Programme	Bachelor of Science in Solid State Physics (BS SS Physics)	SSP-301	Credit Hours	3 (3-0)			
Course Title	Course Title Classical Mechanics						
Course Introduction							
This course is	designed:						
To develop th	e basic knowledge of clas	sical world usin	g the laws of	of Physics			
To develop the understanding of two bodies central force problems							
To give understanding of kinematics and dynamics of rigid bodies							
Development of Hamiltonian equation and use of canonical transformation in classical physics							
Learning Outcomes							
 Be able to various m 	ep understanding of Newt solve the Newton equation ethods, d the foundations of chao	ons for simple co	onfiguration	is using			
Course Content				Assignments/Readings			
Week 1	Unit-I 1.1 Elementary Principles 1.1.1 Brief Survey of Newtonian mechanics of a system of particles, constraints, Alembert's principle			What are constraints?			
Week 2	Unit-II 2.1 Lagrange's equation and its applications. Virtual work.			Apply lagrange's equation			
Week 3	Unit-IIIApplyHamilton1.1 Variational PrinciplesprinciplePrinciple3.1.1 Calculus of variation and Hamilton's principlePrinciplePrinciple						
Week 4	Unit-IV 4.1 Derivation of L Hamilton's principl	• • •	on from	Practice			
Week 5	Unit-VEquation of motion and applications1.1 Two Body Central Force Problemapplications						

	5.1.1 Low and least action, two body			
	problem and its reduction to one body			
	problem. Equation of motion and solution			
	for one body problem			
	Unit-VI			
Week 6	6.1 Kepler's Laws Laboratory and centre of	Practice		
	mass systems, Rutherford scattering			
	Unit-VII			
Week 7	7.1 Kinematics of Rigid Body Motion	Euler's equation		
	7.1.1 Orthogonal transformations,	-		
	Eulerian angles			
Week 8	Mid Term Exams			
Week 9	Unit-VIII	Euler's formula and		
WEEK 9	8.1 Euler's theorem, The coriolis force	applications		
	· · · · · · · · · · · · · · · · · · ·			
W 1 10	Unit-IX	m 1 1		
Week 10	1.1 Rigid Body Equation of Motion	•		
	9.1.1 Angular momentum, Tensors and dyadic			
	Unit-X			
Week 11	10.1 Moment of inertia, Rigid body	Exercise		
	problems and Euler's equations.			
	Unit-XI			
Week 12	11.1 Hamilton Equation of Motion	Legendre equations		
	11.1.1 Legendre transformation and	2080000 04000000		
	Hamilton equations of motion			
Week 13	Unit-XII	Practice		
week ie	12.1 Conservation theorems	Tuettee		
	Unit-XIII			
	13.1 Canonical Transformations	Apply canonical		
Week 14	13.1.1 Examples of canonical	tranformations		
	transformations			
	Unit-XIV			
Week 15	14.1 Lagrange and Poison brackets, Liouville's	Presentations		
	theorem.			
Week 16				
Week 16	Final Term Exams			
Textbooks and Reading Material				
1. H. Goldstein, 'Classical Mechanics', 2nd. Edn., Addison Wesley, Reading, Massachusetts				
(1980).		~ .		

2. V.I. Arnold, Mathematical Methods of Classical Mechanics Springer verlag, New York (1980).

3. S.N. Rasband, 'Dynamics', John Wiley & Sons, New York (1983).

4. R.A. Matzner & L.C. Shepley, 'Classical Mechanics', Prentice Hall Inc., London (1991).

5. N.M.J. Woodhouse, 'Introduction to Analytical Dynamics', Oxford Science Publications, Oxford (1987).

Teaching Learning Strategies

- 1. Course Teaching
- 2. Presentations
- 3. Quiz

Assignments: Types and Number with Calendar

- 1. 2.
- 3.
- 4.

Assessment

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.