Reno-hepatic protective effects of Jambul against chromium induced anomalies in mice

Tahir Abbas¹, Khawaja Raees Ahmad², Asmatullah³, Khalid Pervaiz Lone⁴, Muhammad Ali Kanwal², Sadia Suleman²

¹Department of Zoology, Government Degree College, Kotmomin, Sargodha, Pakistan
²Department of Zoology, University of Sargodha, Pakistan
³Department of Zoology, University of the Punjab, Lahore, Pakistan
⁴University of Health Sciences, Lahore, Pakistan

(Article history: Received: April 27, 2016; Revised: June 3, 2016)

Abstract
The adequate amounts of chromium (Cr) enhance the endocrine system and metabolism but its ridiculous use and bio-accumulation through food chain might be causing oxidative stress. That study was conducted to evaluate the protective effects of Jambul (Syzygium cumini) against Cr induced reno-hepatic anomalies. Male albino mice (Mus musculus) were equally divided (n=10) as C; control, Cr-treated and Cr-J groups receiving Cr⁶⁺ in the form of potassium dichromate (K₂Cr₂O₇) 50ppm for 10days ad-libitum while Cr-J group additionally given 0.25ml/12h Jambul Fruit Extract (JFE) for next 5days by oral gavage. On the 16th day blood, liver and kidney were collected for biochemical and histopathological analysis. Cr⁶⁺ treated group showed severe histological changes like necrosis, cirrhosis and dehydration in liver evident by significant elevation of Serum Glutamic Pyruvic Transaminase (SGPT), Serum Glutamic Oxaloacetic Transaminase (SGOT), Alkaline Phosphatase (ALP), total protein, bilirubin, globulin, creatine and uric acid along with reduction of SGOT/SGPT, Blood Urea Nitrogen (BUN), urea and albumin as compared to control. Treatments with JFE after Cr⁶⁺ exposures significantly improved the hepatic and renal functional profiles possibly by partial liver rehabilitation and regeneration. The JFE significantly recovered the histopathological alterations in reno-hepatic tissue by free radicals scavenging and metal chelating abilities due to presence of anthocyanin, flavonoids and β-sitosterol. The JFE’s protective effects against heavy metals environmental toxicants especially Cr⁶⁺ is novel and cheapest; that should be sponsored for ethno-medicinal purpose.

Keyword: Cirrhosis, necrosis, oxidative stress, lipid peroxidation, flavonoids, anthocyanin, β-sitosterol, Syzygium cumini

INTRODUCTION

 Chromium (Cr) is considered an essential micronutrient to facilitate the insulin activation, stimulate muscular development and reduction of cholesterol (Chen et al., 2010). Potassium dichromate (K₂Cr₂O₇) is also being used as colorant of traditional oriental sweets in Pakistan. Pollution is a universal problem and the common people are exposed to Cr intake, via environmental contaminants. The human activities like industrialization also contaminate the underground water which is frequently used for irrigation. It is well documented that heavy metals, pesticides and industrial effluents commonly enhance the oxidative stress (Zhou et al., 2003). There are handsome indications that such types of supplements and industrial effluents are causative agents of numerous human diseases and have been proved toxic, in vivo studies of experimental animals (Park et al., 2004).

Heavy metals induce histological changes in liver, while the plants extracts have ameliorative ability against free radicals (Batool et al., 2010). Heavy metals affect immune system and other body organs such as testes, kidneys and liver but abnormalities can be rectified by chelation of noxious agents from the body (Jayabarath et al., 2009). The hexavalent chromium (Cr⁶⁺) enhance the cell shrinkage; distort the cytoskeleton and causes necrosis.
(Rudolf and Cervinka, 2006) especially $\text{K}_2\text{Cr}_2\text{O}_7$ which damage hepatic mitochondria and cause microsomial lipid peroxidation (Travacio et al., 2000). Cr$^{6+}$ induce tubular necrosis and renal failure by damaging brush border membrane also causes microscopical lesions in kidney glomeruli (Mendoza et al., 2006).

