Institute of Zoology Faculty of Life Sciences

University of the Punjab, Lahore Course Outline

Programme	BS Zoology	Course Code	ZOOL-215	Credit Hours	2
Course Title	Biochemistry-I				

Course Introduction

- To provide knowledge about macro molecules of eukaryotic cells and organelles, including membrane structure and dynamics;
- To provide in-depth knowledge about the polymerized organic compounds of life.
- To provide knowledge of the principles of bioenergetics and enzyme catalysis
- To provide knowledge of the chemical nature of biological macromolecules, their three-dimensional structure, and the principles of molecular recognition

Learning Outcomes

By the end of the course, students should be able to:

- 1. Demonstrate knowledge and understanding of the molecules of living cells;
- 2. Demonstrate knowledge and understanding of the principles that govern the structures of macromolecules and their participation in molecular recognition;
- 3. Analyse, interpret, and participate in reporting to their peers on the results of their laboratory experiments;
- 4. Participate in and report orally on team work investigations of problem- based assignments;

	Lecture/Reading	
Week 1	 Introduction to Macromolecules Structure, types and role of various building blocks their respective macromolecules. 	Lecture/Reading
	Carbohydrates: Introduction; Classification Stereoisomerism	Lecture/Reading
Week 2	Structure, types and role of monosaccharides, oligosaccharides and	Lecture/Reading
	Polysaccharides	Lecture/Reading
Week 3	Glycosaminoglycans and glycoconjugates;	Lecture/Reading
	Carbohydrates as an information carrier molecule.	Lecture/Reading
Week 4	Amino acids, peptides & proteins: • Types of amino acids & their classification;	Lecture/Reading Lecture/Reading
Week 5	 Uncommon amino acids; Acid/base behavior of amino acids. Titration curves in amino acids and their importance: 	Lecture/Reading
	Peptides & proteins;Biologically active peptides & polypeptides;	Lecture/Reading
Week 6	Amino acid sequence in proteins & their importance; Conjugated proteins;	Lecture/Reading
	 Purification Techniques for Proteins An outline of purification techniques for proteins 	Lecture/Reading
Week 7	Column chromatography, gel electrophoresis Lecture/Reading	

	Isoelectric focusing	Lecture/Reading
Week 8	 Organization of proteins Structural levels of proteins Hemoglobin, Cytochrome-c 	Lecture/Reading
	Chymotrypsin, alpha Keratin and Collagen	Lecture/Reading
Week 9	Proproteins, their examples and role	Lecture/Reading
	Enzymes Enzymes, their importance, classification	Lecture/Reading
Week 10	Nomenclature, Function & inhibition.	Lecture/Reading
	Lipids Introduction & classification of lipids;	Lecture/Reading
Week 11	Fatty acids, their types; Storage lipids	Lecture/Reading
	Classification and important characteristics Triacyclglycerols; waxes	Lecture/Reading
Week 12	Structural/membrane lipids	Lecture/Reading
	Glycerophospholipids	Lecture/Reading
Week 13	Ether and Ester linkages Galactolipids & Sulfolipds	Lecture/Reading
	Sphingolipids their types & importance: Sterols, their structure, types & functions	Lecture/Reading
Week 14	Examples of Functional diversity of Lipids as Signaling molecules	Lecture/Reading
	Cofactors, Electron carrier, antioxidants, pigments	Lecture/Reading
Week 15	 Nucleic acids Nucleic acids and their types; Structure and role of various Bases in nucleic acids 	Lecture/Reading
	Nucleoside & Nucleotides;	Lecture/Reading
Week 16	Structure of DNA and RNA molecules;	Lecture/Reading
	Organization and Chemistry of Double helical structure of DNA with their details.	Lecture/Reading

Textbooks and Reading Material

- 1. Lehninger principle of biochemistry by David L.Nelson and Michael M.Cox, 7th latest edition,ISBN-10:1-4641-2611-9,ISBN-13:978-14641-2611-6
- 2. Biochemistry by Jeremy M. Berg , John L. Tymoczko; Lubert Stryer ,ISBN- 10:1429229365,ISBN- 13:97814229229364
- 3. Berg, J. M., Tymoczko, J. L., Lubert Stryer. 2010. Biochemistry. 7th Ed.
- 4. Lodish, H., Berk, A., Zipursky, S. L., Paul. M., Baltimore D, Darnell, J. 2012. Molecular Cell Biology.
- 5. David L. Nelson, and Michael M. Cox, 2000. Lehninger Principles of Biochemistry, 3rd Ed., Macmillan Worth Publishers, New York.
- 6. Murray, R.K., Granner, D.K., Mayer, P.A. and Rodwells, V.W., 2000. Voet. D., Voet, J.G., and Pratt, C.W., 1999. Fundamentals of Biochemistry, John Wiley and Sons, Inc., New York.
- 7. Zubay, G., 1995. Biochemistry, 4th Ed., Wm. C. Brown Publishers, Inc., Oxford, England.
- 8. Stryer, L., 1995. Biochemistry, 6th Ed., W.H. Freeman and Company, New York.

Teaching Learning Strategies

- Lectures 1.
- Readings 2.
- 3. Prsentation
- Home Assignment
- 5. Quiz

Assignments: Types and Number with Calendar

1st Assignment in Mid-term 2nd Assignment in Final-term

Assessment

Sr. No.	Elements	Weightage	Details			
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.			
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.			
3.	Final Assessment	40%	Written Examination at the end of the semester. It mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based of term paper, research proposal development, field wor and report writing etc.			