Programm Course Tit	 Bachelor of Science in Solid State Physics (BS SS Physics) Heat and The 	Course Code rmodynai	SSP- 203 mics	Credit Hours	3 (2-1)		
Course Introduction							
This source will size the concert of							
 Heat and temperature To give the concept of classical distribution function To understand the laws of thermodynamics and their application 							
		Learmin	ig Outcon	lies			
By the end of this course, students will be able to:							
 To relate heat transfer to temperature change. Memorize temperature equations for Celsius, Fahrenheit and Kelvin conversions. Understand how body temperature can vary. 							
Course Content Assignments/Readings							
Week 1	Unit-I 1.1 Statistical Mechanics 1.1.1 Statistical distribution and mean values, Mean free path and microscopic calculations of mean free path				What is mechanics		
Week 2	Unit-II 2.1 Distribution of molecular speeds, Distribution of energies, Maxwell distribution, Maxwell-Boltzmann energy distribution						
Week 3	Unit-III 3.1 Internal energy of an ideal gas. Brownian motion, Qualitative description. Diffusion, Conduction and viscosity						
Week 4	k 4 Unit-IV 1.1 Heat and Temperature 4.1.1 Temperature, Kinetic theory of the ideal gas, Work done on an ideal gas						

Week 5	Unit-V	Practice	
	1.1 Review of previous concepts		
	Unit-VI		
Week 6	1.1 Internal energy of an ideal gas 6.1.1 Equipartition of energy. Intermolecular forces. Qualitative discussion. Van der Waals equation of state	Discussion	
	Unit-VII		
Week 7	1.1 Thermodynamics		
	7.1.1 Review of previous concepts		
Week 8	Mid Term Exams		
	Unit-VIII	Apply First law of	
Week 9	8.1 First law of thermodynamics and its applications to adiabatic, isothermal, cyclic and free expansion	thermodynamics	
Week 10	Unit-IX		
	9.1 Reversible and irreversible processes, Second Law of thermodynamics, Carnot theorem, Carnot engines. Heat engine	What is ideal heat engine	
Week 11	Unit-X	What is absolute zero	
	10.1 Refrigerators. Calculation of efficiency of heat engines. Thermodynamic temperature scale: Absolute zero:		
	Unit-XI		
Week 12	11.1 Entropy, Entropy in reversibleprocess, Entropy in irreversible process.Entropy & second law. Entropy &probability		
	Unit-XII		
Week 13	12.1 Thermodynamic functions:	Define enthalpy	
	Thermodynamic functions (Internal		
	energy, Enthalpy)		
Week 14	13.1 Glbb's functions, Entropy,	What is Gibb's free	
	relations TdS equations Energy	energy	
	equations and their applications		
	Unit-XIV		
Week 15	14.1 Low Temperature Physics, Liquification of gases, Joule Thomson effect and its equations.	Presentations	

	Thermoelectricity, Thermocouple, Seebeck's effect, Peltier's effect, Thomson effect					
Week 16	Final Term Exams					
Textbooks and Reading Material						
 J. F. Lee and F. W. Sears, Thermodynamics, Addison-Wesley 1954. A. J. Pointon, Introduction to Statistical Physics, Longman 1967. M. W. Zemansky, Heat and Thermodynamics, 3rd Edition, McGraw Hill, 1951. Reif, Statistical Physics, Berkley Physics series, McGraw 						
Teaching Learning Strategies						
1. 2. 3.	Course Teaching Presentations Quiz					
Assignments: Types and Number with Calendar						
1. 2. 3. 4.						
Assessment						

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.