Programme	BS Solid State Physics	Course Code	SSP-305	Credit Hours	3 (3-0)
Course Title	Introduction to S	Semicond	uctor Physic	cs	
		Course I	Introduction	n	
This course provides an introduction to the fundamental principles of semiconductor physics, focusing on the properties and behavior of semiconductors. Topics include the electronic structure of semiconductors, carrier transport, p-n junctions, and semiconductor devices. The course is designed to give students a solid foundation in the physics of semiconductors, preparing them for more advanced studies in electronics, optoelectronics, and related fields.					
By the end of	this course, students	s will have	knowledge	about:	
 Fundamental Concepts of Semiconductor Physics Energy Bands and Charge Carriers Intrinsic and Extrinsic Semiconductors P-N Junctions Semiconductor Devices Thermal and Optical Properties Quantum Wells, Wires, and Dots Materials and Crystal Growth Mathematical and Computational Tools Laboratory Skills and Experimental Techniques Problem-Solving and Critical Thinking Current Trends and Applications These outcomes ensure that students completing the course will have a thorough understanding of the physical principles governing semiconductors, preparing them for advanced studies or careers in semiconductor technology and related areas. 					
	Course C	Content			Assignments/Readings
Week 1	their 1.1.2 Type (e.g., comp 1.1.3 Basic semic zinc-1 1.1.4 Intrin	view of se importanc s of semic silicon, go oound (e.g. crystal st conductors blende stru	miconducto e in technolo onductors: e ermanium) a ., GaAs, InP ructures of s (e.g., diamo uctures) etrinsic	ogy elemental and	What are semiconductors and what is their role in electronic industry?

<u>г</u>			
Week 2	Unit-II 2.1 Energy Bands and Charge Carriers in Semiconductors 2.1.1 The concept of energy bands: valence band, conduction band, and bandgap 2.1.2 The effective mass of electrons and holes	Discussion about charge carriers	
	Unit-III		
Week 3	 3.1 Intrinsic carrier concentration 3.1.1 Doping in semiconductors: n-type and p-type materials 3.1.2 The Fermi level and its position in intrinsic and doped semiconductors 	What is doping?	
	Unit-IV		
Week 4	 4.1 Carrier Dynamics in Semiconductors 4.1.1 Carrier generation and recombination processes 4.1.2 Direct and indirect bandgap semiconductors 		
	Unit-V		
Week 5	 5.1 Carrier mobility and drift velocity 5.1.1 Diffusion of carriers and the Einstein relation 5.1.2 Continuity equation for carriers 	Practice	
	Unit-VI		
Week 6	 6.1 The p-n Junction 6.1.1 Formation of the p-n junction and depletion region 6.1.2 Built-in potential and electric field across the junction 	What is the significance of p-n junction?	
	Unit-VII	Quiz	
Week 7	 7.1 Current-voltage characteristics of the p-n junction (forward and reverse bias) 7.1.1 Capacitance of p-n junctions (junction capacitance and diffusion capacitance) 7.1.2 Applications of p-n junctions: diodes, photodiodes, LEDs 		
Week 8	Mid Term Exams		
Week 9	Unit-VIII 8.1 Bipolar Junction Transistors (BJTs) 8.1.1 Structure and operation of BJTs (NPN and PNP transistors) 8.1.2 Modes of operation: active, cutoff,	What is the physical significance of BJTs?	

	and saturation		
Week 10	Unit-IX 9.1 Current gain and the Ebers-Moll model 9.1.1 BJT characteristics and applications in amplification and switching	annlications of RITS??	
Week 11	Unit-X 10.1 Field-Effect Transistors (FETs) 10.1.1 Introduction to FETs: JFETs and MOSFETs 10.1.2 Structure and operation of MOSFETs	What are MOSFETs?	
Week 12	Unit-XI 11.1 Threshold voltage and channel formation 11.1.1 Current-voltage characteristics of MOSFETs 11.1.2 Applications of FETs in digital and analog circuits	Review	
Week 13	Unit-XII 12.1 Optoelectronic Properties of Semiconductors 12.1.1 Interaction of semiconductors with light: absorption, emission, and photoconductivity 12.1.2 Photodetectors and solar cells	What are solar cells?	
Week 14	Unit-XIII 13.1 Light-emitting diodes (LEDs) and semiconductor lasers 13.1.1 Quantum wells, wires, and dots in optoelectronics	Practice	
Week 15	Unit-XIV 14.1 Advanced Semiconductor Materials and Devices (Optional) 14.1.1 Compound semiconductors and heterojunctions 14.1.2 Semiconductor nanostructures (quantum dots, nanowires, 2D materials) 14.1.3 High-electron-mobility transistors (HEMTs) 14.1.4 Advanced applications: power electronics, RF devices, and photonics	What is the future of semiconductors?	
Week 16	Final Term Exams		

Textbooks and Reading Material

- 1. "Semiconductor Physics and Devices: Basic Principles" by Donald A. Neamen
- 2. "Physics of Semiconductor Devices" by Simon M. Sze and Kwok K. Ng
- 3. "Solid State Electronic Devices" by Ben G. Streetman and Sanjay Banerjee
- 4. "Principles of Semiconductor Devices" by Sima Dimitrijev
- 5. "Introduction to Semiconductor Materials and Devices" by M.S. Tyagi
- 6. "Semiconductor Device Fundamentals" by Robert F. Pierret
- 7. "Fundamentals of Semiconductors: Physics and Materials Properties" by Peter Y. Yu and Manuel Cardona

Teaching Learning Strategies

- 1. Course Teaching
- 2. Presentations
- 3. Quiz

Assignments: Types and Number with Calendar

- 1.
- 2.
- 3.
- 4.

Assessment

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.