Reactive oxygen species denature the enzymes; essential for metabolism of free fatty acids, glycolipids and cholesterol to generate deformities in the mitochondrial membranes and injuries to hepatocytes (Smith et al., 2000; Ercal et al., 2001; Evans et al., 2002). Oxidative stress of Cr is followed by a series of cellular events including increased synthesis of superoxide anion and hydroxyl radicals which may cause cardiovascular diseases and hyperglycemia (Dlaskova et al., 2008). Lipid peroxidation is the indicator of free radicals formation alterations of electron transport chain in aerobic respiration and oxido-reductase enzymes (Laura et al., 2012). Hepatocyte metabolizes, detoxify and inactivate the ROS, metals, drugs, insecticides and steroids with the help of antioxidant enzymes (Keren et al., 2013).

Antioxidants synthesized in the body or obtained in the diet, have ability to remove noxious materials through their scavenging ability and inhibiting the oxidation of molecules to prevent body from oxidative stress before damaging and catalyzing the production of free radicals in the cell (Miller et al., 2008). The β-sitosterol has reducing power, superoxide scavenging ability, nitric oxide-scavenging capacity and ferrous ion chelating potency (Rout and Banerjee, 2007) similarly the anthocyanin can combat with free radicals and prevent from lipogenesis (Ozsahin et al., 2012).

_Syzygium cumini_ belongs to family Myrtaceae and commonly known as black plum or Jamun or Jambul/Jamul. Bhatia and Bhajaj, (1975) had reported different chemical constituents in the seed and bark of _Syzygiumcumini_. Its ripe fruits are used to make different products like squashes, juices and medicines (Baliga, 2011). Their fruit extracts protect the cultured human peripheral blood lymphocytes from DNA damage (Jagetaia and Baliga, 2003). They have antimicrobial activity inhibits the growth and induces apoptosis in cervical cancer cell (Goyal et al., 2010). The flavonoid of _Syzygium cumini_ can repair hepatocyte from iron damages hydrogen peroxide injuries and gamma-irradiations (Jagetaia et al., 2008). Pharmacologically _Syzygium cumini_ bark and fruit pulp are rich source of antioxidant components (Ruan et al., 2008); have hypoglycemic (De Bona et al., 2010), anti-inflammatory, anti-ulceroid qualities (Chatuvredi et al., 2009), anti-spasmodic, chemopreventive potential (Parmar et al., 2010) and lipid profile normalizing aptitude (Hossain et al., 2011). _Syzygium cumini_ have antagonistic behavior against methylmercury induced systemic toxicity (Abdalla et al., 2011) and is considered as medicinal plant against anamolies of oxidative stress in animals and human beings (Ayyanar and Subash-Babu, 2012).

The enzymatic changes and gene expression processes are almost same in humans and rodents (Zhang et al., 2013) so the mammalian model mice was selected in _vivo_ study, to suggest the ameliorative recommendation from common local available economical fruit extract, which behave antagonistic to the injurious effects of hexavalent chromium on liver and kidney. This study gave the cheapest shielding effects of common available fruits of Pakistan against reno-hepatic anomalies.

**MATERIALS AND METHODS**

Thirty healthy 3-4months male mice _Mus musculus_ (30±3g) obtained from University of Sargodha Animal House for this study and placed in separate cages 15"x 12"x 12" made of steel bars covered with fine gauze provided paper cuttings for bedding. They were housed under controlled conditions with a 12 h light/dark cycle at 25 ± 5˚C with 45% humidity. They had free access to standard pellet diet and water ad-libitum. This study is in accordance with the Guidance of Ethical Committee for Research on Laboratory Animals of Sargodha University Sargodha, Pakistan.

**Preparation of Solution and Fruit Extracts:**

Standard solution (1000 ppm) was prepared by dissolving 2.8g of $\text{K}_2\text{Cr}_2\text{O}_7$ in 1000cm$^3$ (ml) of water and diluted to get 50 ppm. Ripe black fruit of _Syzygium cumini_ were purchased from the local market and fully ripe berries were carefully selected, washed, air dried and the pulp was separated by means of vigorous shaking in a tightly closed sterilized wide mouth glass jar. 100 g of the pulp was blended in an electric juicer in 100 ml distilled water for 5 minutes and resulting juicy material was centrifuged at 500rpm for 5 minutes. The supernatant was immediately placed in sterilized
Experimental Animal Grouping

Animals were randomly divided into 3 groups (n=10) as: Control group (C); provided distilled water throughout the study (15 days), Cr-group (Cr); 50 ppm Cr-solution (10 days) ad-libitum followed by withdrawal for next 5 days, Cr + Jambul group (Cr-J); as Cr-group but last 5 days they were additionally given 0.25ml/12h Jambul Fruit Extract (JFE) regularly through oral gavage.

