-i’n_l (bptn-1 = 0) (3.2)

n=2

is also in the class 37 (A, B,a, 8,7), where
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1 m
bpgn-1 = m Z Gptn—1,j (3.3)
i=1

Proof: Since f;(z) € 3_, (A, B,a,,7) it follows from Theorem 1 that

o

Z C(paA’ Baaa7an)ap+n—1’j S D(paAa Baaaﬂa7)(1 - k) (34)
n=2
for every j = 1,2,---,m. Hence
ZC(p’ A, Baa’ ﬂa 7’n)bp+n—1 =
n=2
oo 1 m ‘ .
Z C(p, A, B, a, ﬂ’7a n) (;{ z aP+ﬂ—1yJ') =
n=2 ' 7=1
1 m oo
E Z Z C(P, A, Baaa ﬂ’ 7’n)aP+n-I,j S D(p’ Aa B’ «, ﬂ’ 7)(1 - k) (35)
j=1 n=2

and the result follows.

Theorem 3: Let
D(p’AaBaa’ﬂ’7)k 2P

— »~P
fo(2)=z Cr A B.a, Br.1) (3.6)
and D(a, A, B,or B.7)
— -p a" ) 30’ ’7 k P
Jotnct =20 G A Bran o))
D ’A’ Ba y My 1—-k |
(p o ﬂ 7)( ]”) Zp+n—1 (TL 2 2) (37)

C(p,A,B,a,B,7,n)

Then f(2) is in the class 3 ,(A, B,a, 8,7) if and only if it can be expressed in
the form
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f(Z) = Z Ap+'n—17f;:»+'n—1(z), (3.8)

n=1

where

Ap+n_1 Z 0 and EAP'H'L—l =1

n=1

Proof: Let -
f(z) = Z Aptn-1  fon-1(2)

n=1

D(p,Aana’ﬂ”Y)k P
2+

C(p, A, B,a, 8,7,1)

= D(p,A,B,CY,,@,’)’ (l—k —n—
2 C(p, A, B,a B)7 n) Dinca ™ (39)

-p

n=2

Since

i D(pa Aa Ba a, :317)(1 - k)Ap+n—1- C(paAs B,(Y, ﬂ» s TL)
C(p,A,B,a,ﬂ,n) D(paAaB’aa/Ba7)

n=2

=(1 —k)i)\p+n_1 =(1-k)(1-)\)<1—k (3.10)

ﬁ=2
hence, by Theorem 1, we have f(z) € vak(A, B,a,f3,7)

Conversely, we suppose that f(z) defined by (1.8) isin theclass 3°_ (4, B, a, 8,7).
Then by using (2.4), we get

D(paAaBaﬂ’aa/Ba’)l)(] —k)
a4 < > .
=TT 0 0, 4, B, B,7,m) (n22) (3:11)

Setting
C(p, A, B,a, B,7,n)
1= - > .
ot = D B o)1 - Ry (122 (3.12)
and '
Ap =1- ZAP_(..,;_I (313) -

n=2
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We have (3.8). This completes the proof of Theorem 3.

Theorem 4: Let the function f(2) defined by (1.8) bein the class 3 (4, B, a, 8, 7).
Then f(z) is mermorphically p-valent convexin 0 < |2| < r =r(p, A4, B, a, 8,7, k),
where r(p, A, B,a, 8,7, k) is the largest value for which

3p’D(p, A, B, a, B,7)k
C(p,A,Baaaﬂ,7’l)

(p +n— l)(3p +n— l)D(p, A'; Ba a, ﬂ,7)(1 - k)r2p+n-1 = n? (4 1)
C(r, A, B0, f,7,m) S

T2P+

The result is sharp for the function
—»D(p, A, B, e, B,7)k
- =P
fP—"—l(z) ¢ C(p’AaBaaa ﬂa 1)
D(P, Aa Ba a, ﬂa 7)(1 - k)zp+n—1
‘ C(P, Aa Ba «, ﬂa Y, n)

2P+

for some n (4.2)

Proof: It is sufficient to show that

LV TG ) for 0< o] < r = r(p, A, Bya, By, k)

f'(2) -
Note that
(2£2) +pf'(2)| _
f'(z) -
2D ,B,a, k n—
PR e+ Da(ptn = D2t = Dappnar ™ (4.3)

_ pP@AB.abyk ap Yomoo(p+n-— ])ap+n N Siaxoat! B

P~ CrABoBm)

for 0 < |z| < r if and only if

3p°D(p, A, B, a, B,7)k 2P
C(p, 4, B,a, B,7,1)

Since f(z) is in the class Zp’k A, B,a,f3,7), from (2.1) we may take

_ D(P, Av B,O', ﬂa 7)(1 - k)AP-Hz_—-l (4 5)
Wt T T C(, A, By, B,,m) X

+Z p+n—1)Bp+n—Dapynrf 1 < pP? (4.4)
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o

Apyn_y <1 (4.6)

(ptn—-1 !!3p+n—1!

