Programme	e BS Solid State Physics	Course Code	SSP- 308	Credit Hours	3 (2-1)
Course Title	e Experimenta	l Techniq	ues in So	lid State l	Physics
		Course	Introduc	tion	
This course introduces students to the experimental methods and techniques used in the study of solid state physics. The course covers the principles behind various characterization techniques, their applications in investigating the properties of solid materials, and the interpretation of experimental data. Students will gain hands-on experience with instrumentation and data analysis, preparing them for research and professional work in materials science, condensed matter physics, and related fields.					
		Learnii	ng Outcor	mes	
 By the end of this course, students will: Understand the principles and applications of various experimental techniques used in solid state physics. Gain proficiency in the use of instruments and equipment for material characterization. Learn to analyze and interpret experimental data related to the structural, electronic, magnetic, and optical properties of solids. Develop the ability to design and conduct experiments, and to communicate scientific results effectively. Prepare for advanced studies or careers in experimental solid state physics and materials science. 					
	Course	Content			Assignments/Readings
Week 1	Unit-I 1.1 Introd Techn 1.1.1 (1.1.2] t 1.1.3 §	uction to I iques in S Overview solid state importance echniques naterial pro- Safety pro- practices in	Experiment olid State of experim physics e of expert in unders coperties cedures an the labor	ntal Physics nental imental tanding nd best ratory	What is experimental solid state physics?
Week 2Unit-IIWhat is the basic2.1 X-Ray Diffraction (XRD)2.1.1 Basic principles of X-rayprinciple of XRD?diffraction2.1.1 Basic principles of X-rayPrinciple of XRD?			What is the basic principle of XRD?		

	2.1.2 Bragg's Law and the	
	determination of crystal	
	structures	
	Unit-III	
	3.1 Powder X-ray diffraction and its	
	applications in material identification	Differentiate various
Week 3	3.1.1 Single-crystal X-ray	
	diffraction	types of file
	3.1.2 Data analysis: indexing,	
	lattice parameter determination,	
	Unit-IV	
	4.1 Scopping Electron Microscopy	
	4.1 Scanning Electron Microscopy	
	(SEM) and Transmission Electron	
	Microscopy (TEM)	
Week 4	4.1.1 Principles of electron	What is the principle of
WEEK 4	microscopy: electron beam	SEM and TEM?
	interactions with matter	
	4.1.2 SEM: imaging, electron	
	backscatter diffraction (EBSD),	
	and energy-dispersive X-ray	
	spectroscopy (EDS)	
	Unit-V	
	5.1 TEM: diffraction, high-resolution	
	imaging, and selected area electron	
Week 5	diffraction (SAED)	Review related articles
	5.1.1 Sample preparation	
	techniques for SEM and TEM	
	5.1.2 Applications of SEM and	
	TEM in materials characterization	
	Unit-VI	
	6.1 Atomic Force Microscopy (AFM)	What is AEM and for
Weels	6.1.1 Principles of AFM: force	what is AFIVI and io
Week o	interactions and cantilever	which purpose it is
	deflection	used?
	6.1.2 Modes of operation: contact,	
	tapping, and non-contact modes	
	7.1 Imaging and measuring surface	
Wook 7	topography at the nanoscale	
WCCK /	7.1.1 Force spectroscopy and	
	mechanical property measurements	
	7.1.2 Applications of AFM in	
	surface science and nanotechnology	

Week 8	Mid Term Exams	
Week 9	Unit-VIII 8.1 Vibrational Spectroscopy: Infrared (IR) and Raman Spectroscopy 8.1.1 Basic principles of vibrational spectroscopy 8.1.2 IR spectroscopy: absorption, reflection, and transmission modes	What is spectroscopy?
Week 10	Unit-IX 9.1 Raman spectroscopy: inelastic scattering of light and vibrational modes 9.1.1 Applications in identifying molecular vibrations, chemical bonding, and crystal structures 9.1.2 Complementary use of IR and Raman spectroscopy in material analysis	Review some papers and articles
Week 11	Unit-X10.1 Magnetometry and MagneticMeasurements10.1.1 Principles ofmagnetometry: measurement ofmagnetic moments andsusceptibility10.1.2 Types of magnetometers:vibrating sample magnetometer(VSM), superconductingquantum interference device(SQUID)10.1.3 Measurement of hysteresisloops, coercivity, and remanence10.1.4 Temperature dependenceof magnetic properties: Curie andNéel temperatures10.1.5 Applications in studyingmagnetic materials andphenomena	How VSM works?
Week 12	Unit-XI 11.1 Electrical and Thermal Transport Measurements 11.1.1 Four-point probe method for measuring electrical resistivity and conductivity 11.1.2 Hall effect measurements: carrier concentration and mobility	Which type of data we can access from four- point probe?

	Unit-XII	
	12.1 Seebeck effect and thermal	Read books
	conductivity measurements	
	12.1.1 Low-temperature	
Week 13	measurements using cryostats and	
	liquid helium	
	12.1.2 Applications in	
	semiconductors, metals, and	
	thermoelectric materials	
	Unit-XIII	
	13.1 Optical Spectroscopy and	What is PL?
	Photoluminescence	
	13.1.1 Principles of optical	
	spectroscopy: absorption	
	emission and reflectance	
	13.1.2 Photoluminescence (PL)	
Week 14	spectroscopy: excitons and	
	recombination processes	
	12.1.2 LIV Via NIP spectroscopy	
	and handgen determination	
	12.1.4 Time received	
	15.1.4 Time-resolved	
	spectroscopy and metime	
	measurements	
	13.1.5 Applications in	
	semiconductors, quantum dots,	
	and optoelectronic materials	
	14.1 Experimental Data Analysis and	
	Interpretation	
	14.1.1 Data collection, noise	
	reduction, and error analysis	
	14.1.2 Fitting models to	
	experimental data (e.g., least	
Week 15	squares fitting)	Case study
	14.1.3 Interpretation of	
	experimental results in the	
	context of material properties	
	14.1.4 Writing scientific reports	
	and presenting data	
	14.1.5 Case studies of	
	experimental research in solid	
	state physics	

Week 16		Final Term Exams			
	Textbooks and Reading Material				
1.	1. "Elements of X-Ray Diffraction" by B.D. Cullity and S.R. Stock				
2.	2. "Introduction to Solid State Physics" by Charles Kittel				
3.	3. "Scanning Electron Microscopy and X-Ray Microanalysis" by Joseph Goldstein				
	et al.				
4.	"Atomi	c Force Microscopy: Understanding Basic	Modes and Advanced		
	Applica	tions" by Greg Haugstad			
5.	"Magne	etic Measurements: Techniques and Applications	s" by R.A. Dunlap		
6.	"Funda	mentals of Molecular Spectroscopy" by C.N. Ba	nwell and E.M. McCash		
7.	7. "Solid State Physics: An Introduction" by Philip Hofmann				
		Teaching Learning Strategies			
	1.	Course Teaching			
	2. Presentations				
	3.	Quiz			
Assignments: Types and Number with Calendar					
	1.				
	2.				
	3.				
	4.				
Assessment					

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.