Organ Recoveries

The animals were euthanized by cervical dislocation and organs (liver and kidney) were recovered on the 16th day from each animal, fixed for 7 days to proceed further for HE histological preparations and ventricular blood was used for liver profile, liver enzymatic test and renal profile from standard laboratory of Sargodha University diagnostic center. Sections were carefully observed and photographed on trinocular research microscope (Labomed CXR2) attached to a 7.2mega pixel digital camera (Sony DSC-W53). These photographs were digitally marked to highlight the histopathological abnormalities. Results were expressed as means±SEM and the differences between groups were evaluated with One-Way ANOVA and Duncan Multiple Range Test to indicate significant (p<0.05) difference of experimental groups.

RESULTS

All typical signs of normal liver histological sign such as centrally placed lobular vein and hepatocytes arranged in hepatic cords radiating from the central vein (Fig. 1, A-a) properly and showing hepatic sinusoids spaces (Fig. 1, A-b) in between hepatocytes were visible in the C group. In histological sections of control group bi-nucleated (Fig. 1, A-c) hepatocytes were frequently present. Similarly the sign of normal renal histology including rounded Glomeruli (Fig. 1, D-g) mostly scattered in cortical region surrounded by various section of renal tubules properly lined with renal cells (Fig. 1, D-h, i) around narrow central caliber were seen in C group.

Table I: Amelioration of Jambul against Cr induced anomalies in mice liver profile.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>C</th>
<th>Cr</th>
<th>Cr-J</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPT(µL/L)***</td>
<td>45.09±4.34 c</td>
<td>79.07±4.72 a</td>
<td>50.02±3.17 b</td>
</tr>
<tr>
<td>SGOT(µL/L)***</td>
<td>118.05±11.41 c</td>
<td>186.03±10.23 a</td>
<td>156.5±5.48 b</td>
</tr>
<tr>
<td>SGOT/SGPT*</td>
<td>2.86±0.46 b</td>
<td>2.45±0.23 c</td>
<td>3.35±0.18 a</td>
</tr>
<tr>
<td>ALP (mg/dl)***</td>
<td>240.07±7.38 b</td>
<td>306.06±3.88 a</td>
<td>240.4±12.2 b</td>
</tr>
</tbody>
</table>

C: control. Cr: chromium treated. Cr-J: chromium+JFE. Values are mean ± SEM, SGPT (ALT)- Serum Glutamic Pyruvic Transaminase, SGOT (AST) - Serum Glutamic Oxaloacetic Transaminase, ALP - Alkaline Phosphatase, Statistical analysis (ANOVA: two factors without replication). a b c: Anyone two groups not sharing a lower case letters differ significantly from each other(Duncan’s Multiple Range comparison-post hoc analysis).

Histological slides of liver in Cr⁶ exposures group indicate cells shrinkage, poor blood supply and loss of endocrine stimulations. The mark of nutritional deficiency and bile retention were obvious by the loss of normal hepatic architecture, evident by necrosis, cirrhosis and dehydration as compared to control (Fig. 1, B-d, e, f).

The fibrosis of liver probably followed hemorrhagic necrosis associated with lipogenesis. The irregular bands of fibrous tissues were formed by the obstruction of blood vessels indicating the beginning of necrosis in some animals of Cr⁶ exposure group. The histological section in Cr⁶ exposures group show comparatively enlarged glomeruli (Fig. 1, E-j) with globular shapes.

The renal tubular section surrounded the glomeruli show clear signs of cellular necrosis leaving empty spaces in tubular margins (Fig. 1, E-k) and somewhat expended tubular caliber. The tubular shape was also distorted from rounded to irregularly shapes in extreme cases and there were mega-karyotic
cells in the lining of renal tubules in Cr\textsuperscript{+6} exposures group as compared to control (Fig. 1, E-I). Recognizable signs of liver regeneration and renal tubules that include hepatoblastic mitosis and rehabilitation of hepatic cords along with regenated cell accumulation indicated by yellow arrow were clearly visible in the JFE treated groups following Cr\textsuperscript{+6} exposures (Fig 1-C, F).

