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INTRODUCTION

Cancer remains the most important causes of death all 
over the world as compared to other non-infectious 

diseases. According to cancer statistical report, about 14.1 
million cancer cases and 8.2 million deaths due to cancer 
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were reported in 2012 (Khan et al., 2016). Later, in 2018, 
GLOBOCAN estimated 18.1 million new cancer cases 
and 9.6 million deaths due to cancer (Ferlay et al., 2018). 
World Health Organization (WHO) predicted 17.5 mil-
lion expected deaths at the end of 2050 due to cancer 
(Khan et al., 2016).

Among all, the second most common cancer in 
women is BC and one of the important causes of death 
(Kaur et al., 2019; Torres et al., 2019). Over 1.5 million 
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Abstract | The second most frequent cancer all over the world is breast cancer (BC). It is 
reported that only about 10% BC cases are attributed due to inherited genetic mutations while 
remaining 90% cancer cases are associated with environmental factors. Artificial light at night 
(ALAN) is considered one of the major environmental risk factors for breast cancer. It inhibits 
production of melatonin (MLT) from pineal gland which results in abnormal epigenetic changes 
that relates with an increased risk of BC. The most important ALAN-mediated epigenetic 
changes include methylation of DNA and acetylation of histone, which are significant for 
growth, development and progression of BC. DNA hypermethylation of promoter CpG 
islands inhibits transcriptional activity by methyltransferase enzyme which results in 
inactivation of tumor suppressor genes (TSG), while in hypomethylation, demethyltransferase 
enzyme causes the activation of oncogenes by promoting transcriptional activity. Contrary to 
DNA methylation, histone acetylation and deacetylation results in chromatin opening and 
closing, respectively; leading to transcriptional activation and inactivation of genes. Histone 
acetylation has been frequently detected in oncogenes while histone deacetylation in TSG. 
Collective data from various studies demonstrate that DNA hypermethylation and histone 
deacetylation of TSG lead to inactivation of TSG and activation of oncogenes. The purpose 
of this review is to discuss the evidence based relationship between ALAN and oncogenes 
expression through epigenetic remodeling by DNA methylation and histone acetylation.
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BC cases are diagnosed every year throughout the world. 
In 2018, about 2 million new BC cases were diagnosed 
(Zaidi and Dib, 2019).

ALAN increases the risk of BC due to suppression 
of MLT production (Stevens, 2005; Xiang et al., 2019). 
However, MLT production increases in the absence of 
light (Hill et al., 2009; Hill et al., 2015). MLT is mainly 
produced and secreted by the pineal gland (Korkmaz 
and Reiter, 2008; Li et al., 2017). In addition to pineal 
gland, it also synthesized by different organs like skin, 
gastrointestinal tract, retina, bone marrow, and lymphocytes 
(Hill et al., 2015; Li et al., 2017). Chemically, it is an 
indoleamine (N-acetyl-5-methoxytryptamine) and name 
(Mela-) is due to its effect on amphibians which blanch 
the melanophores and (-Tonin) because it is derived from 
serotonin (Basse and Arock, 2015). It is famous for ‘night 
hormone’ and supposed as ‘Jack of all trades (Haim and 
Zubidat, 2015). It plays an important role in regulating 
the immune system and sleep wake cycle. It also acts as 
an anti-oxidative, anti-aging, anti-inflammatory and 
anti-cancer agent. (Bondy and Campbell, 2018; Amin et 
al., 2019). The process of biosynthesis of MLT has been 
shown in Figure 1.

Figure 1: Synthesis of MLT. MLT synthesis takes place 
in pineal gland. Pineal glands uptake tryptophan and 
converts it into MLT through five enzymes catalyzed 
reactions. The diagram represents the sequential 
reactions and enzymes involved in biosynthesis of 
MLT. TPH: Tryptophan hydroxylase,  5-HTPD: 
5-Hydroxytryptophan decarboxylase, SNAT: Serotonin 
N-acetyltransferase, HIOMT: hydroxyindole-O-
methyl transferase).

The production of MLT is controlled by the 
suprachiasmatic nucleus with the help of the pineal gland, 
which affects clock genes and reduces cancer (Blakeman 
et al., 2016; Zubidat and Haim, 2017; Giudice et al., 
2018). During the day, the concentration of MLT reduces 
whereas its concentration increases at night. By exposure of 
ALAN, the normal action of MLT disrupts due to its less 
production (Sharma et al., 2010) which cause abnormal 
epigenetic changes that enhances the BC risk (Haim and 
Zubidat, 2015).

