Programm	Bachelor of Science in Solid State Physics (BS SS Physics)	Course Code	SSP-402	Credit Hours	3 (2-1)		
Course Title Atomic and Molecular Physics							
Course Introduction							
This course is designed:							
To review the existing theories of atomic structure							
To introduce	e the experimental pro-	of of quan	tization				
To introduce	e the use of Schrodinge	er Equation	n in real syst	tem like Hy	drogen atom		
To understand the Molecular spectrum							
Learning Outcomes							
By the end of this course, students will be able to:							
 Describe the atomic spectra of one and two valance electron atoms. Explain the change in behavior of atoms in external applied electric and magnetic field. Explain rotational, vibrational, electronic and Raman spectra of molecules. Describe electron spin and nuclear magnetic resonance spectroscopy and their applications. 							
Course Content					Assignments/Readings		
Week 1	Unit-I a. Structure of Atoms 1.1.1 Review of Bohr's theory.			Postulates of Bohr's theory			
Week 2	Unit-II 2.1 Sommerfeld model			PostulatesofSommerfeld theory			
Week 3	Unit-III 3.1 Frank Hertz experiment and approximation methods				What were the observations of frank hertz experiments?		
Week 4	Unit-IV a. One Electron System b. Review of Schrodinger equation for hydrogen atom			Schrodinger equation			
Week 5	Unit-V 5.1 Fermi Golden rule, Quantum numbers, Atoms in radiation field				What are quantum numbers?		
Week 6	Unit-VI				What is Stark effect?		

	6.1 Radiative transitions, Einstein				
	coefficients, Selection rules, normal Zeeman				
	effect, Hyperfine structure.				
	Unit-VII				
Week 7	7.1 Many body Systems				
	7.1.1 Pauli exclusion principle, Periodic				
	system of the elements				
Week 8	Mid Term Exams				
	Unit-VIII				
Week 9	8.1 Stern Gerlach experiment, Spin orbit	Practice			
	coupling, Central field approximation				
West 10	Unit-IX	Solve eveneige			
week 10	9.1 Hartree Fock methods and self-consistent	Solve exercise			
	field				
	Unit-X				
Week 11	10.1 Thomas Fermi potential, LS coupling, jj	What is LS coupling?			
	coupling and other type of coupling, X-ray				
	Spectra.				
	11.1 Interaction with field				
	11.1 1 Many electron stoms in an	Applications of Zeeman effect			
Week 12	alectromegnetic field. Anomalous				
	Zeemen effect. Descher heelt effect				
	Zeeman effect, Paschen back effect,				
Week 13		What is atomic			
	12.1.1 Ionic and covalent bonding,	bonding?			
	Diatomic molecules-rotational,				
	vibrational, and electronic spectra				
Week 14	13.1 Born Oppenhimer approximation,	Exercise			
	I ransition probabilities of diatomic				
	molecules, electron spin and Hund's cases,				
	Polyatomic molecules (brief introduction)				
Week 15	14.1 Raman effect, Hydrogen Molecular ion	Presentations			
	(LCAO approximation), Hydrogen molecule (Heitler London and molecular orbital				
	theories)				
week 16	Final Term Exams				
1 extbooks and keading Material					

1. Anne P. Thorn, Spectrophysics, second edition, Chapman and Hall, 1988.

2. B. H. Bransden and C.J. Joachain, Physics of atomic and Molecules, Longmans, London 1983,

3. R. Eisberg, and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, second edition, John Wiley and sons 1985.

Teaching Learning Strategies

- 1. Course Teaching
- 2. Presentations
- 3. Quiz

Assignments: Types and Number with Calendar

1.

2.

3. 4.

Assessment

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.