![Figure 1: Histological study of Reno-hepatic Amelioration of Jambul against Cr induced Anomalies in mice at 400X. A; control liver, B; Cr treated liver, C; Jambul treated liver, D; control kidney, E; Cr treated kidney, F; Jambul treated kidney, yellow arrow indicate regeneration. a; central vein, b; sinusoids spaces, c; bi-nucleated hepatocytes, d; cirrhosis, e; necrosis, f; sign of dehydration, g; rounded Glomerulus, h; renal tubule, i; renal cells, j; enlarged Glomerulus, k; tubular necrosis, l; mega-karyotic cells](image)

**Liver Profile Variations**

Highest mean SGPT levels were noted in Cr\textsuperscript{+6} treated (79.7 µL/L) and lowest in control group (45.9 µL/L). Although the SGPT level was higher than control however it remains lesser than the Cr\textsuperscript{+6}exposures group in Cr-J (50.2 µL/L). SGOT level in Cr\textsuperscript{+6} exposures group vs. C was noted 186.3/118.5 µL/L while the post treatment with JFE in Cr-J groups showed a normalizing effects on mean SGOT levels (156.5 µL/L). Highest mean SGOT/ SGPT ratio was recorded in Cr-J (3.35) group as compared to Cr (2.45) and control (2.86).

Highest means ALP value was noted in Cr\textsuperscript{+6} exposures group (306.6 mg/dl) as compared to control (240.7 mg/dl) while Cr-J have lowest value (240.4 mg/dl) summarized in Table I. Mean blood urea contents in descending order from higher to lower was Cr-J (43mg/dl) > control (31.8 mg/dl) > Cr (27.8 mg/dl) groups while mean blood urea nitrogen value was recorded in Cr-J (20.07 mg/dl) > control (14.84 mg/dl) > Cr (13.8 mg/dl) groups and mean value for creatine (0.66 mg/dl) was observed in Cr group followed by Cr-J and control groups (0.42 and 0.29 mg/dl) respectively.

Highest mean BUN/Creatine value was observed in control (56.08) group, followed by Cr-J and Cr groups (50.07 and 22.86) respectively similary mean plasma uric acid (8mg/dl) contents in Cr group followed by control, Cr-J (5.2, 4.66 mg/dl) respectively (Table II). Highest mean plasma bilirubin level (0.84 mg/dl) was observed in Cr group followed by control, Cr-J (0.7, 0.62 mg/dl) respectively and mean plasma proteins level (6.93 g/dl) was noted in Cr group followed by Cr-J, and control groups (6.47 and 5.64 g/dl) respectively. Highest mean plasma albumin level in control (3.24 g/dl)
followed by Cr-J and Cr groups (3.12 and 3 g/dl) respectively. Highest mean plasma globulins level (2.34ng/ml) was observed in Cr-J group followed by Cr, and control groups (2.3 and 1.77 ng/ml) respectively (Table III). Statistical analysis (ANOVA) has shown highly significant variation among the groups (p≤0.001) and Duncan’s multiple range test has shown significant (p≤0.05) difference between groups.

Table II: Protective effects of Jambul on Cr induced anomalies in renal function test.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Urea (mg/dl) ***</td>
<td>† 31.08 ± 0.06 b</td>
</tr>
<tr>
<td>BUN (mg/dl) ***</td>
<td>14.84 ± 0.03 b</td>
</tr>
<tr>
<td>CRT (mg/dl) ***</td>
<td>0.29 ± 0.03 c</td>
</tr>
<tr>
<td>BUN/CRT ***</td>
<td>56.08 ± 5.09 a</td>
</tr>
<tr>
<td>UA (mg/dl) ***</td>
<td>5.02 ± 0.55b</td>
</tr>
</tbody>
</table>

C: control. Cr: chromium treated, Cr-J: Cr+JFE, n= 10, BUN; Blood Urea Nitrogen, CRT; creatine, UA; Uric Acid, Statistical analysis (ANOVA: two factors without replication), * * * : p ≤ .0001, † group means ±SEM, a b c : Anyone two groups not sharing a lower case letters differ significantly from each other (Duncan’s Multiple Range comparison-post hoc analysis).

