Institute of Zoology Faculty of Life sciences University of the Punjab, Lahore Course Outline

Programme	BS Zoology	Course Code	ZOOL-417	Credit Hours	2
Course Title	Evolution				

Course Introduction

Evolution is one of the main topics in biology, and also one of the most fascinating phenomena in nature! This course is an introduction to evolutionary biology and the evolutionary process. In this introductory course, students will know the genetic basis of evolution: the nature of the genetic information; the main mechanisms of evolution, such as natural selection, crossing over and mutation. Along with that an overview of the rate of evolution in the past, process of speciation, and extinction of the species will also be discussed.

Learning Outcomes

On the completion of the course, the students will:

- 1. Understand the fundamental principles of evolution and analyze the mechanisms of evolutionary changes
- 2. Evaluate the role of evolution in shaping the diversity of life on Earth.
- 3. Investigate the evolution of specific trait, behavior and species
- 4. Develop critical thinking skill to evaluate scientific arguments and evidences related to evolution
- 5. Integrate evolution with other scientific disciplines as genetics, ecology, zoogeography, paleontology, etc.

	Course Content	Assignments/Readings			
Week 1	Introduction of Evolution				
	Origin of life: Panspermia				
Week 2	Chemical theory in brief	Problems in theory of			
	Hardy-Weinberg equilibrium,	chemical origin			
Week 3	The causes of micro-evolution: Mutation, Gene flow				
WCCK 3	The causes of micro-evolution: Natural Selection				
	Types of natural selection	Different methods to			
Week 4	one locus selection model	measure Fitness of the population			
	Causes of polymorphism in populations when natural				
Week 5	selection works				
	Genetic drift				
	Nonrandom breeding, Genetic load, Cost of selection,				
Week 6	Hitch-hiking				
	Linkage disequilibrium				
*** 1.5	Two locus selection model	Effect of linkage			
Week 7	Causes of Linkage disequilibrium	disequilibrium on evolution			
Week 8	Shifting balance theory				
	Concept of phenotypic variation: Polygenic traits				
Week 9	Concept of phenotypic variation: Heritability				
	Explanation for adaptation, genetics of adaptation,				
Week 10	reasons of imperfect adaptation				

	The Units of selection; allele					
Week 11	The Units of selection; cell line, organisms, kin group					
	The Units of selection; group					
Week 12	Ultimate Units of selection	Other	theori	es o	f sex	cual
	Theories of sexual selection; Darwin, Fisher	selection				
Week 13	Theories of sexual selection; Zahavi					
Week 15	Evolutionary developmental biology: allometery					
Week 14	Evolutionary developmental biology: heterochrony					
	species selection, Evolutionary innovation and origin of					
	higher taxa					
Week 15	Rates of evolution; Evolutionary trends and laws	Relation	ıship		betw	een
	Rates of evolution; Gradualism and punctuated equilibrium		on	and	rate	of
			n			
Week 16	Coevolution					
	co adaptations					

Textbooks and Reading Material

- 1. Textbooks.
 - Ridley, M. 2011. Evolution. Blackwell Scientific Publications, New York, USA (Third edition)
- 2. Suggested Readings
 - i. Strickberger. M.W. 2012. Evolution. Jones & Barrett Publishers. Gower Street, London, England.
 - ii. Moody, P.A. 1989. Introduction to Evolution, Harper and Row, Publishers, NewYork
 - iii. Wiley, E. O. and Lieberman, B. S. 2011. Phylogenetics: Theory and Practical Practice of Phylogenetic systematics. 2nd Ed.Wiley-Blackwell.
 - iv. Bell, G.2009. Selection, the mechanism of evolution 2nd edition. Oxford university press

Teaching Learning Strategies

Lecture, Discussion

Assignments: Types and Number with Calendar

Four written assignments, 5 marks each

Assessment

Sr. No.	Elements	Weightage	Details	
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.	
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior,	
3.	Final Assessment	40%	Written Examination at the end of the semester.	