For each fixed r, we choose the positive integer ng = no(r) for which CoAB.aBmm)
r2P+n-1 is maximal. Then it follows that '

Y (p+n=1)Bp+n—~1apnar?™t <

n=2

(p+ no—l)(3p +no — I)D(P,A, B’ a, ﬂa 7)(1 - k)r2p+n—1 (4 7)
’ C(p’Aa Baaaﬂa7an0) )

Hence f(z) is meromorphically p-valeiit- convex in 0 < |z| < r(p, A, B, a, 8,7, k)
provided that
3p’D(p, A, B, o, B,7)k

C(p’A’Bﬁa’ﬂ3‘y’1)

(P+ Ng — 1)(3p+ ng — 1)D(P,A,B,01’B,’7)(1 - k)r§P+no—l S p2 (48)
C(paAa Baaaﬂa7an0)

2P
ro +

We find the value rq = ro(p, A, B, a, 3, k) and the integer no(ro) so that

3p?’D(p, A,B,a, B,7)k ,p

CpABapyl) T
(P+ ng — 1)(3p+ ng — I)D(PaAaBaO‘aﬂa'Y)(l - k)r2p+n—i — p2 (4 9)
C(p,A,B,a,ﬂ,’)’,no) 0 .

Then this value rq is the radius of meromorphically p-valent convex for functions
f(2) belonging to the class 3 (4, B, e, §,7).
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ABSTRACT 2In this paper we have proved that if @ is in the orbit o where
a= %@, b= 2=E then p = 1 (mod 4) and the quadratic form f = cz? — 2azy + by?

is equivalent to — f.

INTRODUCTION Let GG be a group of 2 x2 matrices with integral element and
determinant 1. The two quadratic forms f(z,y) = az? + bzry + cy® and g(z,y) =

Az? + Bzy + Cy? are said to be equivalent, if therc is an M = ( ]PZ 65,2 ) €eqG
such that g(z,y) = f(Pz + Qy, Rz + Sy).

In this case we say that M takes f to g and we write f ~ g. The co-efficients of
g in terms of co-eflicients of f are as follows:

A = aP?+bPR+ cR?
B = 2aPQ+bPS+ QR)+2cRS
C = a@Q’+bQS +cS*
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The effect of this change of variables is made clear by making systematic use of
matrix multiplication.

= (Z/z Ic)/z)’ = (3/2 g”)’).‘:(.f)

Then X'FX = (f(z,y))

Let

Similarly, X*HX = (g(z,y)) our definition of g states that we obtain g by evalu-
ationg f with z replaced by MX.

That is

(MX)F(MX) = (g(z,v))
X(M'FM)X = (g(z,y))

Since the co-efficient matrix H of quadratic form g is uniquely determined by the
co-efficients of ¢ we must have M'FM = H.
In our subsequent work we shall use the following known results of number theory.

1.1: Let p be a prime number, then p can be written as a sum of two squares if
and only if p = 1 (mod 4).

1.2: If a positive integer n can be written as a sum of squares of two rational
numbers then it can be written as a sum of squares of two integers.

1.3: For any prlrne p the Diophantine equatlon r?2—py? = —1 has integral solution
if and only in p =1 (mod 4). ’

1.4: If the equation ? — py* = —1 has integral solution z;, Y] then (z,,¥}) = 1

: Every quadratic irrational nurnber M where n’ is a non-square can be

umquely represented as b:@ ,¢)=1.

(See Q. Mushta.q [3]). We denote the set of all such numbers for a particular n by
Q*(vn). :

Imrana Kausar, S. M. Husnine, A. Majced in [5] and [6] have investigated the be-
haviour of ambiguous and totally positive or totally negative elements of @*(\/n)
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under the action of modular group and the group H =< ¢, y: 3 =3y*>*=1> on
the quadratic field. The same authors in [7] classify the elements of @*(,/p) for
any odd prime p with respect to the odd-even nature of a, b,c. For the number
theoretic result we refer the readers to [1] and [2].

In this paper we have proved that if a = itg@ is mapped onto & then the quadratic

from f = cr? — 2azy — by? is equivalent to —f and p =1 (mod 4).

We start with the following lemma.

Lemma For any quadratic form f(z,y) = Az? + Bzy+ Cy? if a = J and
@ = @*(y/n) are the roots of f then there is a rational number A such that

f(z,y) = Mecz® — 2azy + by?)

Proof Let

2 _
a=a+ﬁ, aeQ(vmn), b=2""
be the roots f(z,y) = Az? + Bzy + Cy? So that
atyn -B+VB—1AC

c - 2A
Then
a -B B*—4AC n
e~ ga °nd 1Az &
a? B? B C _n
&g M T T2

IHence
B .C
_ 2 B L o2
flz,y) = A(w +Aa:y+Ay)

= A (cz® — 2azxy + by?)

