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Local Convergence of Newton’s Method Under a Weak Gamma
Condition

Toannis K. Argyros
Cameron University
Department of Mathematical Sciences
Lawton, OK 73505, USA
E-mail: jargyros@cameron.edu.

Abstract. We provide a local convergence analysis of Newton’s
method under a weak gamma condition on a Banach space setting.
It turns out that under the same computational cost and weaker
hypotheses than in [4], [5], [7], we can obtain a larger radius of
convergence and finer estimates on the distances involved.

AMS (MOS) Subject Classification Codes: 65G99, 65805, 47H17, 49M15.
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vergence, gamma condition, Newton-Kantorovich condition, Smale’s analyticity.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution z* of the nonlinear equation

F(z) =0, 1. 1)

where, F is a Fréchet-differentiable operator defined on a closed ball U(y, R) (R > 0)
which is a subset of a Banach space X with values in a Banach space Y. The
most popular method for generating a sequence {z,} (n > 0) approximating z* is
undoubtedly Newton’s method given by

Ip4l = Tn — F/(xn)_lF(xn) (n > 0) (330 € ﬁ(y,R)) (1 2)

Local as well as semilocal convergence results for Newton’s method have been pro-
vided by many authors under various assumptions. Historically Newton—Kantorovich
type assumptions under Lipschitz continuity conditions on a domain D including
U(y, R) have been used first to show convergence [1]-[3], [6] followed by Smale
conditions using information only at a point [4], [5].

Here in particular we are motivated by the elegant work by Han and Wang [5],
which follows Smale’s theory, where they used the gamma condition (see Definition

2.1 that follows) to find the radius of convergence for Newton’s method in this case.

It turns out that under the same computational cost and weaker hypotheses
than before [4], [5], [7], we can obtain a larger radius of convergence and finer error
estimates on the distances involved.
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We also give a comparison between gamma-type results and the Kantorovich’s.
In particular we provide the connection between the gamma and Lipschitz pa-
rameters. Finally we show that under the Kantorovich hypotheses the radius of
convergence is always larger than the one using the gamma hypotheses.

2. LocaL CONVERGENCE ANALYSIS OF NEWTON’S METHOD

We need the definition of a gamma (yo,7) condition at a point:

Definition 2.1. Let R, o, and v be positive parameters with 70 <. Let * € D
with U(z*, R) C D. We say F satisfies the (70, 7) condition at y if the following
hold true for all # € U(z*, R) and all t € [0, 1]:

F'(z*)~! € LY, X), 2. 1)
7 *\—1 ! _ ' 1 _
1P @) - P < e — ! 2. 2)
e 2yt — a
eV R () — F' NE —T )
1P @) P ) = P € gt (2. 3)
where,
zt =z +ta* - z). (2. 4)

By the definition of vy and «y there exists ¢ € [0,1] such that vp = ay. Set
ro = Yollz — «*||, and r = ~|]x — z*||. Then we get 7o = ar. It is convenient to
define scalar functions f(a,), g(a,r) and h(a,7) on [0,1)% by

f(a,r) = 22" — (50 + 4)ar® + (2¢* + 10a + 1)r? — (4a + 3)r + 1, (2. 5)

g(a,r) = 2a%% — dar + 1, (2. 6)
and
har) = (229} T @7
ST E\T =7 g(a,r) )

provided that r # 1 and g(a,r) # 0.

For each fixed a € {0,1] function f has a zero r® € (0,1) since f(a,0)f(a,1) =
—{a—1)% <€ 0. We use the same symbol 7 for the minimal zero of f in [0,1). Tt is
also simple algebra to show for all a € [0,1), r € (0,1]

fla,r) > fQ,r), 2. 8)
gla,v) > g(1,r), (2. 9)
ha,7) < h(1,7), (2. 10)
and
h{a,r) <1 for all r € [0,7°]. (2. 11)

Indeed by (2.5)
fla,7) — f(1,7) = 2(a + 1)r® — (5a + 9)r? + 2(a + 6)r — 4](a — 1)r,

which is clearly positive since the quantity in the bracket is negative. In view of
2.6
(*0) gla,r) —g(1,7) = 2[(a + 1)r - 2)(a — 1)r,
which is positive. The difference h(a,r) — h(1,7) will be negative if

(1—ar)? < (1—-7r)?

9(a,7) 9(1,7)




Local Convergence of Newton’s Method .... 3

or if (14 a)r < 2 which is true. Finally (2.11) will be true if f(a,7) < 0 which holds
for all r € [0,7%]. Note that for a = 1 estimates (2.8)—(2.10) hold as equalities. The
estimate f(a,7!) > f1(1,7!) = 0 leads to

rl <7 forall a # 1. (2. 12)

We shall show below that »1, 7% are the convergence radii for Newton’s method
(1.2) under Definition 2.1.

Theorem 2.2. Let z* € D be a simple zero of F, and let F satisfy the (vo,7)
condition at z*. Then sequence {zn} (n > 0) generated by Newton’s method (1.2)
18 well defined, remains in U ( ) for all n > 0 and converges to x* provided

that xg € U(z*, %), and
ac(1-V2\ Lo g
2 Yo

Moreover the following estimate hold for allmn > 0
lzn = @*[| < B> 2o — 2|, (2. 13)
where,
h = h(a,r?).

Proof. By hypothesis zg € U(m*, %) - U(m*, %) Letz € U(m*, ;—Z) Using (2.2)
and the choice of r* we get

/ w1 / _ / * 1 —
| F (™) [F' (&) — F'(z"))] < (I = ollz — z*]))2 1
ﬁ&a—)g 1<l (2. 14)

It follows from (2.14) and the Banach Lemma on invertible operators [6] that

F'(z)~! € L(Y, X) and

(1~ ar*)?
g(a,®)

17" (@)~ P (@) < (2. 15)

Let us assume x, € U(m*, %) for k =0,1,...,n. Using (1.2) we obtain the identity

Tpyr — = xp— F(xp) " () — 2*
= F'(z) ' [F(z*) — F(ax) = F'(@x)(y — k)] (2. 16)
= F@) / [F'(a") - F'(e0)] (@ — o)t
In view of (2.3), (2.7), (2.15), and (2. 16) we get
R e e A L O e
= hllzk ~2"|| < ||lzx - ff?*ll, : (2. 17)

which shows (2.13), zy41 € U(z* T—D) and klim T, =",
300
That completes the proof of Theorem 2.2.
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Remark 2.3. If a = 1, i.e. if 79 = v and (2.2) and (2.3) are replaced by the
stronger condition

_ 2
Fl(z*) P (@) € —— e 2. 18)
I e e I (
for all z € U(z*, R), then Theorem 2.2 reduces to Theorem 2.1 in [5, p. 98].
Otherwise due to (2.10) and (2.12) our theorem is an improvement since it provides
a larger radius of convergence and a smaller ration kA than Theorem 2.1 in [5]. Note

that
1 9 —V17
T =
dry

(2. 19)

was found in [5].
We now investigate conditions for g being an approximate zero of the adjoint
zero z*. Let us define scalar function f on [0,1]? by

fla,r) = 2a%r* = 2(3a + 2)ar® + (2a® + 12a + 1)r? —4(1+a)r + 1. (2. 20)

As above for each fixed a € [0,1] function f has a zero 7 € (0,1), since

fla,0)f(a,1) = —2(a — 1) < 0. We use the same 7¢ for the minimal zero of
fin (0,1). For z to be an approximate zero we must have
1
h(a,r) < 3 (2. 21)
which holds if _
fla,r) 20 (2. 22)

which is true for all r € [0,7°].
We also have that for all a € [0,1)

fla,r) > f(a,1) (2. 23)
which leads as in (2.13) leads to
7L< 7o (2. 24)
The implications of (2.25) are the same as (2.12) above. Note that in [5] they found
=1 3 - \/7
r =
2
With (2.3) replacing (2.19) in Theorem 2.3 in [5, p. 100] we obtain the improve-
ment:

<l (2. 25)

Proposition 2.4. Operator F has a unique zero x* in U(z*, Ro) provided that

1
Ry < —. 2. 26
o < 2 ( )
Moreover for any other solution T° of F'
1
T > —. 2. 27
=" -1 > 5 (2. 27)

Remark 2.5. We already noted that condition (2.3) is weaker than (2.19). If yo =
~ Proposition 2.4 reduces to Theorem 2.3 in [5]. Otherwise it is an improvement.
Estimate (2.28) further improves the corresponding result by J.P. Dedieu [4, Ch.

8]
5— V17

* RS>
ot 2t 2 2

(2. 28)
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We provide an example to show how we choose 7g, v so that (2.2), (2.3) are
satisfied, and +p can be smaller than .

Example 2.5. Let X =Y = R, R = 1, * = 0 and define function F on U(0,1)
by

F(z)=¢€" — 1. (2. 29)
Using (2.30) we get that
|F' (") F' (z) — F'(a")]] = bollz — 2*]|, fo=e—1 (2. 30)
and
/(@) F' (") = F' (@)l < tllz* —2ll, £=e. (2. 31)
Set: 4 .
’70=eT, and T=3- (2. 32)

It can then easily be seen that with the above choices of vy and 4 conditions
(2.2), (2.3) are both satisfied, and vp < .

In order for us to compare parameters 7o, -y appearing in conditions (2.2) and
(2.3) with the Lipschitz constants appearing in the Kantorovich theory {2}, {3], [6],
let us assume:

there exist parameters o > 0, £ > 0 such that for all z € U(IB*, %), t € [0,1)]

I (") F' (2) = F' (@) < follz — 2™, (2. 33)
and

IF" (@) 7 F (@) - F'(@)]]] < dlz* — <. (2. 34)
Then we will find out how to choose o and - so that (2.34) and (2.35) imply (2.2)
and (2.3). Set z — z* = r. It follows from (2.1), (2.2), (2.34) and (2.35) that

1
bor £ A= L (2. 35)
and 5
Y
{< m@ (2. 36)

should hold true for all r € [0, min{z;y‘f, i ]. By solving system (2.36)-(2.37)
we conclude

L < 2y, (2. 37)
b < 27, (2. 38)
and
05r52—‘/§. (2. 39)
270

Therefore parameters o and v should be chosen so they will satisfy (2.38) and
(2.39). A possible choice is obviously
£y

0= (2. 40)

and p
Note that in this case
Y <7, (2. 42)
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since
bh<t (2. 43)
holds in general. The ratio é (i.e. the ratio --) can also be arbitrarily large [2],
[3]. Clearly, if strict inequality holds in (2.44) so does in (2.43) for the choices of
vo and v given by (2.41), (2.42), respectively.
Let us also consider the converse problem. In this case (2.2) and (2.3) hold true
and we would like to know how to choose £y, £ in terms of vy and . This time we

bsolve’“complementary” inequalities with “<” replaced by “>” to obtain (
& = 2, (2. 44)
£ > 24, (2. 45)
and

Ogrgmin{Qng,%<1—i/?>}. (2. 46)

Note that % is used to secure that 1 is a strict upper bound in (2.2). In view

of (2.36) (with < replaced by > 1) 2;7‘({5 can be replaced by %. That is (2.47) can
be replaced by

. 11 s/ 2y
<r< — (1= .4
O_r_mm{go,W(l €>}, (2. 47)
0 <7 <min min{i,w},l<l—f/ﬁ> ) (2. 48)
€0 270 Yy é

Rheinboldt’s radius of convergence [2], [3] under condition (2.35) is given by
' 2

or by

= —. 2. 4
TR 37 ( 9)
The radius of convergence given by us [2], [3] using (2.34) and (2.35) is
2
=— 2. 50
TA= o1t (2. 50)
Note that
TR < TA (2..51)
unless if {5 = £.
Returning back to Example 2.5 we obtain
rgw = 161295704, (see (2.20)) (2. 52)
rg = .245252961 (2. 53)
and
r4 = .324947231. (2. 54)

That is our radius of convergence r4 is larger than Han-Wang’s ryy -, and Rhein-
boldt’s rg. Using the most favorable (see (2.38)) choice v = % for the enlargement
of radius rgw, we get
5—+17 438447187
= < TR.
2¢ £
Hence, under Kantorovich’s conditions (2.33) and (2.34), we have:

rgw <Tr < Ta, (2‘ 56)

THW = (2. 55)
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with strict double inequality holding in (2.56) if ¢5 < £.
Note that even in the case when (2.40) must hold still (2.56) is true for

2-+v2
270

TR=7Ta4= 5 (2 57)

since 22_7{5 >rgw.
In the case of Example 2.5 we must choose Tg, 74 not given by (2.55) and (2.56)
but instead set

rR =14 = .170457031. (2. 58)
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Abstract. We obtain an extension of Hardy inequality for convex
functions, which is a special case of Boas’s version of the Hardy’s
integral inequality.

1. INTRODUCTION

Hardy in an attempt to simplify Hilbert’s integral inequality ([5], Theorem 316)
discovered the following result:
Theorem A Ifp > 1,f(z) > 0 and F(z) = [; f(t)d(t),then

OOFP p 14 « EPE
| Grae <ty [ sy .

holds,unless f = 0. The constant (;%)P is the best possible.

This result is called the Hardy’s inequality (see, for example [4] and [5], Theorem
327).

Another inequality due to Hardy ([5], Theorem 328) was given by using the
converse of Holder’s inequality as follows:
Theorem B If p > 1,f(z) > 0 and F(z) = [ f(t)d(t),then

oo o0
/ FPdz < p? / («f)Pdz (1. 2)
0 0
holds, unless f = 0. The constant p? is the best possible. Since, the inequality

has wide applications in analysis. A number of researchers have developed interest
in the results and a lot of effort and time have been expended in the study and
extension of the inequality in various directions (see for example [5] ,chapter ix).

Of particular interest is the work due to [2]. The main purpose of this paper, there-
fore, is to study and establish some new inequalities from the Jensen inequality
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for convex functions. Indeed, our main result is an extension of Boas’s version of
the Hardy’s inequality where the variable z additionally is a linear function of two
further variables, says v and v, and then obtains an estimate of the integral of the
double integral of f with respect to the variables u and v. Special cases of our
result yield some of the earlier, as well as some recent generalization of Hardy’s
inequality given in [[1], [6], {7], and [9] - [12]] and on convex function [[3] and [8]].
The result is as follows:

Theorem 1. Let g(z) be continuous and non-decreasing on[0, oo] with g(0) = 0,
g9(xz) > 0, g(eo) = 00.5°0 ju; = u and Y, v; = v where z,u and v are all
positive. Also, let f : [a,b] — R(a < b), be continuous and conver on the real
interval [a,b]. Assume [[;; i > 0 with Y i (a + B8) > 0 for alli € N.

Then, the following inequality holds:

/om 9(@)7 /ab /: f éwm + Bivr))u® " dudvlPdg(x) < LP /Ow G(w)dg(z)

(1. 3)
where, L = (&~ 18)(b - a)(b® ~ a®)(k + 1) and G(z) = f(z)Pg(z)~ .

We note, however, that the left sides of (1.1), (1.2) and (1.8) exist when the right
sides do.

2. PRELIMINARY LEMMAS

We shall prove the following lemma which is a simple consequence of the Jensen
inequality proved by standard methods.

Lemma 2.1 If ® is conver and continuous, f is a non-negative and X is non-
decreasing on [0, 00]. Then,

e o]

/Ooog(m)*@[L_l/om f(v)dA(v)}dg(z) S/O 9(z)7'®(f(x))dg(z) (2. 1)

where, L = f(fo dA(v) with the inequality reversed when ® is concave.

Proof. Let ® be convex, then Jensen’s inequality says

3 / " fw)da@) < / ” 8£(0)dA(v)

Hence,

[ s@raie [ roneise)
0 0

IA

! /0 Oog(z)_ldg(z) /0 ” P(f(v))dA(v)
- N / " g(@) 19 (f(2)dg()
= L—IL/Ooo 9(z) 1 0(f(x))dg(x)

S ECR GO
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Similar result was obtained by replacing g(z) by  in [2] and this proves the lemma
when @ is convex. O

In order to obtain the next result, we shall make use of lemma 2.1 and our
method of proof is simply one step of integration by parts.

Corollary 2.1 If p > 1, f > 0, g is continuous, non-decreasing on [0,00) .
Let @ be continuous and convezr and suppose ® has a continuous inverse (which is
necessarily concave) on [0,00) and di(v) be defined as v* *dv on [0,1) and 0 for
v>1,a> 0. Then,

| s@ el s@ptaipdg@) <o [ o@ e s@pat)  @02)

Proof. Let

I= /0 PORL /0 Sy dofPdg(z)

Then, integrating by part of the inner integral yields

/ooo g(a:)“@[[ﬁ%)ﬁ] - /01 %f ©)dldgla)

0

f

/Ooo g(z)'®(a~" f(v))Pdg(x) — [Non — negativeterm]

0
< o [ g eswrdsta) (2. 3)
0
this completes the proof of the corollary. O

Remark 2. If v*"1 = L7!,a = p =1 and dv be defined as dA(v) on [0, z}, then we
get lemma 2.1.

Also, ifa=1— % replace g(z) by z on [0, 0] and ® = v = 1, then we get (1.1).
Similarly, we get (1.2) by letting & = p,g(z) = =, (z71®) = zP and v*" ! =z ! on
[z, o0].

3. PROOF OF THEOREM 1

The method of proof of this theorem is induction by means of partial integration.
From inequality (3), we obtain

1= o) b / " HS (s + ) o dudalPdg(z)
e Ja =
Also, we obtain on using integration by part of the inner integral
I<a™P(b® —a%)P /0 g(z)~ / f(Z(al(b ) + Bivi))dvlPdg(x)
Let i =1 then,

00 b
12070 =0 [ o@) [ flealtr— @) + Bt
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Assume the theorem fori =k > 1, we have

I< / o) ~a%) / — i) + fror))dulPdg ()
Then, for i =k + 1, we have
00 b k41
1< [T a0 —a) [ SO (oulb = 00 + )l do(e)

To see this, we note that f is a continuous and convex function on a real interval
[a,b].

Then,
k1 k
FO (oulbi = ai) + Biw)) = (O (e ) + Bivi) + s (Brg1 — ara1)
i=1 i=1
+Bk+1Vk+1)
k
< O (euslbi — a;) + Bif(0:)) + anga(bryr — arga)
i=1
+Brk+1f (Vkt1)) (3.1

Integrating both sides of (3.1) on the (k + 1) rectangles [a, b X[a,b]X...X[a, b] from
atob
We then have,

b k+1 b k
/ [f(Z(az‘(bi —ai) + Bivy))]dv < / Z o;(bi — a;) + Bif(vi)
+ak+1(bk+1 — k1) + Brr1f{vis1))))dv
= / [Z az - + /Bzf(vz))]dv
+ / (@1 (b = axsa) + Bt f(vers)do
= k(b—a)Bf+(b—a)Bf
= (b—a)(k+1)8f
Therefore,
I < [(@!'B8)(b—a)* —a®)(k+ 1) /0°° g(z) ™ f(x)Pdg(x)

- /0 ~ G(2)do(=)

This completes the proof of the theorem.

Remark 3. If we take @ = 1,v = 0,L = (1 — 1—1))_1 and g(z) = z and replace

f(z)?z~! by f(z)?. We then obtain a useful version of Hardy’s inequality (1.1).
Similarly, we get (1.2) by letting L = p.
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1. INTRODUCTION

K. Iseki [7] introduced the concept of BCl-algebras and established certain prop-
erties. Unlike, finite order groups the problem of characterizing finite order BCI-
algebras has not been investigated so far. S.K. Goel in [5], as a first step, charac-
terized BClI-algebras of order three and partially BCI-algebras of order four. In (2],
it was shown that the number of proper BCI-algebras of order five is 70, regarding
isomorphic BCl-algebras as equal to each other. It is pointed out that some impos-
sible cases were also included as feasible ones. In this note, we have removed the
impossible cases and show that the number of proper BClI-algebras of order five is
31 instead of 70. The mistakes lie in lemma 5, 7, 9, 10 and 12 of [2]. According
to Lemmas 5, 7, 9, 10 and 12 of [2], the numbers of distinct proper BCl-algebras
of order five are 16, 4, 4, 16 and 18 respectively. However the numbers of proper
BCl-algebras of order five are found 5, 3, 2, 3 and 6 respectively by eliminating the
impossible cases.

2. PRELIMINARIES

1.Definition [7]
A BCl-algebra X is an abstract algebra (X, *,0) of type (2, 0), where * is a binary
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operation, o is a constant which is the smallest element in X, satisfying the following
conditions; for all z,y,2 € X,

11 ((xxy)* (@ *x2)) x (zxy) =

1.2 (zx(z*xy))*xy=o0

l3 zxxz=0

ld zxy=o0o=ysrxx=>c=y

15 zx0=0=>zx=0
wherezxy=o0< <y
In a BCl-algebra X, the set M = {x € X : oz = 0} is a subalgebra and is called
the BCK-part of X. A BCl-algebra X is called proper if X — M # ¢.
Moreover, the following properties hold in every BCK/BCl-algebra ({7, 8]):

16 zxo==x

1.7 (z*xy)xz=(z*x2)*y

18z<y=>zx2<y*xzand zxy < 2%z

1.9 Let X be a BCK-algebra. For z,y € M, zxy < z. [6]

1.10 Let X be a BCl-algebra with M as its BCK-part. Forz €e M, y€ X — M,
x*y and yxz € X — M.[7].
1.11 Let X be a BCl-algebra. If M = {0}, then X is called a p-semisimple
BCl-algebra.[9]

1.2. Definition [8)
Let X be a BCK-algebra. An element z, in X is said to be a Semi-neutral element
in X if and only if for all ¢ # z,, ¥z, = z and z, *z = z,.

