Programme	Bachelor of Science in Solid State Physics (BS SS Physics)	Course Code	IDIT- 301	Credit Hours	2 (2-0)		
Course Title Information Technology in Physics							
Course Introduction							
This course focuses on the application of information technology in solving and understanding complex physical problems in solid state physics. Students will learn to use and develop software tools that simulate physical systems, analyze experimental data, and model predictions.							
	Learning Outcomes						
By the end of	f this course, students	should:					
 Acquire fundamental computational skills applicable to a broad range of physical sciences. Develop proficiency in numerical methods and algorithms for solving physical problems. Gain hands-on experience with computational tools, software, and high-performance computing environments. 							
4. Learn	to analyze and interr		rom physica	l experime			
	Course C	ontent			Assignments/Readings		
Week 1	Unit-I 1.1 Introduction to Computational Solid State Physics				What is computational physics?		
Week 2	Unit-II 2.1 Overview of physics, its sig computational used in the fiel	Significance of computational solid state physics					
Week 3					Numericals solutions		
Week 4	4.1 I configues for numerical integration,				Applications in physical simulations		
Week 5	Unit-V 5.1 Introductio a computation simulation of c algorithms,	Basics of quantum computing					

	Unit-VI	
Week 6	6.1 Methods for simulating statistical and thermodynamic systems, Monte Carlo methods, and molecular dynamics simulations	Practice
Week 7	Unit-VII 7.1 Data Analysis in Solid State Physics	Collect data and analyze
Week 8	Mid Term Exams	
Week 9	Unit-VIII 8.1 Techniques for handling and analyzing large data sets from experiments or simulations	Analyze data using simulations
Week 10	Unit-IX 9.1 signal processing, noise reduction, and pattern recognition.	Practice
Week 11	Unit-X 10.1 High-Performance Computing in Solid State Physics	Solve problems
Week 12	Unit-XI 11.1 Utilization of high-performance computing (HPC) resources for large-scale simulations	Solve exercise
Week 13	Unit-XII 12.1 Introduction to parallel computing, and GPUs	What is parallel computing?
Week 14	Unit-XIII 13.1 Project Work: Students undertake a project that involves modeling a physical system.	Project work
Week 15	Unit-XIV 14.1 Project Work: Performing simulations, and analyzing results, culminating in a presentation of their findings	Presentations
Week 16	Final Term Exams	
	Textbooks and Reading Material	
Sado 2. Rive 3. Han Add	el, P. and H. Deitel. 2013. C++ How to Program. 9th lle er, NJ, USA. ly & Koffman. 2009. Problem Solving and Program isonWesley. Boston, MA, USA. han, S. G. 2014, Programming in C. 4th Ed. Pearson Ed	Design in C, 6th edition.

5. Boston, MA, USA.

6. Mustafa T., T. Mehmood, I. Saeed and A. R. Sattar. 2008. Object Oriented Programming using C++. IT-Series publications, Faisalabad, Pakistan.

Teaching Learning Strategies

- 1. Course Teaching
- 2. Presentations
- 3. Quiz

Assignments: Types and Number with Calendar

1. 2.

2. 3.

4.

Assessment

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.