In 1942, C. H. Waddington first introduced the 
idea of epigenetic (Hasan et al., 2015). It controls 
genetic alternation without changes in sequence of 
DNA nucleotides (Kochan and Kovalchuk, 2015). Two 
major ALAN mediated epigenetic changes include 
methylation of DNA and acetylation of histone that 
are important to growth, development and progression 
(Lujambio and Esteller, 2008; Bondy and Campbell, 
2018). These modifications are also increasing the chances 
of BC (Salavaty, 2015) by activation of oncogene and 
interruption of the role of particular TSGs (Lee and 
Muller, 2010). MLT regulates alternations in tumor 
cell. It performs anticancer activity by down-regulation 
of oncogenes and up regulation of TSGs. It also causes 
methylation and deacetylation of the oncogene (CYP19) 
that reduces BC. As a result of deacetylation, chromatin 
condenses and suppresses the binding of transcriptional 
factor which require for activation of oncogenes. Moreover, 
MLT also reduces BC by methylation of other oncogenes 
(Early Growth Receptor 3 and POU4F2/Brn-3b) and 
unmethylation of TS glypican- 3(GPC3) (Lee et al., 
2013). Epigenetic mechanism relates to inactivation of 
TSG and activation of oncogenes and these modifications 
affect genes expression (Haim and Zubidat, 2015).

Effect of ALAN at MLT secretions and estrogen production
ALAN influences the normal daily pattern because 

it contains light with different spectrum and wavelength 
(Keshet-Sitton et al., 2016). It decreases the concentration 
of MLT by the retinohypohalamic pineal region. Decrease 
in MLT results in increase level of estrogen, which also 
increases the risk of BC development (Blask et al., 2011; 
Dauchy et al., 2014; Bauer et al., 2013). It is thought, the 
main reason of BC risk is lifetime load with estrogen 
(Stevens, 2009; White et al., 2017).

Effect of ALAN on methylation of tummor suppressor genes
Among epigenetic alternations which are induced 

by ALAN, the most important is DNA methylation, 
and it is more common form of molecular fluctuations in 
human cancer. In DNA methylation, a methyl (–CH3) 
group shifts to the 5th carbon (5C) of cytosine from 
Sadenosyl- L-methionine (Fang et al., 2003; Mahmood 
and Rabbani, 2017; Pfeifer, 2018). Enzyme (known as 
DNA methyltransferase) involves the shifting of –CH3 
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Figure 2: ALAN induced BC: MLT synthesis take place in pineal gland at night, however; ALAN reduced its 
production which results in abnormal epigenetic changes including DNA methylation and Histone acetylation. 
The promoter region is unmethylated and acetylated in normal tissue of TSG while it is methylated and deacetylated 
in cancer tissues. As a result, TSG become inactive and oncogenes become active leading to BC induction.

group and three members of this family are known (Yang 
et al., 2001). Both DNMT3A and DNMT3B are de 
novo methyltransferases (Korkmaz et al., 2009) whereas 
DNMT1 is the continuation methyltransferase and during 
cell division, it equally transfers the methylation patterns 
(Lujambio and Esteller, 2008). It is well-known enzyme 
relates to methylation of DNA and promotes apoptosis 
(Kochan and Kovalchuk, 2015).

DNA Methylation is the most important 
mechanism in epigenetic alternations which is involved 
in regulation of genetic programming and enhances the 
progression of different types of cancers, including BC 
(Pouliot et al., 2015; Zubidat and Haim, 2017). These 
alterations occur only to a cytosine and guanosine 
sequence in the DNA, known as CpG dinucleotide. 
These regions are primarily present at the promoter and 
there is generally no methylation in normal cells (which 
permit the active gene transcription) while in cancer 
cells these CpG promoter region are methylated which 
results in silencing of various TSGs and pro-apoptotic 

genes (Basse and Arock, 2015; Wajed et al., 2001).

Several kinds of alternation in DNA methylation can 
take place in cancer, such as hypermethylation in gene-locus 
resulting in the inactivation of TSG, or hypomethylation 
of the distinctive genes and repeated sequences (Basse and 
Arock, 2015). Hypermethylation is the term used for more 
methylation while hypomethylation for less methylation 
(Ehrlich, 2002; Blask et al., 2003). These alternations act 
as a biomarker for identification as well as treatment of 
cancer (Radpour et al., 2009).