Note that any nonzero element x of a BCK-algebra X such that z < y for some
y € X(or,y < zforsomey(# o) € X) cannot be a semi-neutral element of X.
1.3. Definition [1]
Let X be a BCl-algebra, for z,y € X, z, y are said to be comparable if z < y or
y< .

1.4 Definition [8]
Let X be a BCl-algebra. We choose an element z, € X such that there does not
exist any y # z,, satisfying y * £, = 0 and define
Alz,) ={z e X 1z, xx =0}
We note that A(z,) consists of all those elements of X which succeed z,. The
element z, is known as the initial element of A(z,) as well as X. Let I, denote the
set of all initial elements of X. We call it the center of X.
Note that the BCK-part M of X is equal to A(o) because M = {z € X 0%z =
o} = A(o).
1.12 The center I, of a BCI-algebra X is p-semisimple.[3]
1.13 Every p-semisimple BCl-algebra X is an abelian group under the binary
operation defined as z +y = * (0 * y).[4, 9]
1.14 Let X be a BCl-algebra and A(z,) C X, for z, € I,. Then z,y € A(z,) =
zxy,yxz € M ([1]).
1.5 Definition
Let X be a BCK-algebra. An element z # o, € X is said to be a Neutral element
mXify<z=y=oory=zandz<y=>z=y.
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3. SOME RESULTS ON BCI-ALGEBRAS

Proposition: Let x be a neutral element in a BCK-algebra X. Then for all y # z
inX,zxy=zand y*xx =y.
Proof: Let x be any neutral element in a BCK-algebra X. Take any y # x in X.
Because of (1.9),

rxy <z

As x is a neutral element in X, therefore either zxy =z or zxy =o0. But zxy =0
is not possible because z xy = 0 = ¢ < y = = =y, a contradiction. So x xy = x.
Because of (1.2), y*(y*z) < z Asx is a neutral element, therefore either y*(y*z) = =
or y* (y*x) =o0. But y* (y *z) = z is not possible otherwise

y*(y*z) =z = (y*(y*z))xy=xx*y

= (yxy)x(y*xz)=zxy (using (1.7))

= ox(yxz)=xzxy (using (1.3))
= o=zx*y (using (1.5))

=>r<y=>z=y (Sincez is neutral)
a contradiction. So, y * (y xz) = o.
Also because of (1.9), (y*xz)*y = o. Using (1.4), y*x(y*z) = 0 = (y*z)*y = y*x = ¥,
which completes the proof.
Corollary:
A neutral element is a semi-neutral element.
Proof:
Let x be a neutral element in X. Then by above proposition, for all y # z € X,
z*y =z and y *z = y. Because of definition 1.2 it follows that x is a semi-neutral
element.
Lemma 1
Let X be a BCl-algebra with I, as its center. If x € A(z,), ¥ € A(y,), then
Txy € A(z, % Y,), for x,, Yo € I
Proof
Let x € A(z,), y € Aly,), for z, # yo € Ip. Then

T, < x (1)

and
Yo <y ()

Because of (1.8), yo < y = T, *y < T, * y,. Because of (1.12), the center I is
p-semisimple and by (1.13), I, is an abelian group, so I, is closed i.e for z,,y, € I,
s To* Yo € [T,.
Hence

To*Y = To*Yo (3)
Further, because of(1.8) and equation (3), T, < T = Z,*y < T*Y = To*Yo < T*Y,
which implies that z*y € A(x, *y,) -

Lemma 2

If X = {o,a,b} is a BCK-algebra of order three, then there exist three such BCK-
algebras.
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Proof

Let X = {o0,a,b} be a BCK-algebra of order three, then for the configuration of X,
we have following two possibilities:

(i) o<a<b
(ii) 0 < a, 0 <band a, b are incomparable.
Case (i): 0<a<b

—
o a b

Routine calculation show that oxa =o0xb=0=a*xb=0

Computation of b*a

Because of (1.8) and (1.3), 0 <ae=>bxa<bxo=>bxa<b=bxac {o,a,b}.
But b * a # o, otherwise by (1.4), axb = 0 = b*a = a = b, a contradiction.
So, b*a € {a,b}. Thus, there exist two distinct BCK-algebras, given by following
Multiplication tables:

Table M1
*lolal|b
olol|lo]o
alalo|o
b|blajo
Table M2
*Tolalb
olo]o]|o
alajolo
bib|bjo

Case (i)

Routine calculation show that o * a = 0 *x b = 0. From given condition, it follows
that a and b are neutral elements. Thus by proposition, a *b = a and b*a = b.
Hence by using the properties (1.3), (1.6), a*b = a and b*a = b the Multiplication
table representing such BCK-algebra is given as follows:

Table M3
0

*

To |0
oym|O|T

)
a
b

N

Q

lon Rl Rl

From case (i) and Case (ii), it follows that there exist 3 distinct BCK-algebras of
order 3.
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Lemma 3

Let X be a BCl-algebra with I, as its center. Let z,, y, € I;. Then for all
Y€ A(yo)a To*xY = To *Yo-

Proof .

Let y € A(y,). Then y, < y. Because of (1.8), it implies that x, x y < x, * yo.
Because of (1.12), the center I, is p-semisimple and by (1.13), I, is an abelian
group, so I, is closed i.e for z,, yo € I, To x Yo € 1. So that z, xy = z, * yo.

4. ON BCI-ALGEBRAS OF ORDER FIVE

Now we reproduce the results proved in [2], point out the mistakes there in and
remove them. We will only discuss the results in which there are mistakes and
remaining results will be represented as it is:

Let X be a BClI-algebra of order five with M as its BCK-part. Then we have the
following possibilities about the configuration of M:
(i) oM)=1 (i) oM)=2 (iil) oM)=3 (iv) o(M)=4
1. BCI-ALGEBRA OF ORDER 5 WITH o(M)=1

Theorem 1([2]):

Let X be a BCI-algebra with M as its BCK-part. Let o(X)=5 and o(M)=1, then
there is one such proper BCl-algebra.

Proof: The proof is given in [2].

2. BCI-ALGEBRAS OF ORDER 5 WITH o(M)=2

Theorem 4([2]):

Let X be a BCl-algebra with M as its BCK-part. Let o(X)=5 and o(M)=2, then
the number of all such BCI-algebras is 5. a

Proof: The proof is given in [2].

3. BCI-ALGEBRAS OF ORDER 5 WITH o(M)=3

Theorem 5([2])

Let X be a BCI-algebra with o(X)=5. Let M be its BCK-part with o(M)=3, then
the number of all such BCI-algebras is 23. ‘ '
This theorem 5(|2]) depends upon Lemma 5[2], Lemma 6[2] and Lemma 7[2], which
are stated as follows:

Lemma 5(2]: , v

Let X be a BCl-algebra with o(X)=5. Let M be its BCK-part with o(M)=3 and
for o,a,b€ M,0<a<b,and for e,d € X — M, c, d are comparable, then there
are 16 such BCl-algebras.

Lemma 6[2]:

Let X be a BCI algebra with o(X)=5. Let M be its BCK part. If o(M)=3 and
o(X — M) = 2 such that ¢,d € X — M, are incomparable. Then the number of all
such BCl-algebras is 3.

Lemma 7[2]: » ,

Let X be a BCI algebra with o(X)=5. Let M be its BCK part. Let o(M)=3 and

19
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0,a,b € M are incomparable and ¢,d € X — M, are comparable. Then, there exist
4 such BClI-algebras.

According to theorem 5([2]), the author claims that there are 23 distinct BCI-
algebras. But we find out that out of these 23 cases, 13 BClI-algebras do not exist,
because there are impossible cases as proved in Lemma 4 and Lemma 5, in the
sequel:

We have noted that there does not exist any impossible case in Lemma 6[2]. The
impossible cases exist in Lemmas 5[2] and 7[2], which are removed and the total
number of BCI-algebras of order 5 with o(M)=3 reduces to 11 instead of 23.

In lemma 5[2] and 7[2], the number of BClI-algebras of order five are 16 and 4.
However, the number of such proper BCl-algebras of order five are reduced to 5
and 3, respectively, by eliminating impossible cases, as shown in following Lemma
4 and Lemma 5.

Lemma 4

Let X be a BCl-algebra with o(X)=5. Let M be its BCK-part with o(M)=3 and
for 0,a,b € M, 0 <a <b, and for ¢,d € X — M, ¢, d are comparable, then there
are 5 such BCl-algebras.

Proof Let X = {0,a,b,c,d} be a BCl-algebra with M = A(o) = {o,a,b} as its
BCK-part. Then X — M = {c,d}. Since ¢ < d therefore A(c) = X — M = {¢,d}.
Note that I, = {o0,c¢}. The following table defines the binary operation* in I, as
follows:

Table 1
*lo|c
ololc
clcl|o

Since 0 < a < b, therefore by lemma 2 there are two BCK-algebras of order three.
The multiplication tables representing these BCK-algebras are given in lemma 2,
case (i), labeled as table M; and table M;. Thus, we have following two cases for
the configuration of X:

Case 1: BCK-part M is given by Table M; and A(c) = X — M = {¢,d}

Case 2: BCK-part M is given by Table M> and A(c) = X — M = {¢, d}

Routine calculations show that c*d=o

Case 1: By using the properties (1.3), (1.6), the Table M; and ¢ x d = o, the
multiplication table representing the BCI-algebra is given as follows:

Table 2
*1ola|blc|d
olo|o]|o
ajajo|o
bi{blalo
clc olo
d|d

The entries for the blank cells in Table 2 are computed as follows:

Computation of o*d:
By lemma 3, 0% d = 0 * ¢ = ¢. So, ¢ will fill the blank cell of the 2nd row.
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.__Table I
No Possibility Valid | No Possibility Valid
1 la*xc=c,axd=c| (C1) | 3 |axc=d,axd=c| (Ca)
2 laxc=c,axd=d 4 laxc=d,axd=d

Computation of a*c, a*d:

Because of lemma 1, axc € A{ox¢) = A(c) = {¢,d} (1)

Also because of (1.8), c<d=>axd<axc=>axdc{cd} (2

Combining (1) and (2) simultaneously, we have following 4 possibilities to fill the
blank cells of the 3rd row:

Some impossible cases are discussed as follows:

Case 2 is not possible because by (1.8), c < d=>axd <axc=axd < c. But
¢ < d, therefore ¢ < d < ¢ = ¢ =d, a contradiction.
Case 4 is not possible because by (1.4), d =a*d=ax*(a*xc) < c=d <c. But
¢ < d, therefore ¢ < d < ¢ = ¢ = d, a contradiction.

Remaining cases 1 and 3 do not conclude in contradictions and denoted as (Ci)

and (C2).

Computation for b*c, b*d are same as above. Thus, to fill the blank cell of the
4th row, we have following two possibilities:

Cy bxc=cbxd=c
Cybxc=d,bxd=c
Computation of c*a, c*b
By Lemma 3, c*a = c* b= c* o= c. So, ¢ will fill the blank cells of the 5t* row.

Computation of d*a, d*b, d*c
Because of (1.8), 0<a=>d*a<d*xo=>d+a<d=>dxac {c,d} (3)
Further by (1.8),a<b=>dxb<dxa=>dxbe{c,d} (4)
Because of (1.14), dxc € M = A{o) = {0,a,b}. But d*c # o, otherwise because of
(14),cxd=o0o=d*c= c=d, a contradiction. So, d*c € {a,b} (5)
Combining (3), (4) and (5) simultaneously, we have following 8 possibilities to fill
the 3rd , 4th and 5th blank cells of the 6th row.:

Table IT
No Possibility Valid
dxa=c,dxb=c,dvc=a | (E)
dxa=c, dxb=¢,dxc=5b
dxa=c,dxb=d,dxc=a
dxa=c, dxb=d, dxc=1b
dxa=d,d*b=c,d*xc=a
dxa=d,dxb=c,dxc=5b| (F)
d¥a=d,dxb=d,dxc=a
8 |dxa=d,dxb=d,dxc=b

Some impossible cases are discussed as follows:

3| o o i ol b =
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Case 2 is not possible because by (1.2), b=d*xc=d* (d*a) <a = b < a. But
a < b, therefore a < b < a. By (14) a <b <a = a=2b, a contradiction.
Case 3 is not possible because by (1.8), a <b=dxb<dxa=d <c Butec<d,
therefore ¢ < d < c. By (1.4), ¢ <d < ¢ = ¢ =d, a contradiction.
Case 4 and 8 are not possible because d = d*b=d* (dxc) <c¢=d <ec. But
¢ < d, therefore ¢ < d <ec. By (1.4), ¢ < d < ¢ = ¢ =d, a contradiction.
Case 5 and 7 are not possible because by (1.2), d = d*a = dx(d*xc) <c=d < e
But ¢ < d, therefore ¢ < d < ¢. By (1.4), ¢ £ d < ¢ = ¢ = d, a contradiction.
Remaining Cases 1 and 6 do not conclude in contradictions and denoted as (F)
and (F) and all the computations are fixed in each case. Now combining these
with (C1) — (C4), simultaneously, we have the following 8 cases such that each case
may represent a distinct BCI-algebra. However, these include impossible cases, too,
which are to be pointed out in the sequel:

Table ITI
No Possibility
axc=c,axd=c,bxc=c,bxd=c,dva=c, dxb=c,dxc=aqa
axc=c,axd=c,bxc=d,bxd=c,dvxa=c,d*b=c,d*xc=a
axc=d,axd=c, bxc=c,bxd=c,dvxa=c,dxb=c,dxc=a
axc=d,axd=c,bxc=d, bxd=c,dxa=c,dxb=c,d*xc=a
axc=c,axd=c,bxc=c,bxd=c,d*a=d,dxb=c,dxc=1>
axc=c,axd=c,bxc=d, bxd=c,dva=d,dxb=c,dxc=5b
axc=d,axd=c,bxc=c,bxd=c,d*xa=d,dxb=c,d*xc=b
8 laxc=d,axd=c,bxc=d, bxd=c,dxa=d,dxb=c,dxc=0b
The impossible cases are discussed as follows:

=~ O O | o DO

Cases 3 is not possible because ¢ < b= axc <bxc=d < ¢, but ¢ < d, therefore
¢ <d<c¢=c¢=d,a contradiction. From table M it follows b*a = a and because
of (i), b*d = c. case 4 is not possible because by (1.1), (b* a) * (bxd) < d*a =
axc<dxa=d<c but c <d, therefore ¢ < d < ¢ = ¢ = d, a contradiction.
From table M, it follows b *x a = a, so, Case 5-Case 8 are not possible because
b=dxc=(d*a)*c=(d*c)*a=bxa=a, a contradiction.

Remaining Cases 1 and 2 do not conclude in contradictions. Hence, by filling the
corresponding blank cells with the remaining cases namely 1 and 2 respectively, the
resulting two BCl-algebras are given as follows:

Table 3
*lojalblc|d
ololo|o|c]|c
ala/o|lo|c]|c
b|bjalo|c|c
clclclc|o]o
didiclelalo
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Table 4
*'olalblcld
ololololcle
alalololcle
bl{blalo[d]|c
clciclclolo
d{d|clcialo

Case 2: By using the properties (1.3), (1.6), the Table M; and the values computed
above, the multiplication table representing the BCl-algebra is given as follows:

Table 5
*1olalb|c|d
olo|lo]o
alalo]o
bl{b|blo
cle olo
d(|d

The entries for the blank cells in Table 5 are computed as follows:

Computations of o*d, a*c, a*d, b*c, b*d, c*a, c¢*b, d*a, d*b and d*c are same as
in case (1). So,0xd=c,axd=c, bxd=cand ecxa = c*b=c Thus, c will fill
the blank cells of the 6** column and 37 and 4** blank cell of the 5% row. To fill
the remaining blank cells of the 5** column and 3™ and 4** blank cell of the 6"
row, we have 8 possibilities, given in table III of case (1). However, some of these
are not possible and discussed below:

From table M, it follows b x a = b, so, case 2 and 4 are not possible because
d=bxc={bxayxc=(bxc)*a=dxa=c, acontradiction.

Cas€ 3 is not possible because ¢ <b=axc < bxc=d < ¢, but ¢ < d, therefore
¢ <d < c¢= ¢ =d, a contradiction.

Cases 7 and 8 are not possible because d = dxa = (axc)*xa = (a*xa)xc = oxc = ¢,
a contradiction.

Remaining Cases 1, 5 and 6 do not conclude in contradictions and all the compu-
tations are fixed in each case. Hence, by filling the corresponding blank cells with
these cases respectively, the resulting three BCI-algebras are given as follows:

Table 6
*lolal|blc|d
oloflo|o|c|c
alajo|ojc|c
bl{b|blojci|c
cifclclc|o]o
dld|c|clal|o
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- _Table 7
*lola|bjc|d
ololo|o|cic
alalolo|c]|c
bi{b|blo]|c]|c
clclelciolo
d|{d]c (C bjo

Table 8
*lola|b|c]|d
o|lojfo|o|c|c
alalolo|c]|c
bibiblo{d|c
c|lclc|c|o]|o
d{d]c|c|bio

From, cases 1 and 2, it follows that the total number of such BClI-algebras is 5.
Lemma 5
Let X be a BCI algebra with o(X)=5. Let M be its BCK part. Let o(M)=3 and
0 # a,b € M are incomparable and ¢,d € X — M, are comparable. Then, there
exist 3 such BCI-algebras.
Proof
Let X = {o0,a,b,c,d} be a BCl-algebra with M = A(o) = {0, a,b} as its BCK-part.
Then X — M = {c,d} . Since ¢ < d therefore A(c) = X — M = {c,d}. Note that
I, = {o,c}. The binary operation * in I, is defined as in table 1. Since o # a,b e M
are incomparable, therefore o < g and 0 < b. Thus it follows from lemma 2, case (ii),
there is only one BCK-algebra of order three. The multiplication table representing
this BCK-algebra is given in lemma 3, labeled as table M3. Routine calculations
show that ¢ x d = o By using the properties (1.3), (1.6), the Table Mj, table 1 and
¢ * d = o, the multiplication table representing the proper BCI-algebra is given as
follows:

Table 9
*lolal|b d
ofo|lolo
alalo|a
b|lb|b|o
clc o|o
did 8]

The entries for the blank cells in Table 9 are computed as follows:

Computations of o*d and c*a, c*b are same as in case (1), lemma 4. So,
o*d=c and c*a=c*b=c. So, ¢ will fill the blank cells of the 2"¢ and 5* rows.

Computation of a*c and a*d are same as done in case 1, lemma 4. Thus to fill
the blank cells of the 3rd row, we have following two possibilities: '

Ci axc=c,axd=c Cy a*xc=d,axd=c
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Computation of b*c and b*d are same as done for a*c and a*d in case (1),
lemma 4.. Thus to fill the blank cells of the 4;; row, we have following two possi-
bilities:

Cy bxc=cbxd=c C4 bxc=d,bxd=c
Computation of d*a, d*b, d*c
Because of (1.8), 0<a=d*a<d*o=>d+*a<d=dx*ac€ {c,d} (3)
Likewise, dx b € {¢,d} (4)

Because of (1.14), dxc € M = A(o) = {0, a,b}. But d* c # o, otherwise because of
(14), exd =0 =dx*c= c=d, a contradiction. So, d*c € {a,b} (5)

Combining (3), (4) and (5) simultaneously, we have 8 possibilities, given in table
I1, case 1, lemma 4. Out of these cases 2, 4, 5, 7 and 8 are not possible as shown in
case 1, lemma 4. Remaining three cases 1, 3 and 6 do not conclude in contradiction.
Combining these with Cy — C simultaneously, we have following 12 possibilities.
However these include some impossible cases, too, which are to be pointed out in
sequel:

Table IV

No Possibility

1 Jaxec=ca*xd=c,bxc=c,bxd=c,dxa=c,dxb=c,dxc=a
2 Jaxc=c,axd=c bxc=d,bxd=c,dxa=c,dxb=c,d¥xc=a
3 |a*xc=d,axd=c,bxc=c,bxd=c,dxa=c,d*xb=c,dxc=a
4 laxc=d,axd=c,bxc=d, bxd=c,dxa=c,dxb=¢c,d*xc=a
5 laxc=c,axd=c,bxc=¢, bxd=c,d¥a=c, dxb=d,d*xc=a
6 laxc=c,axd=c, bxc=d,bxd=c,dxa=c,dxb=d,dxc=a
7 laxc=d,axd=c,bxc=c¢c,bxd=c,dxa=c,dxb=d, dxc=a
8 laxc=d,axd=c,bxc=d, bxd=c,dxa=c,dxb=d, dxc=aqa
9 laxc=c,axd=c,bxc=¢c, bxd=c,dxa=d,dxb=c,d*xc=0D
lola*xe=c,axd=c, bxc=d,bxd=c,d¥a=d,dxb=c,d*c=0b
11 |axe=d,a*xd=c,bxc=c¢c,bxd=c,dvsa=d,dxb=c,d*xc=5>
12 |axc=d,axd=c,bxc=d,bxd=c,dxa=d,dxb=c,dxc=0b

The impossible cases are discussed as follows:

Case 1-Case 4 are not possible because a = d* ¢ = d*(d+b) < b, a contradiction.
Cases 6 and 8 are not possible because d = dxb = (bxc) b = (bxb)xc = oxc =,
a contradiction.