Table III: Ameliorative effects of Jambul extracts on Cr induced anomalies on Liver Function Test.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Bilirubin (mg/dl) ***</td>
<td>† 0.07 ± 0.04 c</td>
</tr>
<tr>
<td>Total Protein(g/dl) *</td>
<td>5.64 ± 0.37 b</td>
</tr>
<tr>
<td>Albumin (g/dl) *</td>
<td>3.24 ± 0.01a</td>
</tr>
<tr>
<td>Globulin (ng/ml) **</td>
<td>1.77±0.04c</td>
</tr>
</tbody>
</table>

C: control. Cr: chromium treated, Cr-J: Cr+JFE, Statistical analysis (ANOVA: two factors without replication). p ≤ 0.05-0.01, * : p ≤ .01, ** : p ≤ .001, † group means ±SEM, a b c : Anyone two groups not sharing a lower case letters differ significantly from each other (Duncan’s Multiple Range comparison-post hoc analysis).

**DISCUSSION**

Higher elevation of enzymes and cholesterol is associated with the nature of supplementation. The Cr⁶ as food additive in dietary rice and village’s sweets like Galabe of Pakistan, is highly reno-hepatic toxic. The liver plays an important role in the lipid metabolism and it is the hub of fatty acid synthesis and lipid circulation through lipoprotein synthesis. The most profound effect on the liver histology was increase in the accumulation of fat indicated by widen hepatic sinusoids spaces (Fig 1, B-E) which is the adverse effect of Cr⁶ exposures. The elevation of SGPT, SGOT and ALP in Cr⁶ exposures (Table I) indicate the pathophysiological changes of the liver parenchyma, hypo-functioning of the anterior pituitary, liver-biliary dysfunction, lipoprotein lipase deficiency or lipoprotein lipase cofactor deficiency corticosteroids during lipogenesis (Luis and Edmundo, 2014). The fibrosis causes distortion of the hepatic vessels and lead to an increased intra hepatic resistance. Damage hepatocytes in Cr⁶ exposures causes impair liver function and it becomes unable to detoxify the toxicants in blood (Fig 1, B-d). The Cr⁶ treated groups in case of liver injury; enzymes leave liver cells and mix into blood stream, to produce reno-hepatic anomalies (Fig 1-B, E). The defense against free radicals is associated with activities of SGOT and SGPT (Chaturvedi et al., 2007).

The sharp increase in plasma SGPT and SGOT level, causing increase in protein catabolism in Cr⁶ exposures groups (Table I) indicate the severe liver stress accordingly Cd
which damage the cellular junctions and disintegrate the blood barrier (Kusakabe et al., 2008). In Cr⁶ exposures groups enzymes leave the liver cells and mix up into blood stream, to produce reno-hepatic anomalies evident by elevation of SGPT, SGOT and ALP which also specify the pathophysiological changes of liver parenchyma (Table I). An increased in the circulating pool of non-esterified fatty acid causes the fatty liver diseases (Nguyen et al., 2008). SGPT elevation in Cr⁶ exposures animals indicate the hepatic-injuries like cholestasis, biliary tree obstruction, ulcerative colitis and congestive heart failure (Lieberman and Phillips, 1990). Higher creatine (CRT) after metabolic block are the causative agents of also direct improper catabolism and that significant elevation (p ≤ 0.0001) of UA (Table II) indicates increased purine catabolism, metabolic block before nitrogenous waste can be excreted, renal dysfunction, hyperparathyroidism and hypertension.

Chromium Induced Cirrhosis

The Cr⁶ exposures animals indicate the decrease in the amount of albumin (Table III) and cause more uptake of water consumption by animals, specify the possibility of cirrhosis (Fig. 1-B, E). Severe capillaries and blood vessels damage result in loss of serum proteins; which also indicate the poor liver function (Gole and Dasgupta, 2002). The significant elevation (p ≤ 0.0001) of protein (Table III) indicate poor protein metabolism similarly BUN alterations and BUN/CRT ratio fluctuation enhance dehydration that may cause abnormal CRT levels boost dehydration (Atef and Al-Attar, 2011).

