Programm	Bachelor of Science in Solid State Physics (BS SS Physics)	Course Code	SSP-306	Credit Hours	3 (2-1)
Course Tit	le Electronics-II		I		L
		Course I	ntroduction	n	
This course is designed:					
To learn the basics of digital electronics such as Boolian Algebra.					
To develop	logic circuit using Boc	olean Alge	bra.		
To understand the computer interface and micro-controller along with the embedded system.					
Learning Outcomes					
By the end of this course, students will be able to:					
Use of Boolean algebra.					
Understand the various combination logic circuits.					
Course Content Assignments/Re			Assignments/Readings		
Week 1	Unit-I 1.1 Review of Number Systems 1.1.1 Binary, Octal and Hexadecimal number system, their inter-conversion, concepts of logic truth table			Basic logic gates	
Week 2	Unit-II 1.1 Boolean Algebra Simplify some Boolean 2.1.1 DeMorgan's theorem, expressions Simplification of Boolean expression by Boolean Postulates and theorem				
Week 3	Unit-III 3.1 K-maps and their uses. Don't care condition, Different codes. (BCD, ASCII, Gray etc.). Parity in Codes				
Week 4	Unit-IV1.1 IC logic families4.1.1 Basic characteristics of a logicfamily. (Fan in/out, Propagation delaytime, dissipation, noise margins etc.				

Different logic based IC families (DTL,

RTL, ECL, TTL, CMOS)

Г

٦

	Unit-V			
Week 5	1.1 Combinational logic circuit			
	5.1.1 Logic circuits based on AND –	Design NOR gate		
	OR, OR-AND, NAND, NOR Logic,			
	gate design, addition			
	Unit-VI			
	1.1 Subtraction (2's compliments, half adder,			
Week 6	full adder, half subtractor, full subtractor			
WEEK 0	encoder, decoder, PLA. Exclusive OR			
	gate.			
	6.1.1 Scattering experiments and cross			
	Unit-VII			
Weels 7	7 1 Sequential Logic Circuit	Duration		
week /	7.1.1 Elip-flops clocked RS-EE D-EE T-	Practice		
	FF IK-FF Shift Register			
Week 8	Mid Term Exams			
	¥7. •/ ¥7¥¥¥			
Week 9		A/D and D/A		
	8.1 Counters (Ring, Ripple, up-down,	Converters		
	Unit_IX			
Week 10	9 1 Memory Devices	Applications of RAM		
WEEK IU	9.1.1 ROM PROM EAPROM EE			
	PROM, RAM, (Static and dynamic)			
Week 11	Unit-X			
	10.1 Memory mapping techniques			
	Unit-XI			
	11.1 Micro Computers			
	11.1.1 Computers and its types, all	What is		
Week 12	generation of computers, basic	microprocessor?		
	architecture of computer,			
	microprocessor (ALU, UP Registers,			
	Control and Time Section)			
	Unit-XII			
W. 1 12	12.1 Addressing modes, Instruction set and			
Week 13	their types, Discussion on 8085/8088, 8086			
	processor family, Intel Microprocessor			
	Hierarchy;			
	Unit-XIII			
XX7 1 4 4	13.1 Micro-controller/ Embedded System			
Week 14	13.1.1 Introduction to Embedded and	Practices		
	microcontroller based systems; The			
	Microprocessor and microcontroller			

	applications and environment; microcontroller characteristics; features of a general purpose microcontroller;	
Week 15	Unit-XIV 14.1 Microchip Inc and PIC microcontroller; Typical Microcontroller examples:, Philips 80C51 & 80C552 and Motorola 68Hc05/08; Interfacing with peripherals	Presentations
Week 16	Final Term Exams	

Textbooks and Reading Material

1. Larry D. Jones, Principles and applications of digital electronics, Macmillan Publishing Company, 1993.

- 2. Digital System Design and Micro possessor J.C. BORTIE (NBF).
- 3. McMillan, Micro Electron, McGraw Hill.
- 4. Digital Logic and Computer Design Morris Mono 1995 Prentic Hall
- 5. Tocheim, Digital Electronics, (1999).
- 6. Barrey B. Brey, Intel UPS Architecture, programming and interfacing, Prentic Hall (1998).
- 7. T.L.Floyd, Digital Fundamental, 8th edition.
- 8. Tim Wilmshurst, The Design of Small-Scale Embedded Systems, Palgrave (2003)

Teaching Learning Strategies

- 1. Course Teaching
- 2. Presentations
- 3. Quiz

Assignments: Types and Number with Calendar

- 1. 2.
- 2. 3.
- 4.

Assessment

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.