Cases 11 and 12 are not possible because d = dxa = (axc)*a = (a*a)*c = oxc = ¢,
a contradiction.

Remaining 4 Cases 5, 7, 9 and 10 do not conclude in contradictions and all the
computations are fixed in each case. Hence, by filling the corresponding blank cells
with the remaining four cases respectively, the resulting four proper BCI-algebras
are given as follows:
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Table 10
*lojalb|c|d
olo|lo|o]|c]|c
alalolajclc
bl{b|bjlojc]|c
ciclcjcl|lol|o
d{d|c|d|alo

Table 11
*lolalb|c|d
ololo|olc|c
alalo|a|d|c
b|b|blo|c|c
cjclec]clo]|o
d{d|c|d]a]o

Table 12
*1Tola|b|c|d
olololo|c|c
alalo|alc|c
biblbjlolc]c
clclclclolo
did|dlc|[b]|o

____ Table 13
*1ola|b|c|d
ojfo|o|lo|c]|c
alalofalclc
b|lb|[blo{d]|c
clclclclo]o
d/dj{d|c|bl|o

Note that proper BCI-algebra represented by Table 10 is isomorphic to the proper
BClI-algebra represented by Table 12 under the mapping f : Tablel0 — Tablel2
defined as f (0) = o, I (a) =Db, I (b) = a, f (¢c) = c and { (d) = d. Hence in this
case regarding isomorphic BClI-algebras as equal there are three such proper BCI-
algebras represented by the multiplication table 10, table 11 and table 13.

So, Theorem 5 is restated as follows:

Theorem 5

Let X be a BCl-algebra with o(X)=5. Let M be its BCK-part with o(M)=3, then
the number of all such BCl-algebras is 11.

Proof

It follows from Lemma 4, Lemma 5 and Lemma 6[2].
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4. BCI-ALGEBRAS OF ORDER 5 WITH o(M)=4
Theorem 6([2]): Let X be a BCI algebra with o(X)=5. Let M be its BCK part.
If o(M)=4, then there exist 41 such distinct BCI-algebras.
This theorem 6([2]) depends upon Lemma 8, Lemma 9, Lemma 10, Lemma 11 and
Lemma 12, which are stated as follows:
Lemma 8 [2]: Let X be a BCK-algebra with o(X)=4, and for each pair a,b € X
is incomparable, then X is unique.
Lemma 9 [2]: Let X be a BCK algebra with o(X)=4, and for o # a,b,c € X,
a < b and c is not comparable with a and b, then number of such BCK- algebras
is 4.
Lemma 10 [2]: Let X be a BCK algebra with o(X)=4, and for 0 # q,b,¢c € X,
a<banda<c,but b, care incomparable, then there are 16 such BCK-algebras.
Lemma 11[2]: Let X be a BCK algebra with o(X)=4, and for 0 # a,b,c € X,
0<a<band o <b<c, where a, b are not comparable. Then, there exist two
such BCK-algebras.
Lemma 12 [2]: Let X be a BCK algebra with o(X)=4, and for o # a,b,¢ € X,
0 < a < b<c, then there exist 18 such BCK-algebras.
According to theorem 6([2]), the author claimis that there are 41 distinct BCI-
algebras. But we find out that out of these 41 cases, 27 BClI-algebras do not exist,
because there are impossible cases as proved in Lemma 6, Lemma 7 and Lemma 8,
in the sequel.
We have noted that there does not exist any impossible case in Lemma 8[2] and
Lemma 11[2]. The impossible cases only exist in Lemma 9[2], Lemma 10[2] and
Lemma 12[2] which are removed and the total number of BCK-algebras of order
four reduces to 14 instead of 41. It is shown that in Lemma 9[2], Lemma 10[2]
and Lemma 12[2], the numbers of BCK-algebras of order four are 4, 16, and 18
respectively. However, the number of BCK-algebras of order four are reduced to 2,
3 and 6 respectively by eliminating the impossible cases, as follows from Lemma
6, Lemma 7 and Lemma 8 in the sequel:
Lemma 6
Let X be a BCK algebra with o(X) = 4, and for 0 # a,b,c € X, a < b and ¢ is not
comparable with a and b, then number of such BCK- algebras is 2.
Proof
Let X = {o0,a,b,¢} be a BCK-algebra and for o # a,b,¢c € X, a < b and ¢ is not
comparable with a and bie. 0 <a<b o<c.

7 Y b

Routine calculations show that oxa = 0%b=a*b = 0*c = 0. By definition 1.5, ¢
is a Neutral element. Thus by proposition, cxa=cxb=c,axc=0a,bxc=b.
By using the properties (1.3), (1.6) and the values computed above, the Multipli-
cation table representing the BCK- algebra of order 4 with the given conditions,
will be shown as follows:
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Table 14
*1oja|b|ec
ojo|o|o]|o
alalo|o]|a
bib o|b
cleclelc]o

The computations for b*a is same as given in lemma 2. So, b*a € {a,b}. Thus
we have two possibilities to fill the 3"¢ blank cell of 4** row. Thus, there exist two
distinct BCK-algebras, given as follows:

Table 15
*Tolalb]ec
olo{o{o]|o
alalo|o]|a
b{blajo|b
clclclc]o

Table 16
*lola|blec
o|lo|ojo]o
alajo|ola
b|b|bjolb
clcleleclo

Lemma 7

Let X be a BCK algebra with o(X) = 4, and for 0 # a,b,c € X, 0 < a < b,
0 < a < ¢. Then there are 3 such BCK-algebras.

Proof

Let X = {o0,a,b,c} be a BCK-algebra and for 0 # a,b,c€ X,0<a<b,0<a<ec
Routine calculations show that oxa =oxb=ax*xb=oand oxa =o0xc=axc=o.

b c

=]

By using the properties (1.3), (1.6) and the values computed above, the Multipli-
cation table representing the BCK-algebra of order four with the given conditions,
will be shown as follows:

Table 17
*Tola|b|c
olololo]o
alalojo]o
bi{b o
clec o

The entries for the blank cells in Multiplication table 17 are computed as follows:

Computation of b*a, b*c
Because of (1.8), 0 <a=>bxa<bxo=>bxa<b=bxa€ {0,a,b}. But bxa # o,
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otherwise by (1.4), axb =0 =b*a = a = b, a contradiction. So b*a € {a,b} (1)
Further,a < c=b*xc<b*xa=b*c€ {a,b} (2)

Combining (1) and (2) simultaneously, we have the following four possibilities to
fill the blank cells of the 4th row:

Table 1
No | Possibility Valid | No. | Possibility Valid
1 |bxa=abxc=al|(A) |3 bxa=bbxc=a
2 |bta=abxc=0b 4 bxa=bbxc=">b|(B)

Some impossible cases are discussed as follows:

Case 2 is not possible because by (1.8), a <c=bxc<b*a=b<a Buta<yb,
a <b<a= a=Db, acontradiction

Case 3 is not possible because by (1.2}, b=>b*a =bx (b*c) < ¢, a contradiction.
Remaining two Cases 1 and 4 do not conclude in contradiction, thus we have two
possibilities to fill the blank cells in 4th row, denoted by (A) and (B).

Computation of c*a, c*b
In the same way as computed above, we have two possibilities to fill the blank cells
of the 5th row given as follows:

(C). cxa=a,cxb=a (D) crxa=c,cxb=c
Now depending upon (A), (B), (C) and (D) we have the following four cases, which
may represent four BCK-algebras:

Set A
1. bxa=a,bxc=a,cxa=a,cxb=a
2. bxa=a,bxc=a,cxa=c,cxb=c
3. bxa=bbxc=bcrxa=a,cxb=a
4. bxa=bbxc=bcxa=c,cxb=c

None of the above cases conclude in contradiction and all the computations are
fixed in each case. Hence, by filling the corresponding blank cells with the above
cases namely 1, 2, 3 and 4 respectively, the resulting four BCK-algebras are given
as follows:

Table 18
*lola|blec
o|lolo|lo]o
alalol|olo
b|blalo}a
clclajlalo




30 Farhat Nisar and Shaban Ali Bhatt;
Table 19
*lola|b|c
o|lo|olo]lo
alalo|oio
b|blaio]a
clclcic]|o
Table 20
*lola|b|ec
olo|lolo]|o
alalo|o]|o
b|b|b|o|Db
clclalalo
Table 21
*1olal|b]c
ojlo|o|o|o
alalolo]o
b|{b|blo|b
cleclec|c|o

Note that BCK-algebra represented by Table 19 is isomorphic to the BCK-algebra
represented by Table 20 under the mapping f: Table 19 Table 20 defined as f (o)
=o,f(a) =a, f(b) = cand f (¢c) = b. Hence in this case regarding isomorphic
BCK-algebras as equal there are three such BCK-algebras represented by the mul-
tiplication table 18, table 19 and table 21.

Lemma 8

Let X be a BCK algebra with o(X) = 4, and for o # a,b,c € X, 0<a<b<ec
Then there exist 6 such BCK-algebras.

Proof

Let X = {o,a,b,c} be a BCK-algebra and for 0 # a,b,c€ X,0<a<b<ec.

Routine calculations show that oxa =o0*xb=o0xc=axb=a*xc=b*xc=0

By using the properties (1.3), (1.6) and the values computed above, the Multipli-
cation table representing the BCK- algebra of order 4 with the given conditions,
will be shown as follows:
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The entries for the blank cells in Multiplication table 22 are computed as follows:
Computation of b*a
The computations for b*a is same as given in lemma 3. So, b*a € {a,b} (D)
Thus, we have two possibilities to fill the 3rd blank cell of the 4*" row.
Computation of c*a, c*b
Because of (1.8), 0 < a = cxa < cxo = cxa < ¢ = c*a € {o,a,b,c}. Now cxa # o,
otherwise by (1.4), a*c = 0 = cxa = a = ¢, a contradiction, so cxa € {a,b,c} (1).
Further,a <b=>c*b<cxa=c*xbe{a,bc} (2)
Combining (1) and (2) simultaneously, we have nine possibilities given in the fol-
lowing Table I, to fill the 3rd and 4th blank cells of 5th row:

Table I
No Possibility Valid | No. Possibility Valid
1 |exa=a,cxb=a| (i) 6 |cxa=bcxb=c
2 |cxa=a,cxb=0> 7 |cxa=c,cxb=a
3 |cxa=a,cxb=c 8 |cxa=c,cxb=0>b| (i)
4 |cxa=bcxb=a| (ii) 9 |cxa=c,cxb=c| (iv)
5 | cxa=b,cxb=0

Some impossible cases are discussed as follows:

Case 2 is not possible because by (1.8),a <b=c*xb<cxa=b<a. But a <b,
therefore by (1.4), a < b < a = a =, a contradiction. Similarly, cases 3 and 6 are
not possible.
Case 5 is not possible because by (1.7), b=cxb=c*(c*a) < a=b < a. But
a < b, therefore by (1.4), a < b < a = a = b, a contradiction.
Case 7 is not possible because by (1.4), c = c*xa = c* (c*b) < b, a contradiction.

Remaining Cases 1, 4, 8 and 9 do not conclude in contradiction and denoted
by (i), (ii), iii) and (iv). Combining these with (D) simultaneously, we have the
following eight cases, which may represent eight BCK-algebras. However, these
include some impossible cases, too, which are to be pointed out in the sequel:

Set B

bxa=a,cxa=a,cxb=a (A)
bxa=a,cxa=>b,cxb=a (B)
bxa=a,cxa=c,cxb=5>
bxa=a,cxa=c,cxb=c(C)
bxa=b,cxa=a,cxb=a
bxa=bcxa=b,cxb=a (D)
bxa=b,cxa=c,cxb="> (E)
bxa=b,cxa=c, cxb=c (F)

®NOo T W
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Some impossible cases are discussed as follows:

Case 3 is not possible because by (1.1), (c*xa)* (c*b) < bkxa=>cxb<a=b<a.
But a < b, therefore (1.4), a < b < a = a = b, a contradiction.

Case 5 is not possible because by (1.8), b ¢ b*a c*a b a. But a b, therefore
by (1.4),a b a a =Db, a contradiction.

Remaining 6 Cases 1, 2, 4, 6, 7 and 8 do not conclude in contradictions and all
the computations are fixed in each case. Hence, by filling the corresponding blank
cells with the remaining cases namely 1, 2, 4, 6, 7 and 8 respectively, the resulting
6 BCK-algebras are given as follows:

Table 23
*lola|b|c
olojolo]o
alalo|o]|o
bl(bialo|o
clclalalo

Table 24 -
*lota|b|c
ololo|o]|o
alalo|o]|o
bibla|o|o
cliclibiajo

Table 25
*'olal|b|c
olo|o|o|o
ala|o|o|oO
b({b|la|o|o
cle|blc|o

Table 26
*1ola|b|c
olo|lo|o|o
alalo|o|o
blb|bjlo]o
cle|bjalfo

Table 27
*lola|b]lc
olo|lo|o]o
alaljo|o|o
bi{b|b|o]|o
cicljc|blo
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Table 28
*'olalblec
olo|lo|lo]o
ajalo|o]o
bib|blo]o

lc|e blec|o

Hence, Theorem 6 is restated as follows:

Theorem 6

Let X be a BClI-algebra with o(X)=5 and M be its BCK-part. If o(M)=4, then
there exist 14 such BClI-algebras.

Proof .
Let X = {o,a,b,¢,d}. Without any loss of generality, we take M = A(o) =
{0,a,b,c}. and X — M = A(d) = {d}. We have the following possibilities about
the configuration of X:

{i) For each pair 0 # x, y € M, x, y are incomparable i.e. 0 < a,0<b 0o<c¢
and X — M = A(d) = {d}.
(ii) For each pair o # z,y € Mo <a <b,o<cand X — M = A(d) = {d}.
(iii Foreachpairo#£z,ye Mo<a<bo<a<cand X - M = A(d) = {d}.
(iv) Foreach pairo#z,y € Mjo<a <b,o<b<cand X — M = A(d) = {d}.
(v) Foreach pairo# z,yc Mo<a<b<cand X — M = A(d) = {d}.
Note, that I, = {0, d}. The binary operation* in I, is defined as follows :

Table 29
*lo|d
oio d
dld]o

By Lemma 1, a*d, b*d, ¢+ d € A(oxd) = A(d) = {d}. So, a*d=b*d=c*d=d. Also
by Lemma 3, d*a=d*b=d*c=d*o=d. By using the properties (1.3), (1.8), Table
29 and the values computed above, the multiplication table representing the BCI-
algebra of order 5 with the given conditions, will be shown as follows:

Table 30
*1Tolalb|cid
oo d
alalo d
b|{b 0 d
cle d
d|d|d!/d{d]|o

The entries for the blank cells in Table 30 are computed as follows:

In Case (i) by Lemma 8|2], there exist a unique BCK-algebra of order four. So,
using the entries in the corresponding cells, given in table 15[2], will fill the blank
cells, so the resulting BCI-algebra is shown as follows:
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Table 31
*lola|b|cl|d
ololo|o|o]|d
alalo|lalald
b|lb|[blo|b]|d
clele|lc|o]|d
d|d|d|d|d]o

In Case (ii) by Lemma 6, there exist 2 BCK-algebra of order four. So, using the
entries in the corresponding cells, given in Table 15 and 16 respectively, will fill the
blank cells, so the resulting BCI-algebra are shown as follows:

Table 32
*Tolalb|ecid
olo|lolo]o]|d
alalolo|aid
b|lblalo|bld
cic|ec|ec|o]|d
did|{d|d]|d]|o

Table 33
*'ola|bjc|d
ojojlo|o|o}|d
alalo|o{ald
bib|blo|b}|d
cleleleclofd
dld|d|didlo

In Case (iii} by Lemma 7, there exist 3 BCK-algebra of order four. So, using the
entries in the corresponding cells, given in Tables 18, 19 and 21 respectively, will
fill the blank cells, so the resulting BCl-algebra are shown as follows:

Table 34
a

olala|lalala

alelojeliolT
Qlo|mio|o o

QIO |T|® IO *
io|lT|ejo]o

alp|w|o]o
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: «Table 35
*Tolalbic]d
olojlojolo]d
alalo|ojo|d
bibjalola|d
cifciclc|o]|d
did|d|d{d]|o
£ Table 36
Flala|blc|d
0jo.|q9lolo|d
a|alolojold
blb[bio[b]d
cleleclc|o]d
d{di{d|d{d|o

In Case '(iv) by Lemma 11 [2], there exist 2 BCK-algebra of order four. So, using
the entries in the corrésponding cells, given in Tablel8[2] and 19[2] respectively,
will fill the blank cells, so the resiilting BCI-algebra are shown as follows:

. Table 37
*16lalblc|d
olo|lo|o|o|d
alalolalo]d
bl{blblojo|d
clc|blec]o]|d
d|d|d|d|d]|o

Table 38
*lola|blc|d
olo|lolojold
alajojajo|d
b|lb|[blojo|d
clelec]clo]d
did|d|{d|d]|o

In Case (v) by Lemma 8, there exist 6 BCK-algebra of order four. So, using
the entries in the corfesponding cells, given in Table 23, 24, 25, 26, 27 and 28
respectively, will fill the blank cells, so the resulting BCI-algebra are shown as
follows:

Table 39
a

*

aloloir|o
ato borle o ob
clpiw{o]o

alolololofo
olalo|alala

oo jeloto
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Table 40
*1olalblc|d
o|lo|lo|o|o]|d
alalolo|o|d
blblalo|o|d
clc|blalo]|d
d{d]d|d|d]|o

Table 41
*ola|blc|d
ololololold
alalo|o|o|d
bibjlalo|o|d
cjc|blc|o|d
dld|dld|d]|o

Table 42
*lola|blc|d
olojlo]lo|o|d
alalo|o|o|d
bl{b|blo|o|d
clc|bla d
d{d|d|d|d]|o

Table 43
*lofa|blc|d
o|lo|lo|o|o]|d
alalo|olo|d
b|{b|{b|o]lo|d
cleclc|bio]|d
d{d|d|d|djo

Hence, the total number of proper BCl-algebras of order five with o(M)=4
is1+2+3+642=14.
Theorem 5
Let X be a proper BCl-algebra with o(X)=5 and M be its BCK-part M. Then,
there exist 30 such BCI-algebras. :
Proof
Let X be a proper BCl-algebra with o(X)=5 and M be its BCK-part. Then there
are following possibilities for the BCK-part M:

@) oM)=1 (i) o(M)=2 (ifi) co(M)=3 (iv) o(M)=4

We have seen in Theorem 1[2], Theorem 4[2], Theorem 5, and Theorem 6 that
there exist 1, 5, 11, and 14 proper BCl-algebras in each case respectively. Hence,
the total number of proper BCI-algebras of order fives is 145+11+14=31.
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Table 44

*

plolo|lo|o|T
O | A A | |

ololoe|o
ololo |00
Qo|o|o|o |
ojo|o|o|0o|o
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Abstract. We provide a local as well as a semilocal convergence
analysis for a certain class of fixed slope iterations in a Banach
space setting. Using a weaker Holder condition on the operator
involved and more precise estimates than in [1], [2] we provide in
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and an at least as precise information on the location of the solution;
in the local case: a larger radius of convergence. Finally numerical
examples are used to compare favorably our results with earlier
ones [1], [2].
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution z* of a nonlinear equation

F(z) =0, (L. 1)

where F is a Fréchet-differentiable operator, defined on an open convex subset D
of a Banach space X with values in a Banach space Y.
Recently for A= € L(Y, X), M. Ahues [1], [2] used the fixed slope iteration

Tnyr =Tn — A7'F(z,) (zn€D)(n>0) 1. 2)

to approximate z*. Ahues provided a local as well as a semilocal convergence for
method ( 1. 2 ) under the Holder continuity condition

1F'(z) — F'g)ll < Tllz—~ gy (. 3)

for all x,y € D, some I >0 and ) € (0, 1].
Iteration ( 1. 2 ) is a special case of a Newton-like method of the form

Tny1 = € — A(z,) " F(z,) (x0 € D), (n > 0). (1. 4)

Here A(z)~! € L(Y, X) and approximates F/(z)™! in some sense. Many authors
have provided convergence results for method ( 1. 4 ) under various assumptions.