The higher globulins and bilirubin levels (Table III) also confirm the cirrhosis and A/G ratio specify hypothyroidism and glucocorticoid excess (Agnès et al., 2012) similarly the significant elevation (p ≤ .0001) of UA (Table II) also direct improper catabolism and that metabolic block are the causative agents of hypertension (Miguel, 2010).

Amelioration of Lipid Peroxidation

Jambul considered as anti-lipid peroxidative to regulate the hepatic enzymes due to the presence of their anthocyanins, glucoside, ellagic acid, iso-quercetin, kaemferol and myrecetin constituents (Abdalla et al., 2011). The JFE analogous to citrus fruits protect the membrane integrity resulting in a reduction of cells hemolysis without met-hemoglobin formation due to their flavonoids (Heroor et al., 2013). The JFE attenuate the hepatocellular necrosis by regulating SGOT and SGPT (Karami, et al., 2013) to minimize the hepatotoxicity. The ammonia during excretion need more water so in Cr⁶ exposures animals feel thirst, and comparatively drink more water, indicate reno-hepatic complications, which can be reversed by plant extracts (Atef and Al-Attar, 2011).

The regulation of UA by JFE accordingly Siraitiagros venorii (Da-Duo et al., 2013) which enhance antibodies and antioxidants against ROS to reverse induce dehydration, similarly the globulin sustain chelating activities (Saeed et al., 2011) and total protein specify regulation of liver inflammation along with CRT (Table II), like Allium sativum, against CrCl⁶ (Jamshid et al., 2008). Heavy metal poisoning has already being claimed about vascular conjunction resulting into shrinkage of glomeruli in rat kidney but there is significant enlargement of glomeruli size along with necrosis in the convoluted renal tubules (Fig 1-B, E), however the JFE group indicate the highest protective effect (Abbas et al., 2015). The vacuolation cause necrosis due to debris in vessels followed by large excessive lesion, also intimate alarming malfunctioning of renal tubules (Fig 1-E). The plants increased the activities of antioxidant enzymes, like catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase and their regulation, indicate the sign of improvement in the physiology of liver; stabilized lipogenesis, tumbling vacuolation and maintain the enzymatic activities (Table I-II). The JFE phytochemicals are responsible to cure fibrosis by up regulating and by radical scavenging, regulating cell cycle and necrosis augmenting shielding abilities against toxicants like Olive and Morus (Alarcon et al., 2014).Jambul possess different medicinal properties and their ascorbic acid being important constituent in cellular metabolism; gives proper remedy against toxicant stress (Abbas et al., 2015). The JFE are excellent
AMELIORATION OF JAMBULAGAINST CHROMOUM INDUCED ANOMALIES

supplements against oxidative stress and lipid inadequate metabolism due to anthocyanins; which can ameliorate the hyperglycemia by the activation of AMP-activated protein kinase (AMPK) in controlling the lipid metabolism like L-carnitine slimming capsule which is essential for carnitinepalmitoyl transferase-1 pathway during rehabilitation (Koeth et al., 2013).

CONCLUSION
The modern allopathic medicines have limited therapeutic options due to their side effects while the herbal drugs are harmless and must be used as an alternative way to cure diseases. This mammalian model conducting study is helpful in order to make recommendation of its safe and beneficial use against environmental toxicants to assess the reno-hepato toxicological implications. The outcomes of such studies may also be useful for clinical application. Further study may be needed to achieve the optimal effects of Jambul fruit extracts against insecticides and other heavy metals at molecular and genomic level.

REFERENCES


ALARCON, M., FUENTES, E., OULATE, N., NAVARRETE, S., CARRASCO, G. AND PALOMO, I. 2014. Strawberry extract presents antiplatelet activity by inhibition of inflammatory mediator of atherosclerosis (sP-selectin, sCD40L, RANTES, and IL-1β) and thrombus formation. Platelets. 8: 1-6.


AMELIORATION OF JAMBUL AGAINST CHROMOUM INDUCED ANOMALIES