C
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f(z,y) = A(cz? — 2azy + by?) where A = 4, a rational number.

Theorem (A) Under the action of modular group PSL (2, Z) on Q*(\/p), a is
mapped on to &, where a = 22 p = =2 (4.b ¢) = 1 If and only if the
quadratic form f = cz? — 2azy + by? is equivalent to —f.

Proof Suppose a = %@ € @*(/p), mapped onto & under the action of modular
. group G, then we show that the binary quadratic form f is equivalent to — f. Since

« is mapped onto &, so there exist an element g = ( 2 g ) € GP,Q,R,5€ 7
‘and PS—QR=1

such that g(a) = a
' (59) -s
Pa+@Q

Ra+ S
pa+ Q = Raa + Sa

(128) it os (22)

=a

C
Pa+ P\/p+cQ=>bR+Sa—SVP=0
[(P—S)+cQ—bR]+ (P+S)\/p=0
= a(P—-S)+cQ—-bR=0 and P+S5=0

cQ = —aP+aS+ bR S=-P
¢c@ = —aP+aS+ bR
Q = —aP +aS + bR

4
~2aP + bR _ 2aP — bR
4 - —C

PS—QR=1

Put S=-P Q=

—————) R=1 or ¢P®—(2ap—-bR)R=—c
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or

CP?—~2aPR+bR* = —¢ (1)

Now @ = %—;b—n implies that 2aP — bR+ CQ = 0 or —2aS = bR — ¢Q)

—2aQS = QR — cQ? (2)

and

PS—-QR=1=-5"-QR=1

or

_S?b—bRQ = b - 3)

From (2) and (3)
—2aQS = bRQ — cQ?
b=—-bRQ —S%
b—2aQS = —-cQ? — S?%

b= —cQ?+ 2aQS — S% (4)
Also %P — bR
Q:—a—_—c——=>2aP—bR+cQ=O
or-
2aP? —bRP + cPR=10 (5)
PS—QR=1=-P’-QR=1 |
or
-1-QR= P?
From (5)
2a(—=1— QR) + bRS + cPQ =0
~2a =2aQR —bRS — cPQ (6)
2aP — bR +cQ =0 => 2aPS — bRS + cQS =0
or
2aPS ~bRS —cPQ =0 (7)

From (6) and (7)
—2a =2aQR - bRS — cPQ
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0 =2aPS — bRS — cPO
~2a = 2a(PS + QR) — 2bRS — 2¢cPQ (8)

Let a, a be the roots of binary quadratic form f then by previous lemma for
A =1 we have
f(z,y) = cz® — 2azy + by*

f(Pz+Qy,Rz + Sy) = c(Pz+ Qy)’ —2a(Pz + Qy)(Rz + Sy) + b(Rz + Sy)*
= (cP?*—2aPR+ bRz + [2¢PQ — 2a

(PS + QR) + 2bRS)zy + (cQ* —2aQS + bS?)y?

—cz? — 2azxy — by*(using (1), (4), (8))

—(cz?® — 2azy + by2)

= —f(z,y)

Hence f is equivalent to —f.

Conversely, let a = ﬁ—gﬁ € Q*(y/P) and the quadratic form f(z,y) = cz? —
2azxy + by? is equivalent to — f(x,y). We show that o is mapped onto @. Since
the quadratic form g(z,y) = cz? — 2azy + by? is equivalent to f(z,y) = —cz® +

2azy — by?, so there is an element g = ( Z g ) € G such that PS — QR =
,P,Q,R,S€Z.
The co-efficients of ¢ in terms of co-efficients of f are

c¢=cP?®4+2aPR + bR? (1)

—2a = —2cPQ + 2a(PS + QR) — 2bRS

or

—a=—cPQ+a(PS+QP)—bRS (2)
b= —cQ?*+2aQS — bS?

or

2aQs = b+ bS? + cQ? 3)
1=PS—-QR (4)
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0 =2aPS - bRS — cPO
—2a = 2a(PS+ QR) — 2bRS — 2¢PQ : (8)

Let a, a be the roots of binary quadratic form f then by previous lemma for
A =1 we have
f(z,y) = cz® — 2azy + by’

f(Pz + Qy,Rz + Sy) = c(Pz+Qy)?* —2a(Pz + Qy)(Rz + Sy) + b(Rz + Sy)?
= (cP?®—2aPR+ bR*)z* + [2¢PQ —2a

(PS + QR) + 2bRS)zy + (cQ? —2aQS + bS?)y?

—cz? — 2azxy — by*(using (1), (4), (8))

—(cx? - 2azxy + by?)

= ~f(z,y)

Hence f is equivalent to —f.