40 loannis K. Argyros

Therefore we can refer the reader to [1]-[5] and the references there for convergence
results concerning iteration ( 1. 2 ). However we decided to employ a direct
approach and using center-Holder condition (which is actually needed)

[ATHE" (@) ~ F'(z0))]| < lo |2 — ol (1. 5)

for all z € D, some Iy > 0 instead of stronger ( 1. 3 ) we provided a convergence
analysis with the advantages over the corresponding as stated above in the abstract
of the paper. Note that even if the affine variant form of (1. 3)

471 (" @) = F'@)]| < 2w~y (1. 6)
was used in [2] instead of ( 1. 3 ) still since
lo<1 (1.7

holds in general (and % can be arbitrarily large) [3],[4], the advantages of our
approach still hold true.

Finally we complete this study with numerical examples where our results com-
pare favorably with the corresponding ones in [1], [2].

2. SEMILOCAL CONVERGENCE ANALYSIS OF METHOD ( 1. 2 ).

We can show the following semilocal convergence theorem for fixed slope method
(1. 2)

Theorem 1. Under condition ( 1. .5 ) further assume:
there exist parameters § > 0, n > 0 such that

[A~H(F'(wo) — A)|| < 0 S (21
|4~ Pzl < 7 e 2)
6 <1 (2. 3)
e\ 1A
ha =lon* < A* (%) =9(9) 2. 4)
and ' , ; ’
U(zo,r0) = {z € X|||z — xo]| < o] C D, (2. 5)

where Ty is the smallest positive zero of function f defined on [0,+00), and given
by

)y =lor™ + (6 = Dr+n=0. (2. 6)
Then sequence {z,} (n > 0) generated by method ( 1. 2 ) remains in U(zg, o) for

all n > 0 and converges to a unique solution x* of equation I'(z) = 0. Moreover
the following estimates hold for alln >0 :

* q"
len =™l < 77— " 2. 7)

where the geometric ratio q is given by

0<qg=lgry +d<1. (2. 8)
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Proof. Function f is strictly convex, and vanishes at the unique

1+ Mo
at which
sy =n- 21029 <o
Moreover, we have
fO)=n>0
That is
fO)f(r) <0.

It follows by the intermediate value theorem that function f has a smallest zero
70 € (0, T 1].

We shall apply the contraction mapping principle [4] on the operator
G U(zp,r9) — Y given by

G(z) =z - A7'F(z). (2. 9)
We also need to define the auxiliary operator

H:U(zg,m0) =Y

by
H(z) = F(xo) + A(z — z¢) — F(z). (2. 10)
Using (1. 5), (2. 1) and ( 2. 10 )we get
|A7 H (@)|| = |A~ A - F'(z0) + F'(m0) — F'(2)]|| (2. 11)
< |[ATHA = F'(@o)]|| + [[A™[F' (o) — F'(2)]|
< loT(’)\ + 4.
Moreover by ( 2. 2), (2. 9 ) and ( 2. 11 ) we obtain
[G(x) = zoll = [| A (H(z) - F(ao))| (2. 12)

<|[ATH@)| + (A F o)
< |A7H((H (x) ~ H(zo))|| +
< (lorp + 8)ro+n=ro,
by the choice of rg. ~ ~ ~
That is we showed G(U(zq,70)) C U(zo,uo). Furthermore for all z € U{zo, 7o)
using ( 2. 9 ) we get in turn
IG' (@) = ||A (A= F'(2))|| = | A7 A = F'(m0) + F'(zo) = F'(2)]|| (2. 13)
= “A‘IH’(:E)H <qi=lory +9
o 14+M
< lor? =
_lo?‘l—)—() 1+)\<1,

which shows that operator G is a contraction on U(zo, 7o)
The result now follows from the contraction mapping principle.
That completes the proof of the theorem. O
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Remark 2. If ly = [ our Theorem 1 reduces to Theorem 5 in [2, p.385]. Otherwise
it is an improvement over it. Indeed, let us denote by h 4,79, f and ¢ the quantities
corresponding to h4, o, f and ¢ given by

~ 151
ha=In* <\ [m] =g(),é) (2. 14)
fry =+ (6~ )r+q, (2. 15)
g=1lry + 9, (2. 16)
and 7y denoting the smallest positive zero of function f. It follows that
ha < g(A\8) = ha < g(\,6) (2. 17)
but not vice versa (only if Iy = I)
ro < g (2. 18)
and
q<q (2. 19)

Estimates ( 2. 17 )-( 2. 19 ) justify the claims made in the abstract for the semilocal
case.

Remark 3. If A = 1 (Lipschitz case) and A = F'(zy) (modified Newton method)
parameters ro and ¢ can be given in closed form by

—1-4
ro = Lo V1= dlon (2. 20)
2l
and )
g=50 - V1—don), 2. 21)
provided that
4m <1 (2. 22)
whereas the corresponding ones in [2] are given by
—/1-4l
Fo = L——n, (2. 23)
2l
and )
qg= 5(1— v 1~—4in), (2. 24)
provided that
4ln < 1. (2. 25)

Let us provide a numerical example for the choices of A and A as in Remark 2.
Example 1: ,
Let X =Y =R, z0=1,D=[p,2~p],p €[0,.7], and define function F on D by

F(z) =23 —p. (2. 26)
Using (1. 5 ),( 1. 6 ),( 2. 2 ) we obtain
1
b=3-p<22-p)=lLn=3(1-p) (2. 27)
Condition ( 2. 25 ) [2] is violated since

alp = g(z—p)(l—p) >1, forall p € [0,.7]. 2. 28)
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That is there is no guarantee that method ( 1. 2 ) starting at g = 1 converges to
z* = ¥p. However, our condition ( 2. 22') holds for all

4—-+7
pEe [ 5 ,.7] )
since 4
Alon =3B -p)(1-p) <1 (2. 29)

3. LOCAL CONVERGENCE FOR METHOD ( 1. 2 ).

In order for us to study the local convergence of method ( 1. 2 ) we assume:
there exist a solution z* of equation ( 1. 1), and a positive parameter L such that
forallz € D

|41 (F' (@) = F'@))]| < Lilz - 2| (3.1
Then we can show the main local convergence theorem:
Theorem 4. Assume:
s=||[A7HA-F'(=")| + :gg |F'(z) - F'(z*)|| < 1. (3. 2)
Then sequence {z,}(n > 0) generated by method ( 1. 2 ) converges to z* provided
zg € U(z*, R) for some R > 0 such that U(z*, R) C D with
lzns1 — 2" < sllzn — 27 (3.3)
If conditions ( 3. 1 ) and
|[A™HA-F'(z")||=s1 <1 (3. 4)
hold true then R is given by
1-s x
R= ( Z 1) . (3. 5)

Proof. We shall show that sequence {2,} remains in U(a:*_, R) and ( 3. 3) holds
for all n > 0. By hypothesis o € U(z*, R). Then for z, € U(z*, R), the point

zk(t) = (1 —t)z* + tzx, € U(z*, R) (3. 6)
for all ¢ € [0,1].Using ( 1. 2) we obtain the identity.

1
Tpy1 —T* =3 — 2* — A'l/ F'(zk(t))(zk — z*)dt (3.7
0

1
=47 (4= @) + (@)~ Fan®)l(on - )it
0)
In view of ( 3. 2) and ( 3. 7 ) we obtain
lzks1 —2*|| < sllzx — 2*|| < R, (3.8
which shows zr41 € U(z*,R), (3. 3 ) and limz = z*.In case { 3. 1) holds, we
get _
s§31+L||mk—z*||>‘<31+LR’\=1, (3. 9)
by the choice of R, which shows ( 3. 2 ).That completes the proof of the Theorem.
0
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Remark 5. Our Theorem 4 provides an actual radius of convergence R under marker
hypotheses than in the corresponding Theorem 4 in [2].

We will now finish this study by providing numerical examples. For simplicity
we choose
A= F'(z*). (3. 10)
Example 2:
Let X =Y =R, z* =0, D=0U(0,1) and define function F on D by

Flz) =€ — 1. (3. 11)
Using (3. 1),(3.4),(3.10), and ( 3. 11 ) we obtain
s51=0,L=e—-1, and A=1. (3. 12)
In view of ( 3. 5 ) we obtain
1
R= 1= .581976706. (3. 13)
e —
Example 3:
Lt X=Y =R,
ot = %, D = [.81,6.25]
and define function £ on D by
2
F(z) = ga:% — (3. 14)
This time we obtain 1
s1=0,L=1,and /\25, (3. 15)
since
! * 1
F'(z*) = -, and
2
3
I#e) " #) - Pl =25 - 3] (5. 16)
32 3|3
=2 R R
“f 2| [V2-3
<|z-— x*|% '
holds for all z € D. In view of ( 3. 5) and ( 3. 15 ), we obtain
R=1. (3. 17)
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Abstract. In [4], author has characterized the BCl-algebras of
order 6 by considering BCK-parts of order 5, 4, 3, 2 and 1 respec-
tively vide his theorem on page 34. The total of all these cases is
88+144+6+14+1=110. According to the authors these are known as
simpler cases. Again they claimed that there are some complicated
BCl-algebras with BCK-parts of order 4, 3 and 2 respectively. He
computed 69 such complicated BCI-algebras. Adding simpler and
complicated BCI-algebras of order 6, the number springs out to be
1104+69=179. In this note it is worked out and shown that the
number of proper BCl-algebras of order six up to isomorphism is
197 instead of 179.
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1. INTRODUCTION

K. Iseki [3] introduced the theory of BCI-algebras and established some of its
properties. On wards, so many eminent researchers have contributed to the disci-
pline. S.K. Goel in [2], as a first step, characterized BCI-algebras of order three
and partially BCI-algebras of order four. In [4], author has characterized the BCI-
algebras of order 6 by considering BCK-parts of order 5, 4, 3, 2 and 1 respectively
vide his theorem on page 34. The total of all these cases is 88+14+46+1+1=110.
According to the author these are known as simpler cases. Again he claimed that
there are some complicated BCI-algebras with BCK-parts of order 4, 3 and 2 re-
spectively. He computed 69 such complicated BCI-algebras. Adding simpler and
complicated BCI-algebras of order 6, the number springs out to be 1104+69=179.
In this note it is worked out and shown that the number of proper BClI-algebras of
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order six up to isomorphism is 197 instead of 179. In [4], in case of complicated BCI-
algebras, it was shown that there are 69 complicated proper BCI-algebras of ordér
6. However, it is worked out and found that regarding isomorphic BCI-algebras as
equal, these are 68 instead of 69.

2. PRELIMINARIES

1.Definition [3]
A BCl-algebra X is an abstract algebra (X,*,0) of type (2, 0), satisfying the
following conditions; for all z,y,2 € X,

1 ((z*y)x(z*2)*x(2xy) =0
2 (zx(z*y))xy=o0
3zxz=0
dzxy=o0o=yxr=>x=y

where zxy =04z <y
In a BCl-algebra X, the set M = {z € X : 0 xz = 0} is a subalgebra and is called
the BCK-part of X. A BCl-algebra X is called proper if X — M # ¢.

1.2. Definition [1]
Let X be a BCl-algebra and z,y € X. Then x, y are said to be comparable if and
only if x*y = o or y*x = o. Further, we shall say that x precedes y and y succeeds
x if and only if x*y = o and denote it by x - y or z < y.

If x and y are not comparable, then they are said to be incomparable.

3. ON BCI-ALGEBRAS OF ORDER SIX

In [4], the author defined the partial order on a proper BCl-algebra X by making
Hasse diagram.

Note that the Hasse diagram associated with table no. 56 on page 41 in [4] is
given as follows:

Fig. (1}

| S I R

L O ey

This Hasse diagram implies that 4 <5 = 4*5 = o, but in table 56 in [4] it is given
that 4*5 = 1, a contradiction to the partial order defined by figure (1).
Let us consider the figure 2 and figure 3, given below:
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1 5 1 5

II¢¢ II##

o 2 3 4 o 3 2 4
Fig. 2 Fig.3

Note that in [4], it was shown that the number of BCI-algebras of order 6 with the
partial order defined by Fig. 2 is 2 for which the binary operation is given by tables
62 and 63 on page 42. It is pointed out that entry in (3, 4)th cell of table 62 should
be 2 instead of 5 according to bonafide properties of BCl-algebras; otherwise tables
62 and 63 coincide. Further, number of BCl-algebras of order 6 with the partial
order defined by Fig. 3 is 3 for which the operation is given by tables 64, 65 and
66 on page 42 in [4].

Now consider the multiplication table 62 (after correction) and table 64 along
with their associated diagrams on page 42 in [4], which are shown below:

*|

wuaoawoo.-?
=l oot =l O NNME‘
il 0o| o | co| cof oD

WO Nl | ]
OlWIk|C NN

(W —O |0

Qi N -] O

o

tpsmmntfl]  —a-
= B A,
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Table 64
*lo|1]2(3(4]5
olo|lo|2|3(4]3
1{1|o0|2(3{4!3
212201434
313|3|4(o0|2]|o0
414|432 |0]|2
51651314120

L 3
I ] LI
o 3 2 4
Fiz. 3

Since the choice of ordering of elements contained in any BCI-branch of order 2
is arbitrary, therefore Fig. 2 and Fig. 3 coincide. Also note that table 62
is isomorphic to table 64 under the mapping f : Table62 — Table64 defined as
f(o)=o, f(1)=1, f(2)=3, f(3)=2, f(4)=4 and f(5)=5.

Thus it follows that the number of complicated BCl-algebras of order 6, given
in [4], is 68 instead of 69.

Moreover in [4], in case of complicated BCl-algebras of order 6, all the authors
did not consider the following five cases:

Case (i) : Let X = {0,1,2,3,4,5} be a BCl-algebra with M = A(o) =
{0,1,2,3} as its BCK-part. Then X — M = {4,5}. The partial order on X is
defined as 0 < 1, 0 < 2, 0 < 3, 4 <5. Geometrically we represent it as follows:

In this case regarding isomorphic BCl-algebras as equal, there are two such BCI-
algebras of order 6. The multiplication tables representing these BClI-algebras are
given below:
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Table 1
*lo|1]2(3(415
olo|o|o|o|4di4
1(1]|of{1|1]4]4
2121202414
313(3|3|o|4]4
441414 |4|lo|o0
5545 |5|1]o

Table 2
*loj1[2([3]4]5
oiolo|o|o|4]|4
1{1]|o|1{1]|5|4
2121210(21414
313(3|3|o|4]4
4141414 |4|lofo0
5|b|4|b5|5|1]o0

Case (ii) : Let X = {0,1,2,3,4,5} be a BCI-algebra with M = A(0) = {0, 1,2}
as its BCK-part. Then X — M = {3,4,5}. The partial order on X is defined as
0<1,0<£2,3<4,3<5. Geometrically we represent it as follows:

—

14 ]
i

In this case regarding isomorphic BCl-algebras as equal, there are 5 such BCI-
algebras of order 6. The multiplication tables representing these BCl-algebras are
given below:

Table 3
*lo112]3]|4]5
ojolofo|313:3
1{1jof1(3]|3}3
21220333
3/3|3|3io|0]o0
41413|4]1|o]|1
515(3|5{1f1]o
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Table 4
o|1]2(3]|4]|5

ololojo|3]3]|3
111101131313
21212]0(3(3]|3
3|13|3|3|o|o]o
41414131202
5153|5110

Table 5
oi{1{2(3|4]|5

ololo|lo|3]3]|3

1{1lo|1]|5]|5|3

2121210(3(3]|3
313(3{3|olo]o
4144|3202

5(5|13|5{1|1]o

Table 6
o|1]23]|4]|5

olojo|lo|3]3]3

1{1jo0|1]|3]3|3

212[(2]|o|4]|3]|4
3|13|3|3|ojo]o
41414132 |0|2

515(3(5|1|1]o

Table 7
o|1]2]|3(4]|5

olo|lo|o|3|3]|3

1{1|o|1]|5]5|3
2122|0434

3(313|3|o|o]o
4414|132 |0]|2

515(3|5|1|1]o

Alo) ={o,1,2}

as its BCK-part. Then X — M = {3,4,5}. The partial order on X is defined as

{0,1,2,3,4,5} be a BCI-algebra with M

Case (iii) : Let X

v we represent it as follows:

3 < 5. Geometricall

354,

0<1<2
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In this case there are 10 such BClI-algebras of order 6. The multiplication tables

representing these BCI-algebras are given below:

[¢)

1

1

Table 8
o|l1[23]4|5

ololo|lo[313]3
1{1|ojo[3]3}3
2121110333
313|3|3|o|o]|o
4143|3101

551331

Table 9
o|1[213]|4|5

ojiolo|lo|313]|3

1 1|{of{o|3]3]3

212|1]o|5]|5|3

3|/313|3|o|o]o

41413310

515133110

Table 10
o|1(2|3|4|5

ololo|lo]3[3]3

111)lo0]01313|3

21210434

313|133 |o|o}o
414133101

5|/5(3[3]1]|1]o
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Table 11

o|1]2]3[4[5

l/lo|o{3(3]|3

olojo|lo]|3(3]|3

1

2121110333
3131313lojolo

414(3[3|1]|o]|1

5]515]3(2|2]o

Table 12

ofll1]2(3(4]|5

oj{oflo|o|3]33
1j1)l0]0]3]31]3
2121210(31313
313(3|3{ololo
4143|3101

515[3(3|1]1 o0

Table 13
ol[1]2[3[4[5
olojfo|lo|[3[3(3
11]1)oj0|3(3]|3
2121210131313
313{3!310lolo

*

41414|13[2]|0]2

5(5]3|3|1]|1]o

Table 14

o{1{2/3[415

olojolo]3(3]3
1|1]0]0]3[3]|3
21212l0(41314
313(3{3{o{0]o0

41443202

5157313 |1]|1fo
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Table 15
*lof1]2([31415
ololo|loj3|3]|3
1]/1]ofo0f3{3]3
21212]0(3[3(3
313(3{3|o|o]o
414(3(3|1]0of1
5(5|5(3]2]2]o

Table 16
*1ol(1]2[3]415
o|lo|lo|[o}3]3{3
1|1]jo]o|3]|3]|3
2(2|2]015]5]3
3/3|3!/3]lolo]o
41413|3[1]o0]1
5(5[5]3([2[2]o

Table 17
*1o|1(2]3415
olojo|o{3{3|3
111|o|l0|3]3]|3
21212103133
3/3]3{3]oflo]o
4141413(2]|0]2
5(515(3]2]2]o0

Case (iv) : Let X = {o0,1,2,3,4,5} be a BCI-algebra with M = A(o) = {o,1}
as its BCK-part. Then X — M = {2,3,4,5}. The partial order on X is defined as
0<1,2<3<4,2<3<35. The Cayley table and tlie Hasse diagram representing
such BCI-a,lgebra is given as follows:
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Table 18
*lo|112(314]5
ojolol|2]|212]2
1{1l|o]|2(|2]|2!2
21212lo0lo|lolo
3132|1000
41412111 ]o]1
5152|1110

Case (v) : Let X ={0,1,2,3,4,5} be a BCI-algebra with M = A(o) = {o,1}
as its BCK-part. Then X — M = {2,3,4,5}. The partial order on X is defined as
0<1,2<3,2<4,2 <5 The Cayley table and the Hasse diagram representing
such BClI-algebra is given as follows:

1{

3 4 ;5

Table 19
*lo|1]2(3(4]5
olojlol|2]2]2]|2
1|1jo|2(2]|2]2
2(2|2|lo]lo|lo]o
313(2|1jo|1|1
4142|1101
51512111 {1]o

Thus it follows that there are 19 more proper BCl-algebras of order 6 represented
by table 1-table 19 in case of complicated BCI-algebras.

Further from cases (i)-(v), it follows that the total number of proper BCI-algebras
of order 6 is 197 instead of 179.
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Abstract. This paper concerns with the LQ control problem for
nonregular implicit system. Main objective of this paper is to solve
LQ control problem for nonregular implicit system by utilizing the
equivalent relationship principle between two optimal control prob-
lems. By constructing a LQ control problem subject to the standard
state space system which is equivalent to the original problem, we
point out that solvability of the new one is the sufficient condition
to guarantees existence and uniqueness of solution for the original
LQ control problem.
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1. INTRODUCTION

The linear quadratic (LQ) control problem is important in control and optimiza-
tion theory and has been used in practice widely. In another hand, the implicit
system has received considerable interest over the last decade because it has the
specificity in the structure of its solution.
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Thus the LQ control problem subject to the implicit system has a great potential for
the system modeling, because they can preserve the structure of physical systems
and can include non dynamic constraint and impulsive element.

To the best of the author’s knowledge, these issues have been investigated in depth
for the cases where the implicit system is regular and the control weighting matrix in
objective function being positive definite (see [2], [3], [5]). However, not much work
has been reported for the cases in which the constraint is nonregular implicit system
and the control weighting matrix in objective function being positive semidefinite.
Geerts [4] discussed the LQ control problem for nonregular implicit system via
linear matrix inequalities, but the finding of this work involves impulse over optimal
control-state. The LQ control problem for implicit system with the output free of
control is considered in [7] in which the optimal control-state pair that free impulse
is obtained. Nonetheless, this finding is inadequate to handle cases in which the
output equation depends on control vector.