In case of BC, the expression of circadian genes 
is deregulated. Reports indicated hypermethylation on 
promoter of PER1, PER2, CRY1 and BMAL genes in BC 
(Kuo et al., 2009; Shanmugam et al., 2013; Salavaty, 2015). 
In long term shift workers, Cry2 (related to circadian 
genes) is hypermethylated on promoter region (Zhu et 
al., 2011; Steven and Zhu, 2015). Glypican-3 (GPC3), a 
tumor suppressor gene is aberrantly methylated in MCF-
7 BC cell lines. Upon treatment of MCF-7 cells with 
1nM MLT, significant increase in the expression of GPC3 

ALAN and Breast Cancer



December 2010 | Volume 34 | Issue 2  | Page 234	

gene was observed. The findings suggest that MLT could 
modulate methylation pattern of this tumor suppressor 
gene (Lee et al., 2013). In long term shift workers, the 
miR-34b promoter region is aberrantly methylated which 
enhanced the BC risk due to ALAN exposure (Liu et al., 
2015). Report indicated the relationship between DNA 
methylation of TSG (BRCA1, BRCA2, TP53, CDKN2A) 
and night shift workers. It graphically showed the 
expression of methylation decreases from number of years 
in these TSG. Results indicted that in night shift workers, 
BRCA1 and TP53 are hypomethylated compared with 
non shift workers (Carugno et al., 2019). Hypomethylation 
of p53 and BRCA1 has been assumed to be induced to 
counterbalance defects in circadian cell cycle regulation 
and thus could indirectly increase the risk of cancer.

Effect of ALAN on methylation of oncogenes
Oncogenes included those genes that enhanced cell 

proliferation and survival (GRØNBÆK et al., 2007). 
Several types of genes in BC changed the level of their 
expression due to unusual methylation. In cancer cells, 
the genome is globally hypomethylated or unmethylated 
that caused the instability of chromosome, and failure 
of genomic imprinting might result in the upregulation 
or more expression of proto-oncogenes ( Jovanovic et al., 
2010; Hasan et al., 2015). In several proto-oncogenes, the 
promoter region is hypomethylated or not methylated 
leading to uncontrolled cell proliferation, cancer 
progression and development of treatment resistance. 
The main epigenetic mechanism of BC is the activation 
of oncogenes due to inactivation of TSG that cause the 
cancer, including BC (Basse and Arock, 2015).

Oncogenes such as POU4F2 and ERG3 showed 
different methylation patterns and were up-regulated 
in BC cell lines. Treatment of BC cells with 1nM MLT, 
halted the growth of BC cells by down-regulating above 
said oncogenes via increased methylation. (Lee et al., 2013). 
CLOCK (related to circadian genes) is hypomethylated on 
the promoter region in shift workers. (Zhu et al., 2011; Steven 
and Zhu, 2015). Other independent studies conducted in 
CLOCK which showed slightly more methylation in BC 
cases compared with healthy control (Erdem et al., 2017). 
ALAN showed different results from the methylation of 
TSG and oncogenes. The results are shown in Table 1. 

Effect of ALAN on acetylation of tummor suppressor genes
ALAN caused changes in usual acetylation pattern 

of TSG (Haim and Zubidat, 2015). The balance between 
histone acetylation and deacetylation is necessary for 
controlling the expression of genes. Histone acetylation 
is promoted by histone acetyl transferases enzyme (HAT) 
that is concerned with activation of gene transcription, 
whereas histone deacetylation or hypoacetylation is 
promoted by another enzyme called histone deacetylase 
(HDAC) which is associated with repression of gene 
transcription (Suzuki et al., 2009; Cohen et al., 2011; 
Li et al., 2013). Changed expression or gene mutations 
that encode histone deacetylation or hypoacetylation 
have been associated with induction of cancer while both 
these promote the abnormal transcription of leading 
genes and controlled the main functions of cells such as 
cell propagation, regulation of cell-cycle and apoptosis 
(Ropero and Esteller, 2007).

Table 1: Effect of ALAN on methylation pattern of genes in BC.
Gene/ Protein MLT Normal 

function
Methylation-
Pattern 

Effect Activation/ 
Inhibition

References

Per 1 ↓ TS  -CH3↑ BC Inhibition Kuo et al., 2009
Per 2 ↓ TS  -CH3↑ BC Inhibition Kuo et al., 2009; Shanmugam et al., 2013
Cry1 ↓ TS  -CH3↑ BC Inhibition Kuo et al., 2009
BMAL1 ↓ TS  -CH3↑ BC Inhibition Kuo et al., 2009
EGR3 ↓ Onco  -CH3 ↓ BC Activation Lee et al., 2013
POU4F2 ↓ Onco  -CH3 ↓ BC Activation Lee et al., 2013
GPC3 ↓ TS  -CH3 ↑ BC Inhibition Lee et al., 2013
CLOCK ↓ Onco  -CH3 ↓ BC Activation Zhu et al., 2011; Steven and Zhu, 2015
CLOCK ↓ Onco  -CH3↑ BC Activation Erdem et al., 2017
Cry2 ↓ TS  -CH3↑ BC Inhibition Zhu et al., 2011; Stevens and Zhu, 2015
mir-34B ↓ TS  -CH3↑ BC Inhibition Liu et al., 2015
BRCA1 ↓ TS  -CH3 ↓ BC Inhibition Carugno et al., 2019 
BRCA2 ↓ TS  -CH3 ↓ BC Inhibition Carugno et al., 2019
CDKN2A (p16) ↓ TS  -CH3 ↓ BC Inhibition Carugno et al., 2019
TP53 ↓ TS  -CH3↓ BC Inhibition Carugno et al., 2019
ESR1 ↓ Onco  -CH3↓ BC Activation Carugno et al., 2019
ESR2 ↓ Onco  -CH3↓ BC Activation Carugno et al., 2019

