Program	BS Solid State Physics	Course Code	SSP-304	Credit Hours	3 (3-0)				
Course Title Basic Solid State Physics									
Course Introduction									
Solid State Physics is a major branch of Condensed Matter Physics and provides a theoretical basis to									
Material scien	ce. The course will provide a	valuable intro	duction to Solid St	ate Physics an	d an overview				
of crystal structure. The course not only will equip the students with the theoretical knowledge of crystal									
structure determination methods, but students will also learn X- ray diffraction, Neutron Diffraction, and									
Electron Diffr	action experimental techniqu	ies as well. Ina	addition, students v	will also get c	comprehensive				
knowledge ab	out atomic bonding and the	elastic							
behavior of th	e crystal lattice.								
Learning Outcomes									
With the completion of the course, students will be able to:									
1. Under	standing the basic theme of S	olid State Phy	SICS						
2. Theoretical knowledge of the Crystal Structure									
3. Learning the Experimental techniques to determine the crystal structure									
4. Know			ic beliavior of crys						
		Course Cont	ent						
	Introduction to Condensed I	Matter Physics	Solid State Physic	es and its relat	ion				
Week 1	with materials Science. Why do we study Solid State Physics? Relationship of								
Solid State Physics to Other Areas									
	Crystal Structure: Periodic arrays of atoms								
Week 2	Fundamental types of lattices								
	Index system for crystal planes								
	Simple crystal structures								
Week 3	Direct imaging of atomic structure; Non-ideal crystal structure; Random Stacking								
	and Polytypism								
Week 4	Keciprocal Lattice: Diffraction of waves by crystals Southered waves emplitude: Drillouin zeroes								
	• Scattered wave amplitude; Brillouin zones								
Week 5	• Fourier analysis of the basis								
Week 6	Crystal Binding and Elastic Constants: Crystal of Inert Gases								
Week 7	Ionic Crystals; Covalent crystals; Metals; Hydrogen Bonds								

Week	 Atomic Radii; Analysis of elastic strains 					
Week	9 Elas	tic compliance an tal	ice and stiffness constants; Elastic waves in cubic			
Week 1	• Crys	Crystal Vibrations: Vibrations of crystals with a monatomic basis				
Week 1	• Two	atoms per primi	itive basis; Quantization of elastic waves			
Week 1	• Ther	• Thermal properties, Lattice heat capacity,				
Week 1	• Class	Classical model, Einstein Model, Debye model,				
Week 1	the thermal conductivity and resistivity, Umklapp processes Veek 14					
Week 1	5 • Intro	Introduction to Crystal Defects				
Week 1	6 • Poin defe	Point defects (Frenkel defects, Schottky defects, impurity defects), Line defects.				
	Textbooks and Reading Material					
 Introduction to Solid State Physics (7thEdition), C. Kittle, <i>John Wiley & Sons, Inc.</i> (1996). Solid State Physics, J. S. Blakemore, <i>Cambridge University Press</i> (1991). Solid State Physics Simulations, Steven Spicklemire, <i>John Wiley & Sons</i> (1996). Solid State Physics, Neil W. Ashcroft, <i>Thomson Press</i> (<i>India</i>), 2003). Solid State Physics (2ndEdition), G. Grosso, G. P. Parravicini, Academic Press (2013). 						
Teaching Learning Strategies						
The instructor is required to make use of visualization/animations and symbolic/numerical calculations to teach the concepts. The students are required to solve a large portion of related exercises/questions/problems of the main textbooks.						
	Assignments: Types and Number with Calendar					
At least two assignments and two quizzes. A course project may also be assigned.						
Sr. No.	Elements	Weightage	Details			
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.			

Г

2.	Formative	25%	Continuous assessment includes Classroom	
	Assessment		participation, assignments, presentations, viva voce,	
			attitude and behavior, hands-on-activities, short	
			tests, projects, practical, reflections, readings,	
			quizzes etc.	
3.	Final	40%	Written Examination at the end of the semester. At	
	Assessment		least fifty percent of the question paper would	
			involve new problems related to the concepts learned	
			in the course.	
			It is mostly in the form of a test, but owing to the	
			nature of the course the teacher may assess their	
			students based on term paper, research proposal	
			development, field work and report writing etc.	