In this paper, we combine the control vector terms into the output equation,
thus the control-state weighting matrix term in objective function appear, and we
obtain some new results which significantly disparate from the finding in [7].

To solve the problem, we utilize the equivalent relationship principle between
two optimal control problems, so that we can construct a new LQ control problem,
i.e., LQ control problem subject to standard state space system, which is equivalent
to the original LQ control problem. By applying the existing theories over this new
LQ control problem, we may obtain the solution of the original LQ control problem.

Notation: Throughout this paper, the superscript “I™ stands for the transpose,
I is the identity matrix with appropriate dimension, R™ denotes the n~dimensional
Euclidean space, R™ ™ is the set of all m x n real matrices, C;f [R"]denotes the
n-dimensional piecewise continuous functions space with domain in [0, cc], and C
denotes set of complex number.

2. PRELIMINARIES AND PROBLEM. STATEMENT
Consider the following continuous time implicit system

Ez(t) = Ax(t) + Bu(t), t > 0, Ez(0) = g
y = Cz(t) + Du(t),

where z(t) € R™ denotes the state vector, u(t) € R" denotes the control (in-
put) vector and y(f) € R™ denotes the output vector. The matrices F, A €
R™*™ B € R™*",C € R™*"™ D € R™" are constant, with rank £ = p < n. We
often write (E, A, B,C, D) as a shorthand notation for system (2.1). The system
(B, A,B,C,D) is said to be regular if det(sE — A) # 0 for some s € C, and it
is called as nonregular if det(sE — A) = 0 for each s € C. It is well known that
the solution of (2.1) exists and unique if it is regular for an admissible initial state
zp € R™. However, it is possible to have many solutions, or no solution at all, if it
is nonregular.

Next, for a given admissible initial state o € R™, we consider the associated
objective function (cost functional) as follows:

@. 1)

o0

J(u(.), z0) = / T )yt dt. 2. 2)

0
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In general, the problem of determining the control u(t) € R™ which minimizes
the cost functional (2.2) and satisfies the dynamic system (2.1) for an admissible
initial state zo € R™, is often called as LQ control problem for implicit system. If
DT D is positive semidefinite, it is called as singular LQ control problem for implicit
system. We denote, for simplicity, this LQ control optimal as . Next, we define
the set of admissible control-state pairs of problem § by:

Aga = {(u(.),2(.)) | u(.) € GFR"] and z(.) € C;[R"]

satisfy (2.1) and J{(u(.),z9) < co}.

The optimization problem under consideration is to find the pair

(u*,z*) € A,q for a given admissible initial condition zg € R™, such that

* R
J(u*, o) (ur(I.l)l’le(l'r)r)nezgad J(u(.), zo), (2. 3)
under the assumption that (2.1) is nonregular and DT D is positive semidefinite.
Assumption 1 The implicit system (2.1) is solvable and impulse controllable.
Note that the Assumption 1 implies that there exists an impulse free control u(t)
so that J(u(.),zo) exist and finite [2], and it follows that A,q is not an empty set.
The following definition has actually been mentioned in [8], and it is restated in an
equivalent form in [7]. It is useful in the sequel.

Definition 1. Two systems (E, A, B,C,D) and (E, A, B,C, D) are termed re-
stricted system equivalent (r.s.e.), denote as (E, A, B,C,D) ~ (E, A, B,C, D), if
there exists nonsingular matrices M, N € R**"such that their associated system
matrices are related by MEN = E, MAN = A, MB =B and CN =C.

Remark 2. The operations of r.s.e. correspond to the constant nonsingular trans-
formations of (2.1) itself and of the basis in the space of internal variables z. The
behavior of z in the original system may thus be simply recovered from the behavior
of any system r.s.e. to it. These operations therefore constitute an eminently safe
set of transformations that are unlikely to destroy any important properties of the
system. Furthermore, such operations suffice to display the detailed structure of
the original system.

Definition 3. Two optimal control problems are said to be equivalent if there exist
a bijection between the two sets of admissible control - state pairs of the problems,
and the quadratic cost value of any image is equal to that of corresponding preimage.

Obviously, definition 3 conforms to the reflexivity, symmetry, and transitivity of
an equivalent relation, thus the two equivalent optimal control proBlems will have
the same solvability, uniqueness of solution and optimal cost. Thus solving one can
be replaced by solving the other.

3. CONSTRUCTING INTO EQUIVALENT L) CONTROL PROBLEM

Firstly, we will construct a LQ control problem which is equivalent to the original
LQ control problem. Since rank E = p < n, then by applying the Singular Value
Decomposition (SVD) theorem[6] to the matrix F, one can obtain a nonsingular
matrices M, N € R**", such that

— IP 0
MEN_( K 0).
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Accordingly, let

An A By
MAN = MB = CN=(C, C
( A21 A22 ) ’ ( 32 ) ) ( 1 2 )7

and

N~z = ( 2 ) (3. 1)

where A € ]Rpo, Alze Rnx(n—p), An € R(n_p)Xp, Agpe R(n—p)x(n—p), B,e RPXT,
Bye RO=PI>X" e R™*P Che R™*(—P) z.e RP and z,€ R* P. Therefore, for a
given admissible initial state z¢ € R, the system (2.1) is r.s.e to the system

i?l (t) = Anscl(t) + Algxz(t) + Blu(t), 561(0) =9 € RP
0= A21$1(t) + Azg.l?z(t) -+ Bz’u(t) (3 2)
y(t) = Cra1(t) + Caz2(t) + Duft)

where T10 = ( Ip 0 )M.TO
Using the expression (3.2), the objective function (2.2) can be changed into

oo/ 2(t)\ [ CTC, CTC, CTD z1(t)
J1 (u(.),:clo) = / Iz(t) CZTCl CgCQ CzTD IL'Q(t) dt.
3 u(t) DTc, DTC, DTD u(t)

Likewise, we have a new LQ problem which minimize Ji(u(.), z19) subject to
the dynamic system (3.2). Denote this LQ problem as €; and define the set of
admissible control-state pairs of problem 2, by :

Apg = {(u(),21(),22(.)) | w(.) € CF[R'],24(.) € CF [RP] and

x2(.) € CF[R™P] satisfy (3.2)and Ji(u(.), z10) < 00} .

By virtue of Definition 3, it is easily seen that the LQ control problem €; is

equivalent to Q.

Lemma 4. [2] The implicit system (2.1) 4s tmpulse controllable if and only if
mnk( Agy B ) =n-p.

Furthermore, since the matrix ( A2 By )has full row rank, then the solution
of the second equation of (3.2) can be stated as

Ta(t 2 ’

( ;((t)) ) — AT Apa () + Wo(t) (3. 4)
for some v(t) € R” and for some full column rank matrix W € R("=P+7)X" satisfying
( Ay By )W =0, where

-1
AT =( Ax B )T [( Ay By ) ( Az B )T]
is the generalized inverse of the matrix ( Ags By ) .

Remark 5. Note that the matrix W is not necessary unique. In the next section, we
will show that although W is not unique, it preserves the uniqueness of the optimal
control-state pair.
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Using expression (3.4), we can create the following transformation

%(%; B ( *AIfAm V?/ ) ( 9;1(%) ) (3.5

Substituting (3.5) into the 1, we obtain a new LQ control problem as follows

minimize Jo(v(.), z10)
(U,.’l?1)

O, - . _ 3 R _
2 . i1 (t) = Az1(t) + Bo(t), z1(0) =24 (3. 6)
subject to y(t) _ C_’asl(t) +Dv(t), 0

where
as 70( )T ( Qu Q12 ) ( x1(t) )dt
10) / Qf, Qu ity )™
A = An-(Ar By ) AYAy, B=( An B )W,
C = Ci—(Cy D)A Ay, ‘—(C D)W,
CQu = [Cl—( Cy A+A21] [ ( Cq )A+A21]
Q2 = [01—( Ca )A+A21] (C: D)W,
and
Q= [( s D)W]T(Cz D)W (3. 7)

Define the set of admissible control-state pairs of problem {25 by
A2 = {(0(),e1() [ () € CHR'] and a1(.) € C;f [R]
satisfy (3.6) and J2(v(.), Z10) < o0} .
It is obvious that the system (3.6) is a standard state space system with the
state 1, the control v and the output y, so €13 is a LQ control problem for the
standard state space system. Next, we need to show that £2; is equivalent to 2.

Theorem 6. The transformation defined by (3.5) is a bijection from A2, to AL,
and thus the problem 1y is equivalent to the problem §2.

Proof. It suffices to prove that the transformation (3.5) is a mapping, injection and
surjection from A2, to Al;. For any (v,z1) € A2y, (u, (z1,32)) determined by (3.5)
satisfies



60 Muhafzan, Malik Hj. Abu Hassan and Leong Wah June
T
An A B m;
Ay Axn B u

An | Az By AIP 0 Iy
Az | Ays By —AtA,; W v

An—( Ap B )ATAy | (A2 B )W

(%)

Ay~ ( Az By ) AtAy

= ; 1
0o )
Hence (u, (z1,72)) € Al;. Therefore, the transformation (3.5) is a mapping from

A2, to Al,. Note that this transformation matrix has full column rank, and it
follows that it is an injection from A2, to ALy. Next we will show that the transfor-

Ay By) ) has full column

n—p+r

(Aw By )W

Il
N
8 ©
o bty
SNe—
N
< B

mation (3.5) is a surjection. Since the matrix ( (

rank, then

rank ( A+ w )

I
g
=2
—
N
—_
S
N
N
e
~
~—
SN—’
—_
b)
+
~—
—_—

In-—p+r
I, 0
= rank( A W )
_ Inp O
= rank ( 0 W )
= n-—p + T

and it follows that the matrix ( At W ) € R(—p+n)x(n—p+r} ig nonsingular.
Therefore for any (u?, (z9,29)) € AL, we can take

<f§)=(fi+ W)‘1<2§),

and from the equation of (3.4) we have 7§ = — Ay 2Y. It follows that

0 0
3 L 0 o\([%
H 0 At w H
u v
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Thus (v%,z{) is the preimage of (u%, (z9,29)) under (3.5). Further, we know that
(v°, 29) satisfies the first equation of the system (3.6), i.e.

% = Az? + B, 2%(0) = 219,

so (v, z3)e A2,. Therefore the transformation (3.5) is surjection from A2; to AL,
and therefore problem 2, is equivalent to €2, by definition 3. ]

4. MAIN RESULT

In the previous section, we have constructed a LQ problem which is equivalent
to the original LQ problem. We have showed that 2 is equivalent to Q;, and @,
is equivalent to {2, hence Q is equivalent to Q3. Therefore we suffice to utilize the
existence and uniqueness conditions of optimal control-state pair for Q.

In accordance to the linear optimal control theory for the standard state-space
system [1], if the matrix Q3 is positive definite , the pair (4, B) is stabilizable and
the pair (A ~ BQ%'QL, Q11 — Q12Q5, QL) is detectable, then Q2 has a unique
optimal control-state pair (v*, z}), where v* is given by

'U* — —LI:, (4 1)

the state =} is the solution of differential equation

&1(t) = (A— BL)x1(t), :(0)=z10 4. 2)

with L = Q3,'(QT, + BT P), P is the unique positive semidefinite solution of the
following algebraic Riccati equation:

0=ATP + PA+ Q1 — (PB+ Q12)Q5 (PB + Q12)T (4. 3)

and every eigenvalue A of A — BL satisfies Re(\) < 0.However, Q2 can be posi-
tive semidefinite, so we are now in a position to give the necessary and sufficient
conditions in order that the matrix Q22 is positive definite. Moreover, we also
need to establish the necessary and sufficient condition in order the pair (4, B) is
stabilizable and (4 — BQ;,; Q%, Q11 — Q12Q3; QL) is detectable.

Theorem 7. The following statements are equivalent :
(2) Q22 is positive definite

(i) rank ‘2,2: %)=n—p+r
0 F 0

() ank| E A B |=n+p+r.
0 C D

Proof. (i) < (it) From (3.6) we have

Qu=[(C: D)W]| (C D)W
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Since Qg€ R™" then Q>0 & rank[( Cy D ) W] = 7. Since the matrix
( AT W ) is nonsingular then

Agz B2 \ _ Ay Bs iy
rank< 02 D ) —rank [(W) ( A W )

(11) < (21¢) Tt is easy to see that

0 FE 0
rank| F A B
0 C D

M 0 0 0 FE O N 0 0
= rank 0 M 0 E A B 0 N 0
0 0 I, 0 C D 0 0 I
0 I, ¢ 0
. I, 0 0 0
= rank 0 0 Ay By
0 0 C; D
Ay By
= p+ptrank
p+ p+ran < c, D
=n+ptr a

Theorem 8. The pair (A, B) is stabilizable if and only if
rank(A— AE B )=n, (4. 4)
for each \ with Re(\) > 0.

Proof. According to the stability theory for linear time invariant system [1], the
pair (A, B) is stabilizable if and only if rank(A — A, B )=p. It follows that
rank( A — AE B):rank[M(A—)\E B)(N 0)}

0 I
MAN —AMEN MB)
A

u-AM,| A B )
Ay | Az B

A= (A1 B ) At Ay -, | Az By

(
(
:ra’nk< Ay~ (Aw B2 )ATAy | An B )
(
S

0 Az By

A-A,| A B I, 0 0
0 W I pyr

I
—
o
=]
=

A -, Bl Ao Bi
0 0| Az B

Il
S
+

[
=

Il
3
O
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Theorem 9. The pair (A— BQ3 QTy, Q11 — Q12Q25 Q) is detectable if and only

if
A-)AE B
rank ( C D > =n+r, 4. 5)

for each A, Re(\) > 0.
Proof. Tt is well known that the pair (A—BQ3, Q%,, Q11 —Q12Q5, Q) is detectable
if and only if
A - BQyu QT — M )
rank 22%12 ? ) = p (full colu ank
< Qll 4Q12Q221 {2 p( COTmL Tan )

for all A, Re(A) > 0. It follows that

>
ok A=A BN _ (M0 A-XE B N 0
c D)7 0 1, c D 0 I

An =M, | A B
= rank An Ay B
Cl 02 D
A= (A By )ATAy - AL | An B
= rank An — (A By ) ATAn Ax By
Cl_( ¢y D )A+A21 Cy, D
A=A, | A B
o (SR (512
c C, D n—p+r
A-X, B (A1 Bi)
= rank c D (C; D )
: 0 0 (Ax B2)
A-BQyQL -, B (A B)
=k C-DQQw D (G D)
) 0 0 (A22 Bs )
(¢ o ¢ A-BQZ QL A, B (A, B)
0 C7 0 L2 %12 p D 12 1
=rank o DT 0 C — DQys Q2 D ( C, D )
0 0 I, ) v 0 ‘ 0 (Ayx By)
A—BQ2—21 %"2—/\112 B ! A B )
=rank Qu — Q120 QT Qs QTé Cy; D %
.0 Qy DT(Cy D
Y 0 (Axn By)
- ) |
=rank< AQHB_QgHQQl;—Zl ?211) >+rank-Q22—|—rank ( Ao : By ) |
=ptr+(n-p)=n+r ' .

Theorem 10. If the implicit system (2.1) is impulse controllable and satisfies part
(i4i) of theorem 7, relations (4.4) and (4.5), then ) has o unigue optimal control-
state pair and the optimal control can be synthesized as state feedback.

Proof. Let the hypothesis holds, then in accordance to the linear optimal control
theory for the standard state space system [1], {22 has a unique optimal control-
state pair (v*,z*), where the optimal control v* is given by (4.1), the state 7 is the
solution of differential equation (4.2), P is the unique positive semidefinite solution
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of the algebraic Riccati equation (4.3) and every eigenvalue A of the closed loop
system A — BL satisfies Re(\) < 0. From (3.5) and (3.7), we have

I, 0 L\ -
—AtAy W)\ -L )T

L 0 L
Ay Wi ( ) )a:‘;
A W,

TN
e 8 8
* N ¥ ¥

\/-/

it

fl

IP
= A1 - WlL .’L‘I (4 6)
Ay — WL

where Ay =—AtA,, W= Wy JAp € R(=P)XP A, € RT*P,

A, W,
Wi € ROPXT and W, € R™*". Finally, by using (3.1) we get the unique optimal
control-state pair ( u*,z*) of Q as follows:

* ‘7"){ IP
T u* T Ay —WLL
Now, we are going to synthesize u* as state feedback, i.e.
u = Kz* = ( K, Kp ) < 2% ) (Kl +K2(A1 L)).’El, (4 8)

where K € R™*"™ ig a feedback matrix. Recall that u* = (A2~ Wj L)z}, one can see
that (4.6) holds if and only if K and Kj satisfy K, + Kg(A; —Wi1L) = Ay — WL,
But, since the matrix ( Ags By ) has full row rank then there exists a matrix
Ky € R™<(=P) guch that Ags + B2Kj is non singular. It follows that if we choose

= (Mg — W L) — K5(Ay — Wi L) then (4.6) holds and the proof is completed. O

To end this section, we would like to point out that for every full column rank
matrix W e RPH7)X7 which satisfies ( A2 Bs )W 0 will preserve the
uniqueness optlmal state-control pair of the LQ optimal control problem Q. At
this end, let W W € RV=P+7%7  with w # W, have full column rank and sat-
isfy ( A2 B2 )W ( Az 32 )W = 0. Next, let L and L, with L # L, be
the feedback matrices corresponding to the choosing W and W, respectively. It
will suffice to show that the solution of differential equation (4.2) is unique for a
given admissible initial state 17 € R?. For this reason, suppose that z; and %,
with Z; # 7, are two solutions of the differential equation (4.2) corresponding to
choosing W and W, respectively. It follows that there exists T,z € R™? such
that (3.5) becomes

29 W
!
TN
=

b

N

T)o
N’
TN
<) B
N——

and
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T —
j; — A{p 9 o
0 —A7Ay W (

where ¥ and T are the control vectors corresponding to Z; and T,, respectively.
Subtracting both the above, we have

8

em | = (B 0N BY);
p I I (R O T L))"
U — u
s 0 L\
_AtAy, W —L)n

D
L
I, _ I, )
( _AtAy - WE ) o ( _AYAy - WE ) T14. 9)
0

1,
Premultipling both sides of (4.9) by ( P ) , we have

and in particular, we have

W TR ) - WS WL,

Since W7 has full row rank then we have
(a3 ) =@ WIW IR - ) T WL, (@. 1)

where (/WT)+_ = W(WTW)~1 is the generalized inverse of the matrix W7. Pre-
multiply the both sides of (4.11) by ( Agy By ) , we have

( Az Bﬂ(@“u):o, (4. 12)

u —1Uu

(5)-(2)

which is valid for every ¢ € [0,00). By considering (3.4) then we should have
—AonZy = —Ag171. But, since this is valid to every ¢t € [0,00), then we should
have Z, = Z1, and this is a contradiction. Therefore Z; = Z1. This fact and to-
gether with (4.13) show that the optimal control- state pair (u*,z*) of the LQ
control problem for implicit system is unique.

and it follows that

Remark 11. This finding is also valid for the cases in which the matrix DTD is
positive definite as well as for the regular cases. Moreover, if D is a zero matrix of
appropriate dimension, then one can see that theorem 1 and lemma 2 in [7] are a
special case of our theorem 7 and theorem 9, respectively.
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5. NUMERICAL EXAMPLES

In this section, we give some numerical examples.
Example 1 Consider the singular LQ control problem for nonregular implicit
system, where

1 0 0 0 -10 1 0 0 0
-1 -1 0 0 1 2 -1 0 0 0
E = 6 6 0 O A= 0 1 0 0 B = 1 0|’
0 0 00 6 1 0 1 1 0
0 1 2 0 11 T
Cc = ( 1 210 2 ),D_(1 1),xo_(l 2.0 0) .
By taking M = I and
1 0 0 0
-1 -1 0 0
N = 0 0 1 0 )’
0 0 01

it is easy to verify that the implicit constraint is impulse controllable. By choosing
any full column matrix W &€ ker ( Ag2 B ) , the problem Q can be equivalently
changed into the following LQ control problem subject to standard state space
system:

e T80 ) (8 82) ()
G1(t) = < j _‘; )ml(t)+ 1 8 )v(t), 21(0) = < ; )

R 6= (5 5)a0+( 75 i)”(”‘

9 6 0 3 4 =2
whereml,v€R2,Q11=<6 4),Q12=<0 2),andQ22=(_2 2)-

The solution of this problem is v = —Lx}, where L = ( 1:-35 ; ) and
. —2e~ 2t 4 3e—0-5t
T, = ( 56—2t _ 36—0.5t )

satisfies the following differential equation:

we( % 4)mm0=(3)

Moreover, we also have
. 26—2t + 1.56_0'5t
x5 = 0 .
Thereby, the optimal solution of the LQ control problem  is as follows:
—2e~% 4 305 \
!

. _36—2t
2e2t 4 1.5e 05t

o)
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3e~2t
U= ( _ 42t 305t ) )

J(U*,wo) =0.