Conversely, let o = a—tﬁ € Q*(\/p) and the quadratic form f(z,y) = cz® —
2azxy + by? is equivalent to — f(z,y). We show that « is mapped onto @. Since
the quadratic form g(z,y) = cz? — 2azy + by? is equivalent to f(z,y) = —cz® +

2axy — by?, so there is an element g = ( ; g ) € G such that PS -~ QR =
L,P,Q,R S€Z.

The co-efficients of g in terms of co-efficients of f are

¢ =cP?+2aPR+ bR? (1)

~2a = —2¢PQ + 2a(PS + QR) ~ 2bRS

or

—a=—cPQ +a(PS + QP) ~ bRS (2)
b= —cQ?+2aQS — bS?

or
2aQs = b+ bS? + cQ? - (3)

1 — DPQC _ NP { AN
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Multiply (2) by S and (4) by —cQ and subtracting

—aS = —cSPQ + aS(PS + QR) — bRS?

Fc@Q = FcSPQ + cQ*R

—aS+c¢Q = aS(PS+QR)—-bRS*—cQ*R
aPS*+aSQR - bRS? — cQ*R
= aPS*+ R(aSQ — bS* — cQ?)
aPS*+ R(b—aQS) wusing (3)
aPS? + bR — aQRS
; aS(PS—QR)+ bR
—aS+cQQ = aS+bR

2aS = @ - bR

I

i

Il

i

Multiply it by @
2aQS = cQ* — QRb

—2aQQS = —cQ* £ bS% £ b

0=-QR-bS*—b

0=-QR-S5*~1 or —1=QR+S5*
~1=QR+ 5?
1=—QR+PS

0 = S’ 4+PS=S5(S+P)=0, S=0 or P+S5S=0
S 0 or S=-P

Put S = —P in(4)
I = -PP-QR-

I+ P*=—-QR
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From (1)
c(1+ P?*) = R(2aP - bR)
c(—QR) = R(2aP —bR) wusing (5)
—c@) = 2aP-bR
0 = 2aP-bR 1+ P?
- c - -R
PS-QR=1
I (ZaP - bR> R=1
—c
or ;
2—aPR——R2=1+P2= —QR
c c
2—a P - éR-{- Q=0
c c
pla+a)—aaR+Q =0
or
pa+ Q = —pa + aaR
Pa+ Q = a(—P + Ra)
or

Pa+Q Pa+ Q@
Ra—pP_ ° " Ra—3$§

=a

o

Hence, o is mapped onto &

Theorem (B) Let & be in the orbit of o that is, a is mapped onto & under
the action of modular group PSL (2, Z) on Q*(,/p), where a = %@ then p = 1
(mod 4).

Proof Suppose that a is mapped onto & under the action of modular group, then

there exist an element g = ( 2 g ) €GP,Q,R,S € Zand PS—QR =1 such

that g(a) = @ From theorem (A) we have S = —P,Q = 3%:—“3.
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Now PS — QR =1, forces that

—C
b
PR _boy |
c c
2 _
P(2—“)R—<“ 2”)32_1+P2 p=2_F
c C c
2 2 p2
=>p5,_;-=P2——2?aPR+aR +1
2 P? 2ac  ,
i TR T

Hence, by known results 1.1 and 1.2 we have p = 1 (mod 4).
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In this paper we obtain fixed point and best approximation theorems for

*-nonexpansive multivalued maps defined on a closed convex (not necessarily
bounded) subset of a Banach space under certain boundary conditions. The re-
sults herein contain those of Husain and Tarafdar. Husain and Latif, Park, Singh

and Watson, Xu and others.

We gather together some definitions and facts which will be used in this paper.
Let C be a nonempty subset of a Banach space X. We denote by 2%, C'B(X)
and K(X) the families of all nonempty, nonempty closed bounded and nonempty
compact subsets of X respectively. The Hausdorfl metric on CB(X) induced by
the metrix d on X is defined as .
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sup d(a, B), supd(b, A)
acA beB

for A, B in CB(X), where d(a, B) = inf,¢p d(a, b).

H(A,B) = max{

A multivalued map T : C — C B(X) is called nonexpansive if H(Tz,Ty) < d(z,y)
forallz,yin C. A multivalugd map T : C — 2% is said to be

(i) Weakly nonexpansive [4, 5] if given z € C and u, € Tz thereis a uy, € T}, for
each y € C such that d(u,,u,) < d(z,y)

(i1) *-nonexpansive [5, 14] if for all z,y in C and u, € Tz with d(z,u;) = d(z,Tz)
there exists u, € Ty with d(y,u,) = d(y, Ty) such that d(u,,u,) < d(z,y).

(iii) Upper semicontinuous (usc) (lower semicontinuous (Isc)) if

T-Y(B)={z € C: TzN B # ¢} is closed (open) for each closed (open) subset
B of X, T is continuous if T is both usc and Isc.