↓: Downregulation; ↑: Upregulation; TS: Tumor Suppressor; BC: Breast Cancer.
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Table 2: Effect of ALAN on acetylation pattern of genes in BC.
Gene/ Protein MLT Normal Func-

tion
Acetylation/ Deacetyl-
ation 

Effect Activation/ Inhi-
bition

References

P53 ↓ TS Deacetylation BC Inhibition Proietti et al., 2014
CYP19 ↓ Onco Acetylation BC Activation Korkmaz et al., 2009
ER ↓ Onco Acetylation BC Activation Saha and Corsi, 2007
c-MYC ↓ Onco Acetylation BC Activation Saha and Corsi, 2007
STAT3 ↓ Onco Acetylation BC Activation Xiang et al., 2019
BRCA1 ↓ TS Deacetylation BC Inhibition Hill et al., 2009
BRCA2 ↓ TS Deacetylation BC Inhibition Hill et al., 2009
Per 1 ↓ TS Deacetylation BC Inhibition Hill et al., 2009
Per 2 ↓ TS Deacetylation BC Inhibition Hill et al., 2009
Ku-70 ↓ TS Deacetylation BC Inhibition Hill et al., 2009
MMP ↓ Onco Acetylation BC Activation Bondy and Campbell, 2018

↓: Downregulation; ↑: Upregulation; TS: Tumor Suppressor; BC: Breast Cancer; Onco: Oncogene.

For alternations in chromatin, most important 
mechanism is the adaptation of histone acetylation 
and deacetylation. These adaptations cause epigenetic 
changes due to alternations in expression of gene and 
cell development which may affect carcinogenesis and 
propagation (Cui et al., 2018). In cancer, the functions 
of histone deacetyltransferase are not only limited to 
their involvement to histone deacetylation, but also 
played an important role in deacetylation of non-histone 
proteins. For instance, in vivo and in vitro study, Histone 
deacetyltransferase 1 linked with the p53 (that is tumor 
suppressor) and deacetylated it (Ropero and Esteller, 2007).

MLT exhibited anticancer effects in BC. It decreased 
the MDM2 expression and increased acetylation of p53 
in MCF-7 cell lines (Proietti et al., 2014). MLT via its 
receptor MT1, activated the RORα that controls the 
expression of SIRT1 (histone deacetylases) and BMAL/
CLOCK. CLOCK (histone acetyltrasferases) acetylated 
PER1/2 and other DNA repair genes BRCA1, BRCA2, 
P53 and Ku-70 which reduced the development of cancer 
due to acetylation activity. Hill et al., have explained, 
how BRCA1, BRCA2, p53, Ku70, PER1 and PER2 
deacetylated and induced BC due to ALAN (Hill et 
al., 2009). The findings showed below recommend that 
ALAN causes more expression and abnormal recruitment 
of histone deacetyltransferases in promote regions could 
be a regular event in cancer development and progression, 
resulting suppressed transcription of tumor-suppressor 
genes. 

Effect of ALAN on acetylation of oncogenes
ALAN decreased the production of MLT and 

enhanced phosphorylation and acetylation of oncoprotein 
(such as STAT3) that over expressed in BC (Xiang et 
al., 2019). Hyperacetylation of Proto-oncogenes results 
in activation of proto-oncogenes while hypo-acetylation 
of tumor suppressors genes is frequently localized to 

promotor region causing the genes to be silenced (Audia 
and Campbell, 2016).

MLT has been reported to decrease the expression of 
CYP19 protein which is frequently overexpressed in BC 
cell lines. MLT exhibits oncostatic effects via deacetylation 
of CYP19 (Korkmaz et al., 2009). In addition, MLT 
induced hypoacetylation and decreased the activity of 
matrix metalloproteinase (MMP). Increased expression of 
MMPs have been noted in various types of tumor which 
mainly facilitate metastasis (Bondy and Campbell, 2018). 
CLOCK (histone acetyltransferases) promotes acetylation 
of different genes such as c- myc and ERα that induce BC 
due to acetylation (Saha and Corsi, 2007).

The collective findings published previously 
recommended that ALAN causes the more expression 
and abnormal recruitment of histone acetyltransferases in 
promoter regions ehich could be regular event in cancer 
development and progression, resulting in activation of 
oncogenes. ALAN mediated acetylation of TSG and 
oncogenes has been shown in Table 2. 
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