Moreover, the optimal control can be synthesized as

e (=05 0\ . (1 0Y.
““( -3 —2>x1+<0 1)‘”2'

The trajectories for the optimal control-state pair are given in the figures 1.a and
1.b below.

and

with the optimal cost is

4 5
fime t
Flgure 1.b. Control Trajectory

Example 2 The following is an example of LQ control problem for regular
descriptor system, where

1 0 00 -1 0 4 0 4 —4

1 -1 00 1 2 -1 0 | 5 0
E= 0 0 0 0 A= 0 -2 0 -1 B = 1 0 ’

0 0 00 -1 2 -1 0 3 1
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-1 030 10 ™
C’=< 114 0 >,D:<_4 1),330_(2 000).

By taking the matrices M = Iand

1 0 00
1 -1 00

N=19 0 10|
0 0 01

the implicit constraint is impulse controllable. By chooéing any full colomn ma-
trix W e ker( Age  Bg ) , the problem Q can be equivalently changed into the
following LQ problem for standard state space system:

e (60 ) (85 8 ) () )

o [ 42308 —5.5385 —3.4988  —5.2099
#1)=\ 27602 —0.4615 Il(t”( ~0.1783 —1.5339>”( )
st :(0) = g

09231 —2.1538 ~2.9638 —0.6082
yt) = < —0.4615 —1.9231 >$2(t>+ < 30444 1.8083 >”(t)

where

1.0651 —1.1006 —1.3307 —1.3960
ml)’UER2)Q11:< >aQ12:< >7

—1.1006  8.3373 12.2382 —2.1675

O = 18.0524 —3.7026
27\ -3.7026 36399 /-
Thus the optimal control for this LQ control problem is v* = — Lz}, where

I = —0.2270 0.6958
—\ —0.6958 0.0856 /'

and

and
. o192  2cos(2.1035¢) + 0.0132sin(2.1035t)
n=e 1.5826sin(2.1035¢)

satisfies the following differential equation:

. —0.1784 —2.6583 (2
#1(t) = ( 1.6645 —0.2062 )xl(t)’ 1(0) = ( 0 )
Moreover, we also have

. o923 [ 0.6846 cos(2.1035t)-0.1925 sin(2.1035¢)
T2=¢ -4.3973 cos(2.1035¢) + 3.6646 sin(2.1035¢t) | -

Hence, the optimal solution of the LQ control problem {2 is

2 c0s(2.1035t) + 0.0132sin(2.1035¢)
g015 2 cos(2.1035¢) — 1.5694 sin(2.1035¢)
a 0.6846 cos(2.1035t) — 0.1925 sin(2.1035t) ’
—4.3973 cos(2.1035¢) + 3.6646 sin(2.1035¢)

T

and
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4 01023t ( —0.3973 cos(2.1035¢) + 0.5257sin(2.1035¢)
- —0.1236 cos(2.1035¢) + 1.3823 sin(2.1035t)

with the optimal cost is

J(u*, zo) = 0.2287.

Moreover, the optimal control can be synthesized as

o (05400 04584\ . (1 0 .
© =\ 21369 -14509 1T\ 0 1 )7
The curves of trajectory for the optimal control-state pair are given in the figures
2.a and 2.b below.

] 5 10 timet 15 20 2

Figure 2.a. State Trajectory

H H i :
Q 5 10 fmet 18 20 25

Figure 2.b. Control Trajectory

6. CONCLUSION

This paper discussed the singular LQ control problem for nonregular implicit
system, and has given the relationship between this problem and the LQ control
problem for standard state space system. We pointed out that solvability of the L.Q
control for standard state space system is sufficient condition to guarantee existence
and uniqueness of the original problem.
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1. INTRODUCTION

K. Iseki [10] introduced the theory of BCl-algebras and established some of
its properties. On wards, so many eminent researchers have contributed to the
discipline. S. K. Goel [6], as a first step characterized BCI-algebras of order 3 and
partially BCI-algebras of order 4. In [4], S.A. Bhatti, M.A. Chaudhry and A. H.
Zaidi posed an open problem stated as follows:

“How many proper BCl-algebras of order n exist?”

In this paper we solve this problem partially and give some results for the char-
acterization of BCl-algebras of order n with o(M) = 2 by means of center and
branches.

2. PRELIMINARIES

1.Definition [10]

Let X be an abstract algebra of type (2, 0) with a binary operation * and a constant
o. Then X is a BCl-algebra, if the following conditions are satisfied for all x,
T,y,2 € X ’

1 ((z*y)x(zx2))*x(2xy)=0
2 (xx(xxy))*xy=o
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3zr*xxr=o0
4dzxy=o=y*xr=>x=1y
Srxo=0=>x=0
wherezxy=o0<z <y
If o * x = o, holds for all z € X, then X is a BCK-algebra [9].

Moreover, the following properties hold in every BCl-algebra ([10]):
6 xxo==x
T(x*xy)xz=(x*x2z)*y
Br<y=z*rz<yxzandz*ry<zx2x

In a BCI-algebra X, the set M = {2 € X : oxx = o} is called the BCK-part
of X. A BCI-algebra X is called proper if X — M # §. In a BCI-algebra X,
X —M={z € X:oxxz+#o}is known as the BCI-part of X.
9 Let X be a BCl-algebra. If M = {o}, then X is called a p-semisimple
BCl-algebra.[12]
10 Let X be a p-semisimple BCl-algebra. If we define z +y = z * (0 * y), then
(X, +, o) is an abelian group.[5, 12]
2. Definition {2]
Let X be a BClI-algebra and z,y € X. Then x, y are said to be comparable if and
only if z <y or y < z. Further, we shall say that x precedes y and y succeeds x if
and only if z xy = 0 and denote it by z — y or z < 3.

If x and y are not comparable, then they are said to be incomparable.

3. Definition [2]
Let X be a BCI-algebra. An element z, € X is said to be an initial element of X,
if x <2z, = 2 = z,. Obviously o is an initial element.

4 Definition [2]

Let I, denote the set of all initial elements of X. We call it the center of X. The
reason for calling I, as the center of X is that each branch (defined below) originates
from a unique point of this subset. The cardinality of the center is same as that as
the set of branches of X.

5 Definition [2]

Let X be a BCl-algebra with I, as its center. Let z, € I, then the set A(z,) =
{z € X : 2, < z} is known as the branch of X determined by z,. Each branch
A(z,) is nonempty, because by property (3), 2, * £, = 0 = z, € A(z,). We note
that A(xz,) consists of all those elements of X which succeed 2, .

If z, # o, then A(z,), the branch of X determined by z, is called a BCI-branch
of X. But if z, = o, then A(z,), the branch of X determined by z, is called a
BCK-branch of X.

‘Also note that the BCK-part M of the BCI-algebra X is equal to A(o) because
M ={z € X : 0%z =0} = A(o). Hence, it follows that a BCK-algebra is a single
branch BCl-algebra.

6 Definition [2]
If A(z,) = {z,}, then A(z,), the branch determined by z,, is known as a uniary
comparable.
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11 The center I, of a BCl-algebra X is p-semisimple.[3]

12 Let X be a BCl-algebra and A(x,) C X. Then z,y € A(z,) = xxy,y*z €
M .[2]

13 Let X be a BCl-algebra. If x < y, then x, y are contained in the same
branch of X [2].

14 Let X be a BCl-algebra with I, as its center. If € A(z,), ¥y € A(y,), then
zxy € Az *Yo), for To,yo € I, . (7]

15 Let X be a BClI-algebra with I, as its center. Let z,,y, € I.. Then for all
Y € A(Ys)s To*Y = Tp * Yo.|7]

16 Let X be a p-semisimple algebra.Then X is fully nonassociative if and only
if o(X) is odd [4].

17 A BCl-algebra X is said to be associative if o x x = z, for all z € X,
otherwise it is called non-associative [1, 8 |.

18 A BCl-algebra X is said to be fully-nonassociative if o x x # z, for all
z € X —{o}. [2].

19 A BCT-algebra X is said to be neutral non-associative if o * 2 = z holds for
some ¢ € X — M[2].

3. SoME BCI-ALGEBRAS OF ORDER m WITH o(M) = 2

Theorem 1: Let X be a proper BCl-algebra of order n £ 4 with o(M) = 2. If
o(I;) = 2, then X is unique.

Proof: Let X = {0 = 21,2, 23, ..., Zn} be a proper BCl-algebra of order n < 4
with BCK-part M = A(0) = {0 = 21, %2} and the BCI-part X — M = {3, ..., zn}.
Take I, = {o,z3}. Since o(I;) = 2, therefore , X has only two branches. As
M = A(o) is the BCK-branch, so we take BCI-branch A(z3) ={z € X — M : 23 <
z} = {z3,....., xn }. By.(11), I, is p-semisimple BCI-algebra. The binary operation
* in I, is defined as follows:

Table P1
*1 o |
o| o |zs
T3 | T3 o]

Since 25 € M, so 0xz3 = o. Now by using the properties (3), (6) and the correspond-
ing values from table P;, the multiplication table representing such BCl-algebra is
given as follows:

Table 1
*loijx|x3|xa| ... | 28
o|lololz3| A} A|A

To | T2 ) Al A A A
z3 |3 | Ao | A| A A
|z |A|Alo | AJA

A|lA|A|A|A
Tnlaon |A A A A o

In the above multiplication table the dotted column represent the missing 6t —nth
columns and the dotted row represent the missing 6** — n** rows. The entries for
the blank cells denoted by A in Table 1 are computed as follows:
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Computation of values for the blank cells of 2*¢ row
For 0,23 € I, and any x € A(z3), by (15), oxz3 = oxz = oxz = z3 (Since
o* 3 = x3). Thus z3 will fill all the blank cells of 274 row.

Computation of values for the blank cells of 3¢ row

For any = € A(z3), by definition 5, 23 < z = z3*z = 0. By (12), z*xz3 € M
A(o) = {o0,z2}. But z x z3 # o, otherwise because of property (4), z xz3 = o
T3 *T = T = T3, a contradiction. Thus, z *x 3 = 22 (1)

Now

I

i

To*xz = (x*x3)*xx (using equation (1))

=(zxx)*z3 (using property (7))

=oxx3=1x3 (using property (4) and o* z3 = x3)
Thus z5 will fill all the blank cells of 37 row.

Computation of values for the blank cells of 4t* — (n + 1)** rows

Yor z,23 € A(z3) C X, by (2) and equation (1), z* (z*z3) < 23 > r*x 12 < 23 =
T * Ty = T3, as T3 is an initial element. Thus z3 will fill all the blank cells of 37
column.

Now for z,y € A(z3) such that z # y # 3, we have following three possibilities:
Case (i): £ <y Case (ii): y < z Case (iii): x, y are incomparable.
Case (i): z<y=z*xy=o0(2)

Case (ii): z > y = y*z = 0. Since z,y € A(z3), therefore by (12), zxy e M =
A(o) = {0,22}. But z+y # o, otherwise by (4), z*xy=o=y*xz =z =1y, a
contradiction. So, £ *xy = 3 (3)

Case (iii): Since z,y € A(x3), therefore by (12) x*y € M = A(o) = {0,2}. But
T * Yy # o, otherwise z * y = o implies x, y are comparable, a contradiction. So,
Txy =z (3)

Thus from equations (1) — (4), it follows that 4** — (n + 1)** blank cells of 4% —
(n+ 1)** rows have fixed entries i. e either o or z,.

Hence, by filling the corresponding blank cells with the fixed values computed above
in table 1, we have a unique BClI-algebra.

Example 1

Let X = {0,1,2,3,4,5} be a BCI-algebra with M = A(0) = {o,1} as its BCK-part.
Then the BCl-part X — M = {2,3,4,5}. The partial order on X — M is defined as
2<3,2<4,2<5. By (13), A(2) ={2,3,4,5}. Thus it follows that I, = {o,2}.
Note that o(X) = 6 > 4 and o(I;) = 2. Hence by theorem 1, X is unique. The
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Multiplication table and the Geometric figure representing such BCl-algebra are
given below:

el

Ly (=00 (NN Wi

o ik

*|

Y WD} =} O

Gy =00
wwwwOOH§
»—-\p—w—towwwz
O[O | NNk
OO |||t

&> =
4 Ln

Fg. 1

[

For more examples see [4] and [11].

Theorem 2:

Let X be a BCl-algebra of order n with o(M) = 2 and o(I;) = 3. If for some
zo € Iz, A(z,) is uniary comparable, then X is unique.

Proof:

Let X = {0 = z1,2%2,23,.....,Z,} be a proper BClI-algebra of order n with BCK-
part M = A(o) = {0 = z1,z2} and the BCl-part X — M = {z3,.....,z,}. Take
I, = {o0,73,z,}. Since o(l;) = 3, therefore , X has three branches. As M = A(0)
is the BCK-branch, so we take two BCI-branches A(z3) = {z € X — M : z3 <
z} = {z3,.....,Tn—1} and A(z,) = {z.}. By (11), I, is p-semisimple. Since o(l;)
is odd, therefore by (18), I, is fully non-associative. The binary operation * in Ix
is defined as follows:

Table P,

o] I3 | Ty
0| o |z, |xs
T3 | X3 o] Tn
T | Zn |23 | O
Since 73 € M, so 0 * 3 = o. Now by using the properties (3), (6) and the

corresponding values from table P,, the multiplication table representing such BCI-
algebra is given as follows:

*

Table 3

*lolxzy |23 | Za|... | Tn1| Zn
olofolxz, | A A A | z3
zolza |0 | A AT A A A
z3|z3 |A ] o |A| A A |z,
Ty |lza |A]JA ] 0| A A A
AlAIA| A A A

Tn|Zn | A | A|A] A A o
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In the above multiplication table the dotted column represent the missing 6t* —
(n — 1)*" columns and the dotted row represent the missing 6! — (n — 1)** rows.
The entries for the blank cells denoted as A in Table 3 are computed as follows:

Computation of values for the blank cells of 2*¢ row
For 0,23 € I, and any = € A(z3), by (15), o*x23 = oxx = o*x = x, (Since
0% x3 = 2,). Thus z, will fill the blank cells of 2" row.

Computation of values for the blank cells of 3™ row

For o € A{o) and z € A(z3), by (14) z3 xz € Alo* x3) = Alzn) = {zn}. So,
Ta*kx =2z, (1)

Thus 2, will fill the corresponding blank cells of 37 row.

Now for z2 € A(o) and z3 € A(xs), because by equation (1) it follows that
Zo * T3 = Zp. S0 using (2), xg * (X2 ¥ x3) < 23 = g * zp £ Tz = Tg * Ty, = T3, a8
x3 is an initial element. Thus x5 will fill the (n + 1)** blank cell of 37 row

Computation of values for the blank cells of 4* — n** rows
Computation of z*z, for any « € A(zs) and 2o € A(0), are the same as done in the-
orem 1. So, z¥zy = x3, Thus x5 will fill the corresponding blank cells of 37¢ column.

Computation of z*z3 and z xy for  # y € A(xs) are the same as done in theorem
1. Thus 4th — nt* blank cells of 4th — nt® rows have fixed entries i.e o or z3.

Also for z € A(z3) and 2, € A(z,,), by (14) z * z,, € A(zs * ) = A(Zn) = Zp. SO
Z * T, = Zp,. Thus z,, will fill all the blank cells of (rn + 1)** column.

Computation of values for the blank cells of (n + 1)!* row

For z,, € A(z,) and z3 € A(0) by (15) zp, ¥ 0 = 2, ¥ T3 = Z,. Thus z,, will fill the
37 blank cell of (n + 1)** row. Again by (15) for z,, € A(zy,) and any z € A(z3),
Tn * T3 = Ty * ¢ = xg (Since z, * z3 = x3). Thus x3 will fill remaining blank cells
of (n -+ 1)** row.

Hence, by filling the corresponding blank cells with the fixed computed values in
table 3, we have a unique BCl-algebra.

Example 2:

Let X = {o0,a,b,¢,d,e, f} be a BCl-algebra with M = A(o) = {o,a} as its BCK-
part. Then BCI-part X — M = {b,¢,d, e, f}. The partial order on X — M is defined
asb<c<e b<d<eand f < f. Therefore by (13) A(b) = {b,c,d,e} and
A(f) = {f}. Note that I = {o,b, f}. Since o(I;) = 3 and for f € I, A(f) is
uniary comparable, So by theorem 2, X is unique. The Multiplication table and
the Geometric figure representing such BCI-algebra are given below:
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Table 4
*loja|blc|d|e|f
ololo|f|f|f]f]|Db
alalo|f|T{f][f|Db
bib|blojojo|o]|f
clclblajolalo]|f
d{d|bjalalo|o|f
ele|lblalalalo]|f
fif|b|b|/bib|blo

a 2
c <> d *
f
o b
Fiz. 2

For more examples see [4] and [11].

Theorem 3:

Let X be a BCl-algebra of order n < 6 with o(M) = 2 and o(I;) = 4. If for some
Zo # Yo € I, A(z,) and A(y,) are uniary comparable, then there exist two such
BClI-algebras.

Proof:

Let X = {0 = z1,%2,....,2,} be a proper BCl-algebra of order n £ 6 with BCK-
part M = A(o) = {o = z1,22} and BCI-part as X — M = {z3,%4,....,%Tn }.
Take I, = {0,23,Z,_1,Zn}. Since o(I;) = 4, therefore X has 4 branches. As
M = A(o) is a BCK-branch, so we take three BCI-branches A(z3) = {z € X :
z3 <z} = {z3, .., Tn-2}, A@n-1) = {zn_1} and A(z,) = {z,}. By (11) I, is a
p-semisimple BCl-algebra. Since p-semisimple BCl-algebras are precisely abelian
groups (see [5, 12]), therefore isomorphism classes of p-semisimple BCl-algebras are
the isomorphism classes of abelian groups. Since there are two abelian groups of
order 4, therefore there are two p-semisimple BCl-algebras of order four. Keeping
in view properties (17) and (19), the multiplication tables representing such p-
semisimple BCl-algebras are given as follows:

Table P;
* T3 Tn—1 Tn
o o T3 Tp-1 Tn
Z3 z3 o Tn Tn~—1
Tn—1 | Tn-1 Tn o Z3
Tn Tn Tn—1 3 O
Table P,
* 0 T3 | Tn-1]| Zn
0 0 T3 Tn | Tn-1
z3 z3 o In—1] Tn
Tn—1 | Tn-1 Tn o Z3
Tn Tn Tn-1 3 o
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Thus construction of proper BCI-algebras of order 7, which depend upon o(I;) = 4
can be obtained by using Table Ps; and Table Py respectively.

Case (1): (Using Table Ps)
By using the properties (3), (6) and the corresponding values from Table P3, the
multiplication table representing such BCI-algebra is given as follows:

Table 5

* o To| 23 | ... | ZTn2 | Tno1 | zp

o o o T3 A A | ZTpor | T

To T2 o) A A A A A
T3 3 | A o A A Ty | Tpo1

Al A A A A A

Tp—1 | Tpn-1 A Ty A . A o T3

Tn Tn | Al ZTn1) A A T3 o)

In the above multiplication table, the dotted column represent the missing 5% —
(n — 2)t" columns and the dotted row represent the missing 5% — (n — 2)** rows.
The entries for the blank cells denoted as A in Table 5 are computed as follows:

Computation of values for the blank cells of 2*¢ row
For 0,z3 € I, and any ¢ € A(z3), by (15), o*x 23 = 0xz = 0 xx = x3 (since
0+ x3 = x3). Thus z3 will fill the blank cells of 2"¢ row.

Computation of values for the blank cells of 37¢ row
Computation of z4 * z for z2 € A(0) and any z € A(z3) are the same as done in
theorem 1. Thus x5 will fill 4** — (n — 1)** blank cells of 37 row.

Now for 2 € A(o) and z,_1 € A(z,—1), by (14) z2 X Tp_y € Ao * zpq) =
A(xp-1) = {xn_1} (since, 0% Tp_1 = xp_1). S0, L2 *Tp_1 = Tp_1. Thus z,_; will
fill the nt* blank cell of 37¢ row. ‘

Also for z2 € A(o) and z, € A(z,), by (14) z2 * 2z, € Al0o* x,) = A(z,) =
{zs}(since 0 * Tp, = ). So, T2 * Tn = Tn. Thus z, will fill the (n + 1)** blank cell
of 3¢ row.

Computation of values for the blank cells of 4** — (n — 1)** row
Computation of x * zo for any z € A(z3) and z2 € A(o) are the same as done
in theorem 1. Thus 3 will fill 4% — (n — 1)** the blank cells of 3" column. For
z,y € A(zs), such that z # y, computation of x xz3 and z *y are the same as done
in theorem 1. Thus 4** — (n — 1), blank cells of 4" — (n — 1)** rows have fixed
entries i.e o0 or zj.