(iv) Weakly inward if Tx C cl (I(z)) for all z € C, where the inward set Ic(z)
of C at z € X is defined by Ic(z) = {z+y(y —z) : y € C and v > 0} and ‘!
means taking closure.

(v) Satisfy the Leray-Schauder conditions (in case C' has nonempty interior) if
there is point z in interior of C such that for each y € Tz.

y—z#Mz—y) forall z€ BdC and A>1

For given T : C — 2%, we say that C is (K R)-bounded with respect to (w.r.t) T
(cf. [8] and [10]) if for some bounded set A C C the set

i G(A) = r-‘aEAG'(a',jwl).

is either empty or bounded where G(a,Ta) = |J 1, G(a,y) and G(a,y)

={z€e C:||z—al 2 ||lz—y||}. In what follows, we denote by Pr(z) the (possibly
empty) set {u, € Tz : d(z,u,) = d(z,T(z)} for each z € X (cf. [14]). A single
valued map f:C — X is said to be a selector of T if f(z) € Tz for each z € C.

Bd, and Int, denote the boundary and interior respectively.

The concept of *-nonexpansiveness is different from continuity and hence nonex-
pansiveness for multivalued mappings T : C — 2%, as is clear from the following
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example.

Example Let X = R? be equipped with Euclidean norm and C = {(a,0) :
1/v/2 <a <1} U {(0,0)}

Define T : C — 2X by

_{(0,1), : . ifa#0
T(a,0) = { L = the line Segment [(0,1),(1,0)], ife=0

The Pr(a,0) = {(0,1)} for all (a,0) # (0,0) in C and Pr(0,0) = {(1/2,1/2)}.
This clearly implies that 7" is *-nonexpansive. But T is not continuous multifunc-

tion (cf. [12], p.537).

Also note that u, = (1,0) € T(0,0). For any y = (a,0) € C with a #0, u, =
(0,1) such that |u, —u,| = |(1,0) = (0,1)] = /2 > |z — y|. Thus T is not weakly

nonexpansive.

A particular form of Theorem 4 due to Park [9] stated below will be needed (see
also Theorem A[10]).

Theorem A Let X be a uniformly convex Banach space, C a nonempty closed
convex subset of X and f : C — X a nonexpansive map such that C is (KR)
-bounded. Suppose that one of the following holds:

(a) f is weakly inward.

(b) 0 € Int C and fr # A for all z € BdC and A > 1 (i.e. f satisfies Leray-
Schauder condition).

Then f has a fixed point.

The following is due to Reich [11].

Theorem B Let (" be a closed convex subset of a Banach space X such that the
metric projection is usc. If f: C'— X is continuous f(C) is relatively compact,
then there is a y € C such that ||y — fy|| = d(fy,C).
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Results The proof of following general theorem is based on Theorem A.

Theorem 1 Let C be a nonempty closed convex subset of a uniformly convex
Banach space X and T : C — 2z closed convex valued *-nonexpansive map such
that C is (K R) -bounded with respect to T. Then T has a fixed point under each
one of the followir.g boundary conditions. '

1) T is weakly inward.

(
(2) li’mhq0+ d[(1—-PR)z +hy,C]/h=0forall z € C and y € Txz.
(3) 0 Int C and y # vz for all 2 € BdC,yET, and v > 1.

(

4) T(BdC) C C.

Proof Since T(z) is a nonempty closed convex subset of a uniformly convex
Banach space X, therefore each u, in Pr(z) is unique. Thus by the definition of
*-nonexpansiveness of T, there is u, = Pr(y) € Ty for all y in C such that

|1 Pr(z) — Pr(y)ll = llue — uyl| < |lz —y]|

So Pr : C — X is nonexpansive. The (K R) boundedness of C' w.r.t. T clearly
implies that C is (K R)-bounded w.r.t. Pr.

(1) As T is weakly inward so for each z € C, Tz C cl (I¢(z)). Since Pr(z) € Tz

for each z € C therefore Pr(x) € cl (I¢(z)) for all z € C. Hence Pr : C — X
is weakly inward. Theorem A(a) implies that Pr has a fixed point. That is there
is some z¢ in C such that Pr(z¢) = z9. But Pr(z) € Tz for each z € C so
zo = Pr(zo) € T(zo) as required.

(2) Tt is known (cf.[]10]), p.654) that f : C — X is weakly inward if and only if
limp—o4 d[(1 — R)z + hf(z),C)/h = 0 for all z in a closed convex subset C of a
Banach Space. As Pp(z) € T, for all z € C so limy_g4 d[(1—h)z+hPr(z),C]/h =
0 for z € C. This implies that Pr : C — X is weakly inward. Now the result is
obvious from (1).

(3) As Pp(z) € Tz, Pp(z) # ~z for all z € BdC can 4 > 1. Thus Pr satisfies
Leray- Schauder condition. So by Theorem A(b), Pr and therefore T' has a fixed
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point.

