Programme	Biotechnology	Course Code	BT. 306	Credit Hours	2+1		
2			D1. 500	Crean mours	2 1		
Course Thie	Course Title Principles of Biochemical Engineering						
	Course Introduction						
_	vides an introduction to the P	1		0 0 0			
	undergraduate students majoring in Biotechnology. The curriculum covers fundamentals Biochemical Engineering and their applications in biotechnology						
Practical:	gineering and their appreade		ogy				
	icrobial growth with appli	cation of Monod	l model; i	nhibition kinetic	es and		
	rate; methods of immobili						
	stoichiometry; production c						
	n and analysis (batch, fedbat			•			
	plug flow bioreactor; rheol neat transfer, media and bio						
analysis of a typ		fedetor stermzan			nonne		
	*	ng Outcomes					
On the completi	on of the course, the student	s will:					
• [• Understand the principles of biochemical engineering and their role in						
biotechnology.							
	Explain the kinetics of enzym	•		-			
	Design bioreactors and optim	aze bioprocess pa	rameters for	or industrial			
a	pplications						
	Cour	rse Content					
Theory Unit-I	tion to microorganisms and l	biological mology	lac				
	es of enzyme catalysis	biological molecu	1105				
_	s of enzyme and cell immobil	lization					
Enzyme	•						
 Internal mass transfer effect on immobilized growth 							
 Stoichiometry models of microbial growth 							
Structured model of microbial growth							
 Bioreactors - continuous stirred tank bioreactors 							
Plug-flow and packed bed bioreactors							
• Imperfect mixing							
 Fed batch bioreactors Gas liquid mass transfor in bioreactors 							
Gas liquid mass transfer in bioreactorsPower requirement for bioreactor							
 Fower requirement for bioreactor Sterilization and heat transfer in bioreactors 							
 Introduction to bioproduct recovery 							
 Biological product manufacturing 							
 Economic analysis of bioprocesses; case study: penicillin 							
	Practical Unit-I						
Unstructured microbial growthUnstructured microbial growth with application of Monod model							
	-						

- Inhibition kinetics and nutrient uptake rate
- Methods of immobilization via binding and physical retention
- Yield coefficient
- Stoichiometry
- Production of enzymes by structured models
- Production of enzymes by segregated models
- Bioreactor design and batch analysis
- Bioreactor design and fedbatch analysis
- Bioreactor design and continuous analysis
- Enzyme catalysis in the CSTR
- Packed bed and plug flow bioreactor
- Rheology of fermentation broth; mixing and gas-liquid mass transfer
- Rheology of fermentation broth; mixing and gas-liquid heat transfer,
- Media and bioreactor sterilization techniques; techno-economic analysis of a typical bioprocess.

Textbooks and Reading Material

- Douglas SC and Blanch HW, 1997. Biochemical Engineering. 2nd Edition; CRC Publishers.33
- Bailey et al., 1986. Biochemical Engineering Fundamentals. 2nd Edition; McGraw-Hill
- Aiba et al., 1973. Biochemical Engineering. 2nd Edition; Academic Press.
- Katoh S and Yoshida F, 2009. Biochemical Engineering, a textbook for engineers, chemists and biologists. Wiley VCH
- Clark DS and Blanch HW, 1997. Biochemical Engineering, 2nd Edition (Chemical Industries). 2nd Edition; CRC Press.

Teaching Learning Strategies

- Lectures
- Assignments and Presentations
- Group discussions
- Interactive sessions

Assignments: Types and Number with Calendar

- Quiz in 4th week of 5 marks
- Assignments in 8th week of 10 marks
- Presentation in 12th week of 10 marks

Assessment						
Sr. No.	Elements Weightage Details		Details			
1	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.			

2	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.