Now for any z € A(z3) and zp—1 € A(zp—1) by (14) z x Zp_1 € A(T3 * Tp_1) =
A(zy) = {zn}. So x*zn_1 = z,. Thusz, will fill all the blank cells of nth column.
Also for any x € A(z3) and z, € A(z;,) by (14) z * 5, € A(z3 * 2) = A(Tn_1) =
{%n-1}. So z*Z, = Tp_1. Thus z,,_; will fill all the blank cells of (n+1)** column.
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Computation of values for the blank cells of n** row

For z,-1 € A(zn—-1) and z3 € A(0) by (15) T—1 * 0 = Tp—1 * T3 = Tp—1. Thus
Zp,_1 will fill the 37¢ blank cell of nth row. Also for z,,_1 € A(zn_1) and & € A(zs)
by (15), Tn—1*Z3 = Tn_1 * T = Tp. Thus x,, will fill the 5t — (n — 1)*» blank cells
of nt* row.

Computation of values for the blank cells of (n + 1)** row

For z, € A(z,) and z; € A(0) by (15), T * 0 = Ty * T2 = Tp. Thus z, will fill
the 37¢ blank cell of (n + 1)** row. Also for z, € A(z,) and z € A(z3) by (15),
Tp %2y = Tp*T = Tp_;. Thus z,—; will fill the 5% — (n — 1)** blank cells of
(n+1)* row. )

Hence, by filling the corresponding blank cells with the fixed values computed above
in table 5, we have a unique BCI-algebra.

Case (2): (Using Table Py).
By using the properties (3), (6) and the corresponding values from Table Py, the
multiplication table representing the BClI-algebra is given as follows:

Table 6

* o |x2] z3 |... | ZTn-2|ZTn-1| Zn

o o o T3 A A Tn | Tm—1
Z2 ) o A A A A A
T3 3 | A o A A V21| zn
Al A A A A A
Tl | Tne1 | A | zZn A A o T3
Tn Tn | Az | A A T3 o

In the above multiplication table, the dotted column represent the missing 5t* —
(n — 2)t* columns and the dotted row represent the missing 5 — (n — 2)t* rows.
The entries for the blank cells denoted as A in Table 6 are computed as follows:

Computation of values for the blank cells of 2"* row
- For 0,23 € I, and any z € A(z3) by (15), oxz3 = o*xx = o*x = 3 (since
o* 3 = x3). Thus 23 will fill the blank cells of 2"* row.

Computation of values for the blank cells of 3"¢ row
Computation of z2 * z for z2 € A(0) and any = € A(x3) are the same as done in
theorem 1. Thus 3 will fill 4* — (n — 1)** the blank cells of 3¢ column.

Now for 2 € A(0) and z,,_1 € A(Tp-1) by (14), T2*Tn_1 € A(o*Tn_1) = A(zn) =
{zn}. So, T3 % £p_1 = z,,. Thus z,, will fill the n** blank cell of 3" row. Also for
T3 € A(0) and ,, € A(z,) by (14), 22 * T, € A(o*x Tp) = A(Tn—1) = {Tn-1}. So,
Tg * Tp, = Tp_1. Thus z,_; will fill the (n + 1) blank cell of 374 row

Computation of values for the blank cells of 4t — (n — 1) rows
Computation of z*x5 for any « € A(zs) and z, € A(0) are the same as done in the-
orem 1. Thus z3 will fill 4" — (n — 1)** blank cells of 3™ column. For z,y € A(z3)
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such that z # y, computation of z * x3 and x * y are the same as done in theorem
1. Thus 4** — (n—1)** blank cells of 4** — (n—1)** rows have fixed entries i.e 0 or z.

Now for any = € A(z3) and z,_1 € Alxp_1) by (14), T * xp_1 € Alzg * Tp_1) =
A(zp_1) = {xp-1}. S0 & *Tp_1 = Tp—1. Thus z,_¢ will fill all the blank cells of
nth column.

Also for any z € A(z3) and z,, € A(z,) by (14), xxz, € A(zaxzy,) = A(zy) = {T0}-
So  * z,, = z,. Thus z, will fill all the blank cells of (n + 1)** column.

Computation of values for the blank cells of n'* row

For z,,—1 € A(zp—1) and z2 € A(0) by (156) z,,_1%0 = Tp_1*T2 = ZTp_1. Thus 2,1
will fill the 37¢ blank cell of nt"* row. Also for z, 1 € A(z,_1) and any z € A(xs)
by (15) &p_1 * T3 = Tn_1 * T = 2,. Thus z,, will fill the 5** — (n — 1)*" blank cells
of nt* row.

Computation of values for the blank cells of (n 4+ 1)!* row

For z,, € A(z,,) and 2 € A(0) by (15), &, * 0 = &y, * 22 = Z,. Thus z,, will fill the
37 blank cell of (n + 1)** row. Also for z, € A(z,) and any = € A(zx3) by (15),
Tn*Ty = Tp ¥T = Tpy_1. 90, Ty will fill the 5% — (n— 1) blank cells of (n+ 1)
row.

Thus, by filling the corresponding blank cells with the fixed values computed above
in table 6, we have a unique BCl-algebra.

Hence from case (1) and case (2) it follows that there are two such BCI-algebras of
order n.

Example 3:

Let X = {o,a,b,c,d,e, f} be a BCI-algebra with M = A(0) = {0,a} as its BCK-
part. Then BCIl-part X — M = {b,¢,d, e, f}. The partial order on X — M is defined
asb<c<d, e<eand f< f. Therefore by (13), A(b) = {b,¢c,d}, A(e) = {e} and
A(f) = {f}. Note that I, = {o,b,e, f}.. Since o(Iz) = 4 and for e, f € I, A(e)
and A (f) are uniary comparable, So by theorem 3, there exist 2 such BCI-algebras
of order 7. The Multiplication tables and the Geometric figure representing such
BCI-algebras are given as follows:

Table 7
*lola|blc|d]e|f
ojlojo|b|b|blel|f
alalo|b|b|ble]| T
bl{b|blo|o|o]|f]|e
clc|blalolo|f]e
d|d|blalajo|fe
eleje|f|f|T]o]|b
f|f|flelele|b]|o
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Table 8
*lolalblc|d|e]|f
o|lo|o|b|b|b|f]|e
alalo!b|b|b|f]e
blb|{bjo|lo|o|e]|f
clc|blalo|o|e]|f
did{blalalolelf
elelelf|f|f|lo]|Db
fif|fle|le|le|b|o

-

For more examples see [4] and [11].

Theorem 4.

Let X be a BCl-algebra of order n with o(M) = 2 and o(I;) = 5. If for some
To # Yo F 20 € Iy, Al,), A(y,) and A(z,) are uniary comparable, then X is a

unique BCl-algebra
Proof:

Let X = {o = z1,z2,.,T,} be a proper BCl-algebra of order n with BCK-part
M = A(o) = {0 = z1,7z2}. Then BCl-part X — M = {z3,.,7,}. Take I, =
{0,23,Zn—2,2Zn_1,2,}. Since o(I;) = 5, therefore X has 5 branches. As M = A(0)
is a BCK-branch, so we take four BCI-branches A(z3) = {z € X : z3 < z} =
{z3,,7n-3}, A(Tn-2) = {Zn 2}, A(zn_1) = {ZTn-1} and A(z,) = {zn}. By (11),
I is p-semisimple. Since o{1;) is odd, therefore by (16), I is fully non-associative.
The binary operation * in Ix is defined as follows:

Table P
* 0 T3 Tn-2 | Tn-1 Tn
o o] Ipn Tn—-1 | Tpn—2 I3
Z3 x3 o Zn Tn—1 | Tpn-2
Tpn—2 | Tp—2 T3 o Tn Tn—1
Tn-1 | Tn—1 | Tp-2 T3 o Tn
Tn Ty Tp—1 | Tn-2 Z3 o

Any other p-semisimple BClI-algebra of order 5 is isomorphic to the above table.
By using the properties (3), (6), the corresponding values from table Ps, the mul-

tiplication table representing such BClI-algebra is given below:
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Table 9
* o |Zo| 23 | ... | Tp_3 | Tn_o | Tn-1] Tn
o o o Ty A A | ZTp_1 | Tp_2| x3
T T2 o] A A A A A A
T3 T3 A o A A Ty | Tpot | Tpn
A A A A A A
Tn—3 | Tn-3 A A A A A A
Tn-o | Tn-a | A T3 A A o Tn | Tpo1
Tpn—1 ] Tpn—1 A Tpn—2 A A I3 o] Tn
Tn Tp A Tn—1 A A Tpn—3 T3 o}

In the above multiplication table, the dotted column represent the missing
5th — (n — 3)*" columns and the dotted row represent the missing 5** — (n — 3)t*
rows. The entries for the blank cells denoted as A in Table 9 are computed as
follows:

Computation of values for the blank cells of 2*¢ row
For 0,23 € I, and any = € A(z3) by (15), o x22 = 0% & = Zp—1. Thus 2,1 will
fill the blank cells of 2"¢ row.

Computation of values for the blank cells of 3" row
For 25 € A(0) and any = € A(z3) by (14), zoxz € A{o*xx3) = A(z,) = {z,} (since
0% T3 =Iy) S0, Ta* T = L. (1)

Thus xn will fill the corresponding blank cells of 3rd row.

Now for o € A(0) and z,—2 € A(zn_2) by (14), z2 * T2 € Ao * Tp_2) =
Alzn_ 1) = {zn 1}. So, Zg *# Tp_g = 2, 1. Thus z,_; will fill the (n — 1)** blank
cell of 37 row.

Also, for zo € A(o) and z,_1 € A(xn_1) by (14), 23 x Tp_1 € Alo*x Tp_1) =
A(@n-2) = {Tn_2}. So, T2 * Typ_1 = T, 2. Thus 2,2 will fill the n** blank cell of
374 row.

Further for z; € A(o) and z3 € A(z3), from equation (1), it follows that zo*z3 = 2.,.
Using property (2), zo * (2 % 23) < T3 = Z3 * T, < T3 = o * Ty = T3, aS T3 IS an
initial element. Thus x3 will fill the (n + 1)** blank cell of 3™ row.

Computation of values for the blank cells of 4" — (n — 2)!* row

For any z € A(z3) and z2 € A(o) by (14), z * z2 € A(zg * 0) = A(z3) = {z3}.
So,  * £5 = x3, Thus z3 will fill the corresponding blank cells of 3™ column. For
z,y € A(zxs) such that z # y, computation of z * z3 and z * y are same as done
in theorem 1. Thus 4% — (n — 1)** blank cells of 4t — (n — 1)** rows have fixed
entries i.e o or o

For any z € A(z3) and z,,_2 € A(x,,_2) by (14), 2%z, o € A(z3*zn_2) = Alz,,) =
{zn} ( since, £3 * Tn—2 = Tn). S0 T * Tn_y = zn. Thus z,, will fill all the blank
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cells of (n — 1)** column.

Also for z € A(zs) and zp,_1 € A(zn_1) by (14), z x 21 € A(Z3 * Tp1)
A(Tp—1) = {zp-1}. Soz*xy_1 = xp-1. Thus z,_1 will fill all the blank cells of
nt* column.

Further for © € A(z3) and @, € A(z,) by (14), z x &, € A(zs x 2,) = A(zn_2) =
{Zp_2}. So z*zy_p = Tp_o. Thus x,_» will fill all the blank cells of (n + 1)**
column.

Computation of values for the blank cells of (n — 1)** row

For z,,_5 € A(z,,—2) and zo € A(0) by (15), Tp_2 % 0 = Tp_o * Ta = T_a. Thus
Zn_z will fill the 37 blank cell of (n — 1)** row. Also for z,,_» € A(z, ») and any
z € A(zs) by (15) Tp—g ¥ T3 = Tp—3*T = Ty, Thus z3 will fill the remaining blank
cells of (n — 1)** row.

Computation of values for the blank cells of n** row

For z,—1 € A(z,—1) and z2 € A(0) by (15), 1 %0 = Zp_1 * g = z,,—1. Thus
@n_1 will fill the 3rd blank cell of nt* row. Also for zn_1 € A(zp—1) and any
x € A(zs) by (15), ©,,—1 * T3 = Tp_1 * T = Tp_o. Thus x,_» will fill the remaining
blank cells-of -nt? row.

Computation of values for the blank cells of (n + 1) row

For z,, € A(z») and x3 € A(0), by (15), Ty, ¥ 0 =z *T2 = Tpp. Thus z,, will fill the
374 blank cell of (n + 1)** row. Also for z,, € A(z,) and any z € A(z3) by (15)
Tp*T3 = Lp*L = L,,_1. Thus z,,_1 will fill the remaining blank cells of (n+1) owW.

Hence, by filling the corresponding blank cells with the fixed values computed
above in table 9, we have a unique BCI-algebra.

Example 4:

Let X = {o,a,b,¢,d,e, f} be a BCl-algebra with M = A(o) = {o,a} as its BCK-
part. Then X — M = {b,¢,d,e, f}. The partial order on X is defined as b < ¢,
d<d,e<e, f<f, therefore by (13) A(b) = {b,c}, A(d) = {d}, A(e) = {e} and
A(f) = {f}. Note that I, = {o0,b,d,e, f}. Since o(Iz) = 5 and for d,e, f € I,
A(d), A(e) and A(f) are uniary comparable. So, by theorem 4, X is unique. The
Multiplication table and the Geometric figure representing such BCl-algebra are
given below:

5
=

e 10

*

TlOl|o oo
Oims| | TlT| -

[oA Rl FoRETN NN Nl Nl Nen

olo|T e |o| T
| T OO | Mo

O jo|T|®|Oo|0

=l |enjo oo o
|0 | T Tlo |0
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For more examples see [4] and [11].
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Abstract. A rational cubic spline [11] is extended to rational bicu-
bic spline. Simple constraints are made on the free parameters in
the description of rational bicubic spline to preserve the shape of
positive surafac data and to preserve the shape of the data that lie
above a plane.
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1. INTRODUCTION

Scientific visualization is concerned with the presentation of interactive or an-
imated digital images to users to understand data. The advantages of scientific
visualization are: huge amount of data is converted into one picture, it correlates
different quantities. One of the problems faced by scientific visualization commu-
nity is visualization of positive data. Visualization of positive data in the view of
positive surface is essential in visualizing the entities that cannot be negative e.g.
amount of rainfall, volume, area, density, population etc.

The problem of visualization of positive data has been considered by many au-
thors [1-14). But most of the authors considered the problem of visualization of
positive scattered data [1,3,4,6,8,9,10,14] only a few have considered the problem of
visualization of positive data arranged over rectangular grid [2,13]. A brief review
is: Asim, Mustafa and Brodlie [1] visualized positive scattered data subject to pos-
itivity constraints using modified quadratic Shepard method. Brodlie, Mashwama
and Butt [2] addressed the problem of visualization of positive data arranged over
a rectangular mesh. Sufficient conditions for positivity are derived in terms of the
first partial derivatives and mixed partial derivatives at the grid points. Brodlie,
Asim and Unsworth [3] modified the quadratic Shepard method, which interpo-
lates scattered data of any dimensionality to preserve positivity. Chan and Ong
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[4] described a local scheme for scattered data range restricted interpolation. Suffi-
cient conditions for the non-negativity of cubic Bzier triangle are derived and these
couditions prescribed lower bounds to Bzier ordinates. Non-negativity is achieved
by modifying if necessary the first order partial derivatives of data sites and some
Bzier ordinates. Kong et al [8] discussed the problem of range restricted scattered
data interpolation using cubic Bzier triangles. Nadler [9] have considered non-
negative data arranged over a triangular mesh and have interpolated each triangu-
lar patch using a bivariate quadratic function. Piah, Goodman and Unsworth [10]
constructed the interpolating surfaces comprising cubic Bzier triangular patches.
They imposed sufficient conditions on the ordinates of the Bzier control net in each
triangle to preserve the positivity. The derivatives at the data points are specified
to be consistent with these conditions. Schmidt [13] provided the solution to the
problem of shape preserving interpolation of data sets given on rectangular grids.
Shepard [14] proposed a basic form that involves an inverse distance-weighted av-
erage of data values to visualize the positive data.

In Section 2, the rational cubic function [11] used in this paper is rewritten. In
Section 3, the rational cubic function is extended to the rational bicubic function.
In Section 4, the problem of visualization of positive data has been considered.
In Secction 5, the problem of visualization constrained data has been considered.
Section 6 applies the results developed in Section 4 and 5 graphically. Section 7
concludes the paper.

2. RATIONAL CUBIC SPLINE

In this Section, we recall the piecewise rational cubic function used in this paper
which was initially developed by Sarfraz [11]. Let (z;, i), ¢ =0,1,2,...,7n be given

set of data points where zo < 1 < 3 < -+ < z,. The piecewise rational cubic
function is defined over each interval I; = [z, z;41], 1 =0,1,2,...,n— 1 as:
pi(0)
S(z) = , 2.1
@ 0@ ey
with
pi(0) = il =0)® + (i fi+ hadi)(1 = 0)0 + (Bi fir1 — hadiy1)(1 — )6
+ firr6?,
a0 = (1-6)7°+a;(1—6)%0+ 3:(1—0)0 + 6%,
X — X
hi = Tij41 — T4,y 0 = hl .

The rational cubic function (1) has the following properties:

S(zi) = fi, S(zis1) = firr, SV (@) = di, SV (@ig1) = diy1.
S (z) denotes the derivative with respect to z and d; denotes derivative values
(given or estimated by some method) at knot z;. S(z) € CW[xy,z,] has a; and
B3; as free parameters in the interval [z;,%;11]. We note that in each interval I;,
when we take «; = 3 and 3; = 3, the piecewise rational cubic function reduces to
standard Cubic Hermite.
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3. RATIONAL BICUBIC SPLINE

The piecewise rational cubic function (2.1) is extended to rational bicubic func-
tion S(z,y) over the rectangular domain D = [zg, Zm] X [Yo,Yn]. Let m:a =z <
21 < -+ < T, = b be partition of [a,b] and T : ¢ =yo < h < -+ < Yy = d be
partition of [¢,d]. The rational bicubic function is defined over each rectangular
patch [z;, ziq1] X [y5,yj41], where i =0,1,2,....m—1; j=0,1,2,...,n— 1 as:

S(x,y) = Si(x,y) = AO)F(i, AT (9), (3.1

where

L, L. Y Y
F; ; F; i1 F;; Fin
Y Y
Fit1; Fitrjn Flq; Fi+z1ﬁj+1

F(%]) = T T Y E]
Fly o B By Fon
Fig Flagnm Finy Fin

Ai(0) = [ao(0) a1(0) a2(0) a3(9)],  A;(9) = [a0(d) a1(9) G2(9) a3(9)],
with

(1-0)3+ai(1—é)20 _0*+Bi(1-9)8

ag (0) =

¢:(9) ’ @)
(o) = MU g - RLZOE
SPR(ELESTEY SRS 131

Substituting the values of A, F and A in equation (3.1) the rational bicubic function
S(z,y) can be expressed as:

(1 — G)S’Yi‘j + (1 - 0)207]7;13' + (]_ — 0)0251’3 + 03w,-,j

= .2
S(e,y) A—0P + (1 -020+B,(1-0)2+65 62
with
23:0(1 - ¢)34i¢iAi
Vi = * , 3.3)
g qi(#) (
Ay = Fij,
Ay = G&;F;+ hiFY,
Ay = BiFijp — hiFYL,
As = Fjjn,
g;(¢) (1-¢)* + a;(1 - ¢)%¢+ B;(1 — 9)6° + ¢°.

L Z-9)t B 5 4
Tij = =) ; (3. 4)
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By = wFi;+hF5,

Bi = &;(ciFy +hFE) + hi(aiFY + hFY),

By = BileaFigen +hiFfi) = hy(eaFY o + WFLL),
By = oF 01+ hiF g,

g(0) = (1-0)®+&;(1— )%+ 5;(1 - 9)o® + ¢°.
Zio(l - d’)s_i(bici

R R @5
Co = BiFip,; —hiFi ),
Cr = &(BiFii1,; —hiFha ) + ﬁj(ﬁiﬂz—m = hF7E ),
Cy = BJ (ﬁiFi+1.j+1 - hiFiqil-l,j+1) - Ej(ﬁiFf/H,jH - hiFiqfl,j+1)’
Cs = BiFit1 401 — hiFo 4,

g(9) = (1-¢)*+a;(1-9)%+5;(1 - ¢)¢* + ¢°.
Z?:o(l - ¢)3_i¢iDi

e 5@ 5.6
Dy = Fiy,
D1 = &Fun,+hiFY,
Dy = fBiFip1 41— BjFiZ{l—l,j+1a
D; = Fij+1,

g(0) = (1-0)P°+a;(1-¢)%0+ 81— )+ ¢°.

The normalized variables 8 and ¢ along  and y axes are defined as:

T —Z; Y—Y;
9: 7‘7 = ~ ]7
hi ¢ hj

with

hi =@ip1 — i, hy =y —y;

Unfortunately, these rational functions are not very useful for surface design as
any one of the free parameter «;, 0;, &; and ﬁj applies to the entire network of
curves. Thus there is no local control on the surface. This ambiguity is overcome
by introducing variable weights and desired local control has been achieved. For
this purpose new free parameters c; 5, 3; ;, &; ; and ﬁiyj are introduced such that:

ai(y;) = iy Bilys) = Bigy Gi(xi) = duyy Bi(m) = By
i=01,2,....m—1; j=0,1,2,...,n— 1.