(4) Since C C I¢(z) for all £ € C and I¢(z) = X if = is an interior point,
therefore T' is weakly inward. The conclusion now follows from (1).

This completes the proof.

For single valued map T the concepts of nonexpansiveness and *-nonexpansiveness
coincidé. Thus we have the following;

Corollary 2 Let C be a nonempty closed convex subset of a uniformly convex
Banach space X and T' : C — X a nonexpansive map such that C is (K R)-
bounded w.r.t. 7. Then T has a fixed point provided one of the boundary
conditions (1)-(4) of Theorem 1 holds.

Corollary 2 extends Theorem 3 (4), (8) and (L.S) due to Park [10] from Hilbert
space set up to that of uniformly convex Banach space. Here we also obtain
conclusions of Corollary 15[3] and Remarks 3.9(iv) [15] when C is closed convex

and (K R)-bounded.

In case T : C — 2€ in Theorem 1, we have;

Corollary 3 Let C be a nonempty closed convex subset of a uniformly convex
Banach space X and T + C — 2° a closed convex valued *-nonexpansive map

such that C is (K R)-bounded w.r.t. T. Then T has a fixed point.

Remark 4(i) In Theorem 3.2 [5], the same conclusion was proved under assump-
tions of the boundedness of C and Opial’s condition of X. Here we obtained the
same conclusion if C is (K R)-bounded w.r.t. T'. '

(ii) Corollary 3 provides the conclusion of Corollary 1 [14] for uniformly convex
Banach space X without the boundedness of C (see also Remark 3 [14]).

(iii) *-nonexpansive multivalued maps need not be continuous so Theorem 1
applies to the fixed point theory of multifunctions which are not necessarily con-
tinuous.
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Corollary 5[1] Let C be a nonempty weakly compact convex subset of a uni-
formly convex Banach space and T : C' — C a nonexpansive map. Then T has a
fixed point. ' '

Multivalued analogues of Ky Fan’s best approximation theorem have been con-
sidered by researchers and interesting applications towards fixed point theory of
multifunctjons are given by them. We establish a version of this important theorm
for *-nonexpansive multivalued maps as follows.

Theorem 6 Let C be a nonempty closed convex subset of a uniformly convex
Banach space X. If T : C — 2X is closed convex valued *-nonexpansive map and
T(C) is relatively compact, then T possesses a nonexpansive selector f such that

ly — fyll = d(fy,C) forsome yeC
If in addition |[fy — Qfyll = d(Ty,C) then d(y,Ty) = d(Ty,C), where Q is

~ projection map of X onto C.

Proof If C is closed and convex subset of a uniformly convex Banach space X,
then the projection map @Q : X — 2¢ defined by

Q(z)={y € C:|lz -yl = d(z,C)}

is single valued and continyous (see {12]), p.535). Asin Theorem 1, Pr: C — X'is
nonexpansive selector of T'. Since T(C) is relatively compact and Pr(C) C T(C),
therefore Pr(C) is relatively compact. By Theorem B, there exists y € C such
that . '
ly — Pr(y)ll = d(Pr(y), C)

By definition of Pr we have d(z, Prz) = d(z,U,) = d(z,T,) for each z € C.
Thus d(y, Pry) = d(y, Ty) and hence d(y, T'y) = d(y, Pry) = d(Pry,C) = || Pry —
Q@ Pryl| = d(Ty,C) as desired.

T:C — ‘X, then we have the following extension of Theorem 5 due to Singh
and Watson [13].

Theorem 7 Let C be a nonempty closed convex subset of a uniformly convex
Banach space X. If T : C — X is nonexpansive map and T(C) is relatively
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compact, then there exists a point y in C such that
ly — Tyll = d(T'y,C)

As an application of Theorem 7, we get the following fixed point result', which
generalized Theorem 6 and 7 [13].

Corollary 8 Let C be a nonempty closed convex subset of a uniformly convex
_ Banach space X. If T : C — X is nonexpansive map, T(C) is relatively compact .
and T satisfies any one of the following conditions:

(1) For each z on the boundary of C, [Tz — y|| < ||z — y|| for some y in C.

(2) For any u on the boundary of C with u = QT (u), that u is a fixed point of
T.

Then T has a fixed point in C.

In case T : C — 2€ in Theorem 6, we have the following fixed point result for

*-nonéxpansive maps which provides the same conclusion as of Cor. 3 with dif-
ferent conditions that T'(C) is relatively compact.

Corollary 9 Let Cbe a nonempty closed convex subset of a uniformly convex
Banach space X and T : C — 2 a closed convex valued *-nonexpansive map
such that T(C) is relatively compact. Then T admits a fixed point.

Note that if T is single valued then the conclusion of Corollary 5 holds for closed
and convex set C'.

Following generalizes Theorem 3.2[5], corresponding results in {4] and [6] and
Theorem 2 by Xu [4].

Theorem 10 Let X be a Banach space satisfying Opial’s condition and C be
a weakly compact starshaped subset of X. Then each *-nonexpansive compact
valued map T : C — 2© has a fixed point.

Proof Since for each z € C, Tz is nonempty and compact so Pr(z) is nonempty
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and compact. As in Theorem 1, Pr : C — 2° is nonexpansive. Thus Pr and
hence T has a fixed point by Corollary 3.11 [15].

Remarks 11 (i) If T is single valued, then the conclusion of Corollary 5 holds for
weakly compact starshaped subset of a Banach space satisfying Opial’s condition.

(ii) All Hilbert spaces and [P spaces (1 < p < o0) satisfy Opial’s condition but
L?[0,1](p # 2) are uniformly convex Banach spaces which do not satisfy Opial’s
condition.
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ABSTRACT Although other programming languages are equally good and can be
used to handle RSA cipher, Maple provides a more friendly environment in compu-
tational works. This paper demonstrates how nicely RSA cipher system works with

Maple.

1. INTRODUCTION The widespread use of electronic communications in
a commercial environment means that a great deal of data which was sent in a
fairly secure manner in the past is now sent by communications links to which
many people potentially have access. The aim of security measure is to minimize
the vulnerability of assets and resources hence there is a need for concealing the
contents of a message and for detecting any tempering with a message. Ciphers are
more universal methods of transforming messages into a format whose meaning
is not apparent. The most important technique is RSA cipher. As far as RSA
system is concerned, there is no faster method of attack than factorization. In
1988 Caron and Silverman managed to factorize a 90-digit number into two prime
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numbers of 41 and 49 digits, with the add of 24 SUN-workstations. The required
processing time was about six weeks. In the same year Lenstra and Manasse
successfully factorized a prime number of 96 digits. They employed a large number
of computers, which were interconnected by a combination of local area networks
and electronic mail. The whole operation took 23 days, which effectively worked
out to 10 years of CPU time. '

Despite the algorithms for reducing the total number of calculations, the RSA
system still requires considerable computational power for processing such large
numbers. For this reason in practice the RSA system is not especially well suited
for real-time encryption of large amounts of data. The RSA system is therefore
often used for enciphering limited amounts of data, for instance for the trans-
portation of secret keys. In this paper we use Maple (computational package of
mathematics) to program RSA cipher.

2. BASIC TERMINOLOGY We suppose that one person, the sender, wishes
to send another person, the recipient, a message which he/she wants to keep
secret from an eavesdropper. The message must be transmitted over an inseure
channel, to which it must be presumed the eavesdropper has access. The message
is called the plainiext. It is enciphered or encrypted by an algorithm or a set of
rules called the encryption algorithm. This algorithm is controlled by a string of
symbols called the key. The key is kept secret from every one except the sender and
recipient and it should be easily changed in case it has somehow been discovered by
the eavesdropper. The output from this algorithm is called the cipher, ciphertext
or cryptogram. The inverse process called decryption or deciphering applies the
same or a different mathematical function to change the ciphertext back to the
original plaintext. It is also controlled by a key. The breaking of a cipher system
by an eavesdropper is called cryptanalysis. The difference between cryptanalysis
and decryption is that the cryptanalyst has to manage without the decryption
key. A cipher system has following components:

. plaintext message space, M.

. ciphertext message space, C.

1
2
3. key space, K.
4. family of enciphering algorithms, Ey : M — C, where k € K.
)

. family of deciphering algorithms, Dy : C — M, where k € K.
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Cipher systems must satisfy three general requirements:

1. The enciphering and deciphering algorithms must be efficient for all keys.
2. The system must be easy to use.

3. The security of the system should depend only on the secrecy of the keys and
not on the secrecy of the enciphering and deciphering algorithms.

Different cipher systems have different levels of security, d.epending on how hard
they are to break. The security is directly related to the difficulty associated with
inverting encryption transformation of a system. Now we will take a look at some

methods used in encryption.

2.1. Simple-Substitution Cipher This cipher replaces each character of plain-
text with a corresponding character called its substitute. A single one-to-one map-
ping from plaintext to ciphertext character is used to encipher an entire message.

2.2. Block Cipher Let M be aplaintext message. A block cipher breaks M
into successive blocks My, M,,---, and enciplhers each M, with the same key k.
Each block is typically several characters long.

2.3. Running Key Cipher In a running-key cipher, the key is as long as the
plaintext message. Assume that the letters of plaintext are represented by integers
in the ciphertext. The letters are then regarded as integers from 1 to 26 with a =
1 and z = 26 and a blank space is given by the value 27.

2.4. Public Key Cipher In a public-key cryptosystem, the public- key algo-
rithm uses an encryption key diflerent from the decryption key. Since the public
key is published, a stranger can use it to encrypt a message which can be decrypted
only by the the owner of the private key. For this reason public-key systems are
also referred to as non symmetric or one-way.

RSA Cipher [1] The RSA cipher named after its discoverers, Rivest, Shamir
and Adleman. The RSA cipher is based on the fact that it is relatively easy to
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calculate the product of two prime numbers, but that determining the original
prime numbers, given the product, is far more complicated.

The encryption and decryption procedure is as follows:

1. Find two large primes p and ¢, each about 100 digits long and define n by
n = pq.

2. Compute the unique integer e in the range 1 < e < (p — 1)(¢ — 1) that is
coprime to (p — 1)(¢ — 1). This should be easy if e is prime and is not a factor of

(p—1)g—1).

3. Finally the value of € is used to determine another number, d, for which ed = 1
(mod (p — 1)(¢ — 1)). The numbers n,e and d are referred to as the modulus,
encryption and decryption exponents respectively.

4. Release the pair of integers (e,n) as public key while keeping the numbder d
safe to decrypt. '

5. Represent M, the message to be transmitted, into an integer, break M into
blocks if it is too big.

6. Encrypt M into ciphertext C by the rule C = M® (mod n).
7. Decrypt by using the private key d and the formula D = C? (mod n).

Theorem [2] Consider a message M, which is enciphered according to the RSA
system, resulting in a ciphertext C = M¢ (mod n). The receiver deciphers this
message into D = C? (mod n), ensuring that ed =1 (mod (p — 1)(¢ — 1)). Then
for all cases: D = M.

The security of this system relies on the fact that it is almost impossible to cal-
culate the value of d if only the public key (e, n) is known. Thus, the person who
issues the public key (e,n) is the only person who knows the precise value of d
and therefore also the only person able to decipher encrypted texts.

4. MAPLE WORKSHEET (RSA Cipher)
Computation of n and d

Enter any two large integers.
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Now we have all the parameters for encryption and decryption. Load the Maple
routines for encoding and decoding the message to number and number to message
respectively. If the message is too long then break the message into successive
blocks and encipher each block with the same key (e, n).

> read ’getnum.m’: read 'getmess.m’: # See Appendix
Example As an example we consider the message 'l am happy’ and encode it as
a number M.

> M := get _number (‘iamhappy’):

M :=9270113270801161625

Encrypt M into a cryptogram C.
> C :=Power (M,e) mod n;

C :=1245858167677128905373175190959

Decrypt C by using the private key d.
> M :=Power (C,d) mod n;

M :=9270113270801161625

Get original message.
> get _message (M);
¢ am happy

which was the original message.

Appendix
Maple routine for encryption:

> get _ nimber:=proc(msg)

> local II, nn, ss, ii, alpha;

> alpha: = table ['a’ = 1,/V' =2/ =3/d =4,/e' =5, =6/¢g' =7V =8/i=

> 9/7=10/kK=111I"=12/m' =13,/ n' = 14,0’ = 15,/p’ = 16,

> g =177 =18¢ =19/t = 20,/ u' = 21,/ v' = 22,/ w' = 23,/¢' = 24,/ y' = 25,/ ' =
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> 26,=> 27]):

> if (not type(msg, string)) then ERROR(’wrong number (or type) of arguments’) ﬁ;
> II:= length (msg);

> if Il = 0 then RETURN (0) fi;

> nn:=1

> for ii from 1 to II do

> ss:=alpha [substring(msg,ii..ii})];

> if(not type(ss,numeric)) then ERROR(’wrong number (or type) of arguments’)fi;
> nn:=100* nn 4 ss;

> od;

> end;

> save ‘getnum.m’:

Maple routine for decryption

> get-message: = proc(num)

> local ss, mm, II, ii, ans, a,b,¢,d,¢, f,g,h,%,5,k,l,m,n,0,p,q,1,5,2,u,v,0, 2,

> y,z,”, beta; '

> beta:=table([1 =a,2=0,3=¢,4=d,5=¢,6= f,7=¢,8=h,9=410=4,11 =
> k,12=1,

>183=m,14=n,15=0,16=p,17=¢,18 =1,

> 19=s, 20=t, 21=u, 22=v, 23=w, 24=x, 25=y, 26=z, 27="]):

> mm:=num,

> if(not type(num,integer)) then ERROR(’wrong number(or type) of arguments’)fi;

> II = floor(trunc(evalf(log 10(mm)))/2)+1;

> ans:="; __

> for ii from 1 to II do

> mm:=mm/100

> ss:=beta[frac(mm)*100];

> if(not type(ss,string)) then ERROR(’wrong number (or type) of arguments’)
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> fi;
> ans:=cat(ss,ans);
> mm:=trunc(mm);
> od;

.. > ans;

‘ > end;

> save 'getmess.m’.
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