The shape of the surface can be modified by assigning different values to these
parameters. This property of free parameters will impose different constraints on

@ijy Bij, Gy and G5 ;.
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3.1. Choice of Derivatives. In most applications, the derivative parameters d;,
Ff;, FY; and F;} are not given and hence must be determined either from given
data or by some other means. These methods are the approximation based on
various mathematical theories. An obvious choice is mentioned here:

ho

FE = Aos+ Aoy —Ar)et0

0,j 0,J+( 0,7 1’])(h0+h1)’
hm—l
FE . = Amrs+(Amors —Apygy) e mzl
m,j 1,J+( 1,5 m 2'])(hm-—1+hm_2)
. Ay +Ai1;
iy = =
i=1,23,...,m-1, j=01,2,...n
. . . ho

Fly = Ao+ (Dio— 1) —,

%,0 > 1 (h0+h1)
. . . [

F? =A'_+A,;_—Ai_%—-,
2, i,n—1 ( m—1 RO 2) (hn_1+hn_2)
y o Bt Big
4. 5 J

i=0,1,2,....,m; j=1,23...,n—1
oy _ L FGn —FL F —Flay

oo B (L k| ,

k 2 hj_1+ h; hi—1+h;

i=1,2,....m—1;, §=12,...,n—1.
Where A; ; = F‘*—lfl_—F’—J and A” = % These arithmetic mean methods

3
are computationally economical and suitable for visualization of shaped data.

4. VISUALIZATION OF POSITIVE DATA
Let (zs,y;, F5),1=10,1,2,...,m; j =0,1,2,...,n be positive data defined over
the rectangular grid D = [zo, Zm] X [yo, yn] such that
F;>0 Vi,j.
The rational bicubic function (3.2) preserves the shape of positive data if
S(z,y) >0, Vi(z,y) €D.
S(z,y) > 0if
(1= 0%y, + (1 —0)%0m; ; + (1 — 0)0°6; ; + 0w ; > 0,
9:(0) = (1 - 0)> + i (1 - 0)°0 + B, (1 - 0)8* +¢° > 0.
¢(8) > 0if ’
a;; >0, B >0.
(1= 03y 4+ (1—0)%0n:; + (1 — 0)6258;; + 83w, ; > 0 if
Y%g >0, m; >0, 8;>0, w;>0.
Y5 >0 if
A;>0,4=0,1,2,3 and ¢;(¢) > 0.
g;(¢) > 0 if A
Gi; >0, Bi; >0
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N ‘BJ‘FiZ{j
;5 > maz O —F— .
4,5

. h; F;
,3-;,]‘ > mam{() ——-&}

Fij+1

A, >0,i=0,1,2,3if

niy > 0 if
B; >0, i=0,1,2,3 and ¢;(¢) > 0.
g;(¢) > 0 if
G5 >0, fi;>0.
B; >0, i=0,1,23if

~ _}ALJIF'}J'
G&;; > mazx OT .

0 hiFin
b ‘]+1
th
Qg > mam{ ”H}.

Bi,j > mazx

Fij
a”F +h; s —hi(Bi i Bl — h; i E5, ;"J+1)}
’ (ﬂz,] i,3+1 — h Fm+1)

;5 > mazx
7 O/@JFZJ'l"h Fy)

5,;,]' > 0 if

C;>0,1=0,1,2,3 and Qj(¢) > 0.
g;(¢) > 0 if

&i,j >0, Bi,j > 0.

C;>0,i=0,1,2,3if

—h;FY

&;; > mazx {0, —-]—Llj} .
Fiy
0, 1+1,]+1
1+1,]+1

ﬂ' > maz { 1+1 7 1+1 ]+1}
3y .

Bi,j > mazx

)
z+1,] 1+1,]+1
TY (A Ty
a’by] z+1 7 + h F1+1 ]) hl(ﬂly]Fi+1,j+1 h F7,+1 ]+1)
y /= .
(i3 Foprg + hiFe ;) BogFig — iFY 540)

Bi; > mazx

Wi j >0 if
D; >, 1=0,1,2,3 and Qj(¢) > 0.
Qj(¢) > 0if
&i,j > 0, Bi,j > 0.
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D;>0,t=0,1,2,3 if

_h.FY
. b,
& > maz 0, —1 2L

Fiy1j

. hiFY
41,541

Bi; > mazx O,F——— .
i+1,j+1

All this discussion is summarized in the following theorem:

Theorem 4.1. The rational bicubic function defined in (3.2) visualizes positive
data in the view of positive surface if in each rectangular patch I; ; = [z;, z;41] ¥

[y, ¥j+1], the free parameters «; ;, 5; j, G, ; and [3” satisfy the following conditions:

—h;FY, —hiFY
Gi; = lij+maxq0, B g , Ly > 0.
3 J { F’Lj Fz+1,j J
N h FY h FY
Bi; = q,;+maxrq0, ”Ha Lt , ¢35 > 0.
F,j+1 F’L+1,j+1
T {_hiFﬁj hFlj‘i“l}.
7 Fi; Fijs
B { —hi(&u; FE + hiFY) —hi(Bi i Fin — by Fffﬂ)}
i = ) = .
(6u;F5; + thZ{j) (BiiFij+1 — h FYi)
Qij = MMy ; + max {0 Aij,Bi,j}, mg > 0.
o {hiFiﬁ—l,j hiF i1 } ‘
7 Fiyi ' Fipij+1
D, = {h' (O‘m i+1,5 + h F+1 j) hi(ﬁi,jFiz+1,j+1 h' F+1 j-}—l)}
g = .
(al Fiy1,; + h ¢+1 j) (5i,jFi+1,j+l h; F7,+1,]+1)
ﬁi,j = n;; +max {0, Ci’j,Dlyj}, N5 > 0.

5. VISUALIZATION OF CONSTRAINED DATA

Let (xi,v5, Fij),1=0,1,2,...,m; 7=0,1,2,...,n be a given set of data points
lying above the plane

Fi,j > Z’iyj, V’L,j
It is required that the surface generated by the rational bicubic function (3.2)

will lie on the same side of the plane as the data. This situation is expressed
mathematically as:

S(z,y) > 0[1—37%}. | (5. 1)

The parametric equation of the plane is:

Z = Zi;+0(Zis1; — Zig) + ¢(Zigar — Zij), (5. 2)
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where

ay=cli-%-%] o

A, B and C are x,y and z intercepts respectively. Substituting the values from (3.2)
and (5.2) in (5.1), condition (5.1) is expressed as:

(1- 0)3%,]‘ +(1- 0)20ni,j +(1- 0)026i,j + 03wm~
1-038+a;;(1-0)20+3;,;(1—-6)82+63

> Zij+0(Ziv1— Zi )
+ &(Zi 541 — Zig)-
After some rearrangement above relation can be expressed as:
Ui j(0,8) = Xij (1 — 0)* + pi j(1 — 6)30 + v 5(1 — 0)26% + x; 5(1 — 0)8° + 7, ;6%
where

Tjcoll — ) 747 4;

Aig = g5 () '

(5. 4)
with
Ay = Fyj— 2725,
A = (AL,;,]‘(F"— 'yj)+F'y.7'_Z‘l-]+1+h 1.]’
A2 = &5(F Zig)+ /61 3 Fogir = Zig41) — (Fz J+1 F;}{j)
(aw Bii)(Zij — Zijr)s
A3 = Bij(Fijy— Zi,j+1) + Fjt1 = Zij — hiFYiL,
A4 = -Fz,]+1 - Zz,]+1-

Z;Lo(l —¢)* ¢ B;
q;(#) ’

Hi,j = (5. 5)
with
Bo = ai;(Fij~Zij)+ Fij + hiFi5 — Ziga g,
Bi = (Gij+Wewi(Fij—Zig)+ Fij+hFS— Ziga )+ hy h; FY
+(oy,; + 1)(h Fy +Zi;— Zin),
By = &ijleuj(Fij — Zij)+ Fij + hiF — Ziga,5) + Bij (i +1)
(Figrr = Zigar) + haFipn = Zing + Zig) + (G5 — i) (s + 1)
(Zij = Zij1) = (0 + Dhy(FY; 4y — FY)) — hahj(FZY,, — F2Y),
By = (Bij+ V(@i + V(Fojn — Zijn) + MFipn — Zivaj + Zig)
+ (@ig + V(Zijge1 — Zij — by F ]+1) hihi FEY
By = (aij+O(Fijrr~Zigo) +hFli 0 — Zivry + Zij.

Y Yol — ¢)4i¢IC;
v gi(¢) ’

(5. 6)
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with

Co = @ij(Fij—2Zij)+ Bijleig(Fij—Zij) + Fij+ hiF; = Zig)
—hi(Ff; — F) + (i = Bij)(Zig — Zigr,5),

Cr = (Guj+V(ei;(Fij—Zig)+ Bijleui(Fij — Zi) + Fij + hiF;
~Ziv1,5) = hi(Fiyy j ~ F) + (g — Bij)(Zig — Ziv1,5)) + @i j(Zi 5
~Zs g1+ hiFL) + Bij(Zig — Zigar + hy F+1 ) — hihy (FY - FPY),

Car = Gij(oy;(Fij— Zig) + Bij(ou;(Fij — Zig) + Fijj + hi 7 — Ziya 5)
—hi(Fiy; — Fi) + (i — Bi)(Zi — it )
+Bi5(ets j (Fija1 — Zij) + Bii (g + 1) (Fijs1 — Zijjr1)
+hiF{i 01 — Zitaj + Zig) + (@i j — Bij)(Zij — Ziay)

—hi(Fa 41 — ”+1)) + (G — Big) oy + Big)(Zig — Zijr)
—h; e (FYi — )+ﬁ”( it1,41 ™ z+1])}+h :h (Ff-f1]+1
_Ffj’ﬂ FY St F“’)

Cs = (Bij+1)(0uy(Fijrr — Zijar) + Bij((eu; + 1)( i i+1 — Zijjt1)

Fhi i — Zivrg + Zig) + (@ig — Bi i) Zig ~ Zivas)

- hi(Fi+1,j+1 - 'mj+1)) + ai,j(Zi,J'+1 = Zi; h K J+1)
+8:,;(Z; j+1 — Zi —hy 3 F 1) + hih; (Ff-ﬂ Gl T i,j+1)a
Ci = aij(Fij1— ,]+1) + Bij (i + D(Fijir = Zigyr) + hiFf 4
—Zit1,5 + Zz,]) (az,J - ﬁw)( % A Zl+1J) - hi(Fiﬁ—l,j+l - Fifj+l)'
Ej’:o(l - ¢’)4_j¢jDJ'

Xig = a;(4) ’ (57
with
Dy = Bijleij(Fij— Zij)+ Fij+hF; — Zigr3) + Figry — hiFiy j — Zi,
Dy = (i +1)(Bij(0ii(Fij—Zij)+ Fig+hiFy; — Zivrg) + Fipr5 — hiFa
~Zi)+ (Big + V(Fh ;5 — Zijor + Zig) — kibs P 5,
Dy = &:;(Bi;(e;(Fij — Zij) + Fij + hiF{; — Ziga ) + Figaj — hiFl j — Zig)

18,5 (Bi (i + 1)(Fs i1 — Zig+1) Y hiFL 0 — Ziga g + Zij) + Fig,41
~hiFf o1 — Zig) + (Gug — Big) Big + 1V)(Zij — Zi 1) + hi(Bi 5
)(Ffl+1 J Fzy+1 ]+1) + hiﬁj(Fiﬁll,j+l - Fiﬁ’l,j):
Dy = (Bij+V)(Bij((aiy+ V(Fyjpr — Zij1) + hiFSy — Zigg + Zig)
+Fit1,541 — hiFi g o1 = Zijy1) + (Big + D(Zij11 — Zij - hiFY, +1)
B FT
Dy = Bij((aij+ 1) (Fijp1— Zij1) + biFS500 — Zigrj + Zig) + Fiprin
—hiF% 50— Zign-
= izl O DPE; 5. 8)
’ q;(¢)
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with

Eo = Fij—Ziv1y,

Bi = (Guy+ V)(Firrg— Zivrg) + BF ;= Zigo + Zig,

By = G j(Fip1; — Ziv1g) + Big(Fis1 i1 — Zivrj — Zijir + Zij)
—h(Flhy j i1 = Flha ) + Big — da)(Zijin — Zig),

£y = Bi,j(Fi+1,j+1 — Zig1j — Zigy+ Zig) — ’AljFﬁrLjH + Fit1,5+1
—Zit1,5,

Ey = Foagon—Zigry— Zigo + Zij.

U, ;(0,¢) > 0if
Aij >0, w5 >0, 15 >0, x5 >0, 7; > 0.
Ai; >0 if
1
D (1—=0)* 7974, >0, g;(¢) > 0.

=0
g;(¢) > 0 if
CAliyj >0 and ﬂiy]‘ > 0.
ool - 6) il A; > 0if
—Fig = hFl 4 Zigp —Fig + hFY Zij

&ij=PB; > maz : Ll T
! ! { Fij—=2Zij Fijo1 = Zijn
ilj (Fil{j-H - Fzy])
(Fij — Zi;)
pi > 0if
4 . .
(1—¢)* ¢/ B; >0, ¢;(¢) > 0.
j=0
2;(¢) > 0if

di,j > 0 and Bi,j > 0.
Si—o(1 =) 7¢7B; > 0

Qij = Biye
—Fi —hik 4 Zigy —hil 0 4 D — Zay
ai; > max 40, , i3
Fij—Z;; i.5+1 — Lijt
ry Ty
hi(Ffn — Fi)
Y Y
(Fi,j - Fi,j+1)

Vi 5 > 0if

4
(1—¢)*7¢/C; >0, g;(¢) > 0.
7=0

3(6) >0 A
&i,j > 0 and ﬂi’j > 0.
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S (1= ) igic; > 0if

& Bij.
Q; Big-
0 4 Bi.j
> maz {O hl(Fzﬁ-l J Fﬁ]) hi(Fﬁq—l,jﬂ - Fij,sj+1)
(Fij = Zi3) " (Fijs = Zige1)
—hi(F7] = F2 5+ B2 0 - 1m;J+1)}
(Fzy] F i1t Fly N Fi+1,j+1) .
Xi,; > 0 if
4
D (1=¢)"7¢'D; >, 4;(¢) > 0.
=0
g;(¢) > 0 if

di,j >0 and Bi,j > 0.

Yio(1— )¢’ D; > 0 if

G5 = B”
Bi; > max {07 eyt hiFa, Z”, Fergi B+ Za
Fit1j — Ziv1; Fivijn1 — Zigor — Ziva; + Zay
h (Fzz-l?l ¥ Fz?l ]-l-l)
(Fd ;= Fla i)
Tij > 0if
4 .
> (1= 1HE; >0, g;(¢) >0
7=0
Qj(¢) >0 if

‘di‘j >0 (l’fld ,Biyj > 0.
Sico(l = ¢)'" 7¢I B; > 0if

~h; FY, gt i1 —Ziy —Fip i+ hiFY, g1t Lt
b
Fiprga1 = Zivrg — Zigi + Zig’

éi,]’ = ,Bi,j >  mar
Fitrj—Zig1;
e )
hi(F jp1 — Figa,y)
(Fit1,5 — Zit1,5)

All this discussion is summarized inthe following theorem.

Theorem 5.1. The rational bicubic function (3.2) generates surface that lie on
same side of plane as that of data if free parameters o ;, 8,5, & ; and §;,; satisfy
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the following conditions:
&Gij = B

i ﬁjF}fj +Zij+1 —Fij+ h FY i1 -7

¥

= g;; + maz{0, -

Fij—Zij ’ Fijr1— Zijn
h (Fzy]+1 Fzy]) h Fz+1 N + 7Z; J+1 T Z hj(Fiy+1,j+1 - Fiﬂ-l,j)
(Fij—2Zi5) Fit15 = Zitj © (Firrg = Zitaj)
—F; + h F? + Z;
+1,5+1 i+1,5+1 z+1,J} gij > 0. (5. 9)

Fir1j11 = Zit15 = Zign + Zij

—Fig—hikF{s + Zi; —hFD 0+ Zi g — 2

Q5 = ﬂi,j = k,;,j + maz{O, Fi,j — Z-,j s ;",j+1 Zi,j+1 =,
hi(Fiton — F3) —Fopg+ MFE 3+ Ziy hi(F 5 = Fif i)
(Fzy] z,]-‘,—l) Fiy15—Ziy1; ’ (Fz+1,] Fiy+1,j+1) 7
—Fivig i o+ Zig h(FE ; — FE)
Fivji—Zijra—Zigrg + Ziy’ (Fig—2Zig)
hi(Ff, 501 — Fij)
(Fij+1— Zij4)
—h; (F F‘z-}—l] Fh i Fiq,:;'l+1)} ke >0 (5. 10)
7 v 44 '
(F? ]+1 +F Fz+1,]+1)

6. APPLICATIONS

A set of positive data is considered in Table 1. The data is generated from
following function:

F =1n(2? + y*) +10.
Figure 1 is produced by implementing the scheme developed in Theorem 4.1. From

TABLE 1

y/x | 0.01 100 200 300

0.01 | 1.4828 | 19.2103 | 20.5966 | 21.4076
100 | 19.2103 | 19.9035 | 20.8198 | 21.5129
200 | 20.5966 | 20.8198 | 21.2898 | 21.7753
300 | 21.4076 | 21.5129 | 21.7753 | 22.1007

the figure it is clear that the positive surface is generated through positive data of
Table 1. Another set of positive data is considered in Table 2. These data is
generated from the following function:

F =0.5(|z| — [yl - |2l - [yl) + 3.1.

Figure 2 is produced by implementing Theorem 4.1 on data set in Table 2. From
the figure it is clear that a positivity is assured. The data set of Table 3 is of the

plane:
Ty
Z:(————.
1-5-5)
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FIGURE 1

TABLE 2
y/x[-3|-2|-1]1 2 3
3101111421 (21(11]01
2 1111121121 (1.1]1.1
-1 (21121921121 (2121
1 |21121(2121(21]21
2 111121 (21|111(1.1
3 /01111 (21(21]11]0.1

FIGURE 2
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TABLE 3
y /x 1 2 3 4 5 6
1 0.6667 | 0.5000 | 0.3333 | 0.1667 | 0.0000 | -0.1667
2 0.5000 | 0.3333 | 0.1667 | 0.0000 | -0.1667 | -0.3333
3 0.3333 | 0.1667 | 0.0000 | -0.1667 | -0.3333 | -0.5000
4 0.1667 | 0.0000 | -0.1667 | -0.3333 | -0.5000 | -0.6667
5 -0.0000 | -0.1667 | -0.3333 | -0.5000 | -0.6667 | -0.8333
6 -0.1667 | -0.3333 | -0.5000 | -0.6667 | -0.8333 | -1.0000

TABLE 4

1123|456
2|5 |10]17]26 37
8 | 1312042940
10 (1318 25|34 |45
1712025 32|41 |52
26 129 | 34| 41|50 |61
37140 45|52 |61 |72

FIGURE 3

The data set in Table 4 is generated from the following function:
F =22 442
The data set in Table 4 is lying above the plane:
Ty
Z= (1 2z —) .
6 6
Figure 3 is generated using the scheme developed in Section 5. From the figure it
_is clear that surface lies above the plane. The data set in Table 5 is generated from

the function
F = sin(|2| + [y}) + 2.
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TABLE 5

y/x| 1 2 3 1 5 6

2.9003 | 2.1411 | 1.2432 | 1.0411 | 1.7206 | 2.6570
21411 | 1.2432 | 1.0411 | 1.7206 | 2.6570 | 2.9804
1.2432 | 1.0411 | 1.7206 | 2.6570 | 2.9894 | 2.4121
1.0411 | 1.7206 | 2.6570 | 2.9894 | 2.4121 | 1.4560
1.7206 | 2.6570 | 2.9804 | 2.4121 | 1.4560 | 1.0000
2.6570 | 2.9894 | 2.4121 | 1.4560 | 1.0000 | 1.4634

O O =0l BN | ™

SRR
oﬁf‘é’«%ﬁ& ¢

CKIEAX
B

FIGURE 4

This data set is lying above the plane:

Ty
Z= (1 T —) :
6 6
Figure 4 is produced by using the scheme developed in Section 5. From the figure
it is clear that surface lies above the plane.

7. CONCLUSION

The paper is concerned with two major problems of scientific visualization, shape
preservation and shape control. To achieve the goal, the method of variational
design is adopted, i.e. introduction of free parameters in the description of rational
bicubic function. Four free parameters «; ;, 8; 5, &; ; and ﬁi) ; are introduced in the
definition of a rational bicubic function. The free parameters are turned into the
constrained parameters to preserve the shape of data. For shape control additional
design elements (free parameters) are introduced in the definition of constrained
parameters. Advantageous features of the methods are that they are applicable to
both the cases when derivatives values are provided or estimated by some method.
It works for equally as well as unequally spaced data. It is easy to implement as
compared to previous methods. Same algorithm is applicable to every data. For
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example in the method of inserting knots we have to implement